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Abstract. An unsteady boundary layer flow of a micropolar hybrid nanofluid over a stretching/shrinking sheet is analyzed. The 
nonlinear ordinary differential equations of the problem have been solved using the efficient implicit Runge–Kutta–Butcher 
method along with Nachtsheim–Swigert iteration technique. For a certain set of parameters, numerical results expose dual 
solutions with the change of the velocity ratio parameter. The dual solutions are presented in a wide range of the physical 
parameters. Using a lot of numerical data, the critical values of the velocity ratio parameter, local friction factor, local couple-
stress and local Nusselt number for the existence of dual solutions are expressed as a function of the physical parameters. These 
expressions might be useful for the development of new technology or for the future experimental investigation. 

Keywords: Dual solutions; Micropolar fluid; Hybrid nanofluid; Stretching or shrinking sheet. 

1. Introduction 

Heat transfer augmentation of micropolar fluids has been considered by many researchers because of the use of such kind of 
fluids in industrial and technological applications. Over decades, the thermal performance of the traditional fluids is enhanced by 
dispersing nanoparticles into it and the resulting fluid is known as nanofluids. As the thermal conductivity of the nanoparticles is 
high, the effective thermal conductivity of the nanofluids is thus higher than the base fluid. In this way, the nanofluids yield 
pronounced heat transfer compared to the base fluid. Since this branch of fluid dynamics is still not matured, there are a lot of 
problems to be investigated. Izadi et al. [1] studied the heat transfer characteristics of micropolar nanofluid inside an enclosure 
taking into account the effect of magnetic field on the dynamic viscosity. Contrary to this, Hashemi et al. [2] investigated the 
influences of heat generation and nanoparticles in a micropolar fluid within an enclosure. Later, Hashemi et al. [3] examined the 
natural convective flow of micropolar nanofluid inside an enclosure embedded in a porous medium considering magnetic field 
and thermal radiation.  

Bourantas and Loukopoulos [4] focused on the heat transfer characteristics of natural convection flow of a micropolar 
nanofluid in a square cavity. They mentioned that the rotation of nanoparticles noticeably affects the heat transfer and flow field. 
Moreover, Bourantas and Loukopoulos [5] extended the model to study the magnetic effect on the natural convective heat transfer 
of a micropolar nanofluid in an inclined rectangular cavity. They found that the flow and heat transfer were influenced by the 
intensity and direction of the magnetic field. Lok et al. [6] analyzed the unsteady features of a micropolar fluid flow towards a flat 
surface. The flow properties are illustrated for different values of the time and the skin friction coefficient is shown in the change 
of the coupling parameter. Results revealed that when strong concentration of microelements is considered the boundary layer 
separation takes place for a larger value of the coupling parameter, however, when weak concentration of microelements is 
adopted the boundary layer separates from the surface for all values of the coupling parameter. The flow and heat transfer of 
mixed convection flow toward a vertical surface was studied by Lok et al. [7]. A linearly varying temperature is assumed along the 
surface. They found that the dual solutions exist for opposing flow in a certain region of the mixed convection parameter.  

The boundary layer characteristics over a stretching/shrinking sheet has received attention of researchers because of its 
similarities with numerous engineering and industrial applications. Hussain et al. [8] examined the stagnation point flow of 
micropolar nanofluids over a stretching sheet. Patel et al. [9] considered the micropolar nanofluid over a stretching/shrinking 
sheet in the presence of thermal radiation and magnetic field. Hussanan et al. [10] investigated the convective heat transfer of 
micropolar nanofluids from a vertical surface. Ishak et al. [11] studied the boundary layer characteristics of a micropolar fluid past 
over the parallel or reverse moving surfaces relative to the free stream. Bhattacharyya et al. [12] examined the flow behaviors and 
heat transfer of a micropolar fluid over a permeable shrinking sheet taking into account the effect of thermal radiation. Hsiao [13] 
analyzed the flow behaviors of magnetohydrodynamic micropolar nanofluid flow towards a stretching sheet. He noted that the 
impact of magnetic field is pronounced at high temperature. As the polymer extrusion process occurs in a relatively high 
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temperature, there might be a considerable influence of the magnetic field. 
The flow and heat transfer of natural convective flow along a vertical plate, which is kept in a porous medium, are 

investigated by Chamkha [14]. It was found that the skin friction and the heat transfer diminishes with higher values of 
Hartmann number and stratification number. On the other hand, Krishna and Chamkha [15] investigated the influences of Hall 
and ion slip on the nanofluid flow over a rotating vertical plate. Results showed a decrease in the heat transfer for increasing the 
suction and radiation absorption parameter. Yasin et al. [16] considered joule heating, viscous dissipation and velocity slip of an 
incompressible fluid over a stretching/shrinking sheet. Numerical solutions of similar equations expose that the magnetic 
parameter enhances the skin friction and heat transfer. Stagnation point flow over a stretching/shrinking cylinder was studied by 
Najib et al. [17] taking into account the chemical reaction. Dual solutions are identified for shrinking sheet but for stretching sheet 
only unique solutions exist.  

The demand for heat transfer enhancement in numerous advanced technologies is growing day by day due to the reduction of 
size, but higher performance and storage capacities of the devices. In order to fulfil the needs, a new generation fluid called 
hybrid nanofluid has recently been introduced. It is well known that the heat transfer performance of hybrid nanofluids is better 
than that of nanofluids. A little attention is paid to the flow and heat transfer behaviors of hybrid nanofluids over a 
stretching/shrinking sheet. For example, Waini et al. [18, 19] studied the boundary layer flow and heat transfer over a nonlinear 
permeable stretching/shrinking sheet and an exponentially shrinking sheet, respectively. For Cu-Al2O3/water hybrid nanofluid, 
Devi and Devi [20] examined the heat transfer over a stretching sheet while Lund et al. [21] investigated the effects of viscous 
dissipation over a shrinking sheet. Shamshuddin et al. [22] assumed partial slip to examine the micropolar fluid flow over a 
stretching sheet. Recently, Al-Hanaya et al. [23] have examined the flow behavior and heat transfer of micropolar hybrid 
nanofluids over a stretching curved surface in the presence of magnetic field. Very good reviews on hybrid nanofluids are 
accomplished by Sarkar et al. [24], Sidik et al. [25], Sundar et al. [26], Babu et al. [27], Huminic and Huminic [28] and Sajid and Ali 
[29]. The interest in boundary layer flows and heat transfer due to a stretching/shrinking sheet is increasing substantially due to 
the large number of practical applications in industrial and manufacturing processes. Examples of such applications are drilling 
muds, plastic polymers, optical fibers, hot rolling paper production, metal spinning, cooling of metallic plates in cooling baths, 
manufacturing of polymer sheets, filaments and wires, etc. During the manufacturing process, the stretching/shrinking sheet is 
assumed to stretch/shrunk on its own plane, and the stretched/shrinking surface interacts with the ambient fluid both 
mechanically and thermally. Stretching/shrinking can occur in a variety of materials each having a different strength, stretching 
transparency and lustre. Hybrid nanofluids are prepared either by dispersing dissimilar nanoparticles as individual constituents 
or by dispersing nanocomposite particles in the base fluid. These may possess better thermal network and rheological properties 
due to synergistic effect. Researchers, to adjudge the advantages, disadvantages and their suitability for diversified applications, 
are extensively investigating the behavior and properties of these hybrid nanofluids. The estimation of heat transfer 
characteristics and pressure drop of the hybrid nanofluids are very important in order using these types of nanofluids in heat 
transfer applications. Thus, heat transfer characteristics and pressure drop of the hybrid nanofluids were investigated in some 
studies carried out. The review on hybrid nanofluid by Huminic and Huminic [22] revealed that hybrid nanofluids, with few 
exceptions, have thermal conductivities and viscosities higher than their base fluid and increase with increasing nanoparticles 
concentration. The factors which affect the thermo-physical properties of the hybrid nanoparticles are: the type of hybrid 
nanoparticles, the nanoparticles concentration, the base fluid, temperature, the time sonication, the addition or not of the 
surfactant as well as the mixing ratio of the two nanoparticles. Also, this review showed that hybrid nanofluids exhibit different 
rheological behaviors (Newtonian and non-Newtonian).  

From the literature review, it is evident that no study has considered the unsteady boundary layer flow of a micropolar hybrid 
nanofluid over a stretching/shrinking sheet. The purpose of this study is to reveal the boundary layer separation criterion of 
micropolar hybrid nanofluid over a stretching/shrinking sheet considering the effect of magnetic field. The governing equations of 
the problem are reduced to a set of nonlinear differential equations using similarity transformations. Numerical results are 
demonstrated with local friction factor, local couple-stress and local Nusselt number as well as flow properties for different 
values of the pertinent parameters. 

2. Problem Formulation 

We assume an unsteady two-dimensional boundary layer flow of a micropolar hybrid nanofluid over a permeable 
stretching/shrinking sheet. We also presume that there exists a uniform magnetic field of strength B0 normal to the sheet. The 
schematic of the shrinking sheet and the coordinate system are shown in Fig. 1. The properties of the base fluid and the 
nanoparticles are considered to be constant. With the assumption of Boussinesq approximation, the governing equations of the 
problem are, 
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where x  and y  are the distances along and normal to the sheet, t  is the time, ( u , v ) are the velocity components in the 
x- and y-directions, T  is the temperature of the fluid, N  is the component of microrotation in the xy -plane, κ is the vortex 
viscosity, j is the micro-inertia density and assumed to be constant, g is the acceleration due to gravity and eu  is the local free 
stream velocity. 
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Fig. 1. Schematic of shrinking sheet and coordinate system 

Moreover, the properties of the micropolar hybrid nanofluid such as the density ρhnf, the dynamic viscosity μhnf, the thermal 
diffusivity αhnf and the electrical conductivity σhnf are given by 
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where κhnf is the thermal conductivity of the micropolar hybrid nanofluid, ρf, μf, κf and σf are the density, dynamic viscosity, 
thermal conductivity and electrical conductivity of the base fluid and (ρC)hnf is the effective heat capacity of the micropolar hybrid 
nanofluid and the subscripts f, 1, 2 represent the properties of the base fluid and two different types of nanoparticles.  

The associated boundary conditions are  
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where vw is the rate of wall mass transfer, ( , ) / (1 )wu x t cx bt= − is the velocity of the sheet where c > 0 is a constant and b 

measures the unsteadiness of the problem, T0 is a constant and ( , ) / (1 )eu x t ax bt= − is the velocity outside the boundary layer. 

If the kinematic viscosity of the pure fluid is νf, then we define  
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Thus the equations (2)-(4) reduce to 
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where K=κ/μf is the vortex viscosity parameter, δ=b/a is the unsteadiness parameter, Ri = g(ρβ)fT0/(a2ρf) is the Richardson’s 
number, M=σfB0

2/(aρf) is the magnetic field parameter and B=νf/(ja) is the microinertia parameter. Also, the ratios of the quantities 
are 
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where αf is the thermal diffusivity of the fluid. 
The boundary conditions (6) become 

1
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In Eq. (14), the mass flux is assumed to be vw(t)=−(aνf/(1−bt))1/2s where s > 0 or < 0 is a suction or injection parameter and the 
constant γ=c/a is the velocity ratio parameter. 

Here the interest is to reveal the characteristics of the local friction factor, Cf, local couple stress, m, and local Nusselt number, 
Nu, which are given by  
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Combining (8), (9) and (16), we thus have 
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where Rex=uex/νf is the local Reynolds number. 

3. Results and Discussion 

The nonlinear ordinary differential equations (10)-(12) subject to boundary conditions (14) and (15) are solved using the 
implicit Runge–Kutta–Butcher method [30] with Nachtsheim–Swigert iteration scheme [31]. For the justification of the present 
solutions, a comparison is shown in Table 1. It is clear from the Table 1 that a good agreement exists between the present 
solutions and Lok et al. [7]. The physical properties used in this study are tabulated in Table 2. 

Table 1. Comparison of fʺ(0) and θ′(0) with boundary condition g(0)=0 for Pr = 0.7, δ=0.0, M=0.0, S=0.0, φ1=0.0 and φ2=0.0. 

K=0.0 

 fʺ(0) −θ′(0) 

 Lok et al. [7] Present Method Lok et al. [7] Present Method 

Ri Upper Lower Upper Lower Upper Lower Upper Lower 

−1.1 0.631500 −0.350112 0.631464 −0.350108 0.623645 −0.174184 0.623620 −0.174175 

−1.4 0.440161 −0.494103 0.440161 
−0.49

4123 
0.590876 −0.044670 0.590876 −0.044373 

−1.7 0.225110 −0.574153 0.225076 −0.574175 0.549039 0.073815 0.549016 0.073808 

−2.0 −0.039513 −0.578523 −0.039513 −0.578473 0.486576 0.198572 0.486576 0.198600 

K=3.0 

−1.1 0.338030 − 0.337999 − 0.541072 − 0.541068 − 

−1.4 0.272370 −0.232634 0.272292 −0. 232717 0.523074 −0.149524 0.523011 −0.149668 

−1.7 0.202475 −0.273943 0.202365 −0.273948 0.502420 −0.059325 0.502337 −0.059338 

−2.0 0.126644 −0.301711 0.126472 −0.301728 0.477863 0.020609 0.477734 0. 020583 

Table 2. Physical properties of base fluid and nanoparticles [15] 

Physical Properties Fluid (H2O) Al2O3 Cu 

cp (J/kgK) 4179 765 385 

ρ (kg/m3) 997.1 3970 8933 

κ (W/mK) 0.613 40 401 

β×10−5 (1/K) 21 0.85 1.67 

σ (Ω/m)−1 0.05 3.69×107 5.96×107 
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Table 3. Variations of local friction factor, local couple stress and local Nusselt number with γ when φ1=0.1, φ2=0.05, Pr = 6.2, Ri=1.0, M=1.0, s=3.0 and δ=−2.0. 

K=0.0 

 1 2Re
x f

C  m 1 2Re
x

Nu−  

Γ Upper Lower Upper Lower Upper Lower 

0.0 5.887189 −24.071280 11.479570 91.307328 18.627254 17.004689 

−0.5 8.507006 −21.193337 16.045048 57.563822 18.272340 16.457640 

−1.0 10.9140389 −18.438870 19.844771 36.641435 17.898689 15.851655 

−1.5 13.080316 −15.779701 22.835164 23.074064 17.503496 15.186106 

−2.0 14.971618 −13.168670 24.966267 14.011448 17.082887 14.472034 

−2.5 16.549833 −10.542728 26.179419 7.875797 16.629147 13.740753 

−3.0 17.746954 −7.809514 26.375395 3.759259 16.133054 13.044250 

−3.5 18.456309 −4.829102 25.403129 1.180649 15.579029 12.449889 

−4.0 18.477444 −1.370872 22.97155 0.021527 14.933231 12.036884 

−4.5 17.273949 3.144068 18.337869 0.752601 14.109988 11.920198 

−4.91 11.885107 11.234627 8.255484 7.404497 12.738728 12.633757 

K=1.0 

0.0 6.098423 −19.779120 9.149557 −20.838833 18.586354 17.675933 

−0.5 8.746083 −16.904454 12.574603 −17.325329 18.211948 17.204960 

−1.0 11.117402 −14.175469 15.233591 −14.399376 17.811600 16.690202 

−1.5 13.166091 −11.539136 17.069887 −12.001089 17.384494 16.124902 

−2.0 14.835933 −8.9111194 18.015280 −10.034155 16.923329 15.507464 

−2.5 16.037109 −6.164667 17.961049 −8.349610 16.416848 14.853112 

−3.0 16.609404 −3.082131 16.713746 −6.695466 15.844837 14.205903 

−3.5 16.187462 0.745484 13.833492 −4.576946 15.161468 13.664983 

−4.0 12.979791 7.165191 7.1712594 0.2189512 14.150522 13.510257 

−4.07 10.513151 10.128600 3.788519 3.327092 13.777852 13.734498 

Table 4. Variations of local friction factor, local couple stress and local Nusselt number with γ when φ1=0.1, φ2=0.05, Pr = 6.2, Ri=1.0, M=1.0, K=1.0 and 
δ=−5.0. 

s=1.0 

 1 2Re
x f

C  m 1 2Re
x

Nu−  

Γ Upper Lower Upper Lower Upper Lower 

0.0 2.379920 −13.246967 2.080827 −10.524208 8.645749 7.113571 

−0.5 2.271663 −9.582317 1.483410 −7.832201 7.900350 6.572769 

−1.0 −1.137262 −3.035488 −1.990424 −3.440390 6.707228 6.465333 

−1.01 −1.709640 −2.426263 −2.446957 −2.993703 6.617814 6.526553 

s=2.0 

0.0 4.455871 −22.939644 5.888782 −23.683385 13.769999 12.260271 

−0.5 5.924140 −19.065549 7.299080 −19.427252 13.258770 11.736350 

−1.0 6.709566 −14.914455 7.528945 −15.360411 12.687488 11.226225 

−1.5 6.410122 −10.066823 6.174736 −11.072761 12.016181 10.779716 

−2.0 2.831191 −2.292596 0.997260 −4.303604 11.043359 10.617122 

−2.04 1.434893 0.603842 0.579671 −2.685989 10.869019 10.698457 

s=4.0 

0.0 8.574766 −54.861097 18.573356 −87.812714 24.852139 23.541240 

−0.5 12.440106 −49.594901 26.312224 −77.848541 24.544378 23.199928 

−1.0 16.010496 −44.383954 33.007405 −68.495874 24.225513 22.849738 

−1.5 19.254753 −39.195891 38.605702 −59.703484 23.893977 22.491290 

−2.0 22.132088 −33.986163 43.037601 −51.400418 23.547764 22.125876 

−2.5 24.587152 −28.693108 46.208950 −43.487608 23.184185 21.755799 

−3.0 26.540609 −23.228355 47.985055 −35.821547 22.799449 21.384946 

−3.5 27.869621 −17.457236 48.157744 −28.181055 22.387824 21.019818 

−4.0 28.360244 −11.151288 46.365090 −20.186886 21.939627 20.671723 

−4.5 27.555172 −3.836315 41.834737 −11.045246 21.435003 20.363197 

−5.0 23.853160 6.106649 31.866144 1.967756 20.808396 20.163623 

−5.21 16.894912 15.614807 18.407851 16.251058 20.335105 20.287378 

 
The influences of the vortex viscosity parameter, K, on the local friction factor, Rex

1/2Cf, local couple-stress, m, and local Nusselt 
number, Rex

−1/2Nu, are shown in Figs. 2(a)-(c), respectively. Also, the numerical values of the above quantities are presented in Table 
3 considering different values of K. It is evident from the figures and Table 3 that for increasing the magnitude of the velocity ratio 
parameter, the local friction factor and the local couple-stress corresponding to stable solutions first increase and then decrease 
until the occurrence of the critical points. On the other hand, the local Nusselt number gradually decreases with γ. The unstable 
solutions for K=0.0, 0.05, 0.1 and 0.25 show a distinct pattern from those for K=0.5 and 1.0. Results indicate that the vortex 
viscosity parameter reduces the local friction factor, local couple-stress and local Nusselt number. In Fig. 2(d), the variations of the 
critical values of the velocity ratio parameter, γc, local friction factor, Rex

1/2Cfc, local couple-stress, mc, and local Nusselt number, 
Rex

−1/2Nuc, with the change of K are illustrated. Due to the increase of the vortex viscosity parameter, the magnitude of the critical 
point exponentially diminishes. So, the boundary layer separation accelerates for higher values of K. Moreover, for higher values 
of K the critical value of the local Nusselt number exponentially increases, but that of the local friction factor and couple-stress is 
found to decrease exponentially. The dependency of the critical values of velocity ratio parameter, local friction factor, local 
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couple-stress and local Nusselt number on the value of K (0≤ K≤10) can be represented in the following functions:  

( ) 0.945948 0.82205 1
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2
K K

c K K e e KF Kγ −  =− + + − −   
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4
K
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( )1 2 0.756561 1
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4
K

x cNu K K e KF K− −  = + − −   
 

where F(a, b, x) is the confluent hypergeometric function and is defined by 
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!
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r

r r

a x
F a b x

b r
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where (a)0=1, (a)r=a(a+1)(a+2)…(a+r−1). 
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Fig. 2. (a) Local skin friction coefficient (b) local couple-stress, (c) local Nusselt number and (d) corresponding critical values for varying K when 
φ1=0.1, φ2=0.05, Pr = 6.2, Ri=1.0, M=1.0, s=3.0 and δ=−5.0. 

Figures 3(a)-(c) depict the variations of the local friction factor, Rex
1/2Cf, local couple-stress, m, and local Nusselt number, 

Rex
−1/2Nu, with the change of the suction parameter, s. These quantities are also tabulated in Table 4 for s=1.0, 2.0 and 4.0. From the 

figures and Table 4, it is seen that increasing values of s lead to significant increase in the local friction factor, local couple-stress 
and local Nusselt number. The effect of the suction parameter on the critical velocity ratio parameter, γc, and critical values of the 
local friction factor, Rex

1/2Cfc, local couple-stress, mc, and local Nusselt number, Rex
−1/2Nuc, is depicted in Fig. 3(d). It is found from Fig. 

3(d) that all of the above quantities exponentially increase for increasing values of s. In this regard, the domain of the existence of 
dual solutions becomes wider for higher values of s. The critical values of the velocity ratio parameter, γc, local friction factor, 
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Rex
1/2Cfc, local couple-stress, mc, and local Nusselt number, Rex

−1/2Nuc, can be represented as a function of s (1≤s≤4) as follows: 
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Fig. 3. (a) Local skin friction coefficient (b) local couple-stress , (c) local Nusselt number and (d) corresponding critical values for varying s when 
φ1=0.1, φ2=0.05, Pr = 6.2, K =0.5, Ri=1.0, M=1.0 and δ=−5.0. 
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3 4
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s s
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2 3
s s
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The effects of the magnetic field parameter, M, on the local friction factor, Rex
1/2Cf, local couple-stress, m, and local Nusselt 

number, Rex
−1/2Nu, are illustrated in Figs. 4(a)-(c), respectively. Due to the increase of the value of M there is seen a considerable 

increase in the local friction factor, local couple-stress and local Nusselt number. Figure 4(d) exhibits the influence of the 
magnetic field parameter on the critical values of the velocity ratio parameter, γc, local friction factor, Rex

1/2Cfc, local couple-stress, 
mc, and local Nusselt number, Rex

−1/2Nuc. A linear relation is observed between the critical value of the velocity ratio parameter and 
the magnetic field parameter and its gradient is positive. So, the boundary layer separation delays with the increase of the 
magnetic field parameter. With the increase of M, the value of Rex

1/2Cfc increases, but the value of Rex
−1/2Nuc decreases. Contrary to 

this, when the value of M is increased from 0 to 4.5 the value of Rex
−1/2Nuc first increases and then decreases. From the numerical 

solutions, the relations between the value of M (0≤M≤4.5) and the values of γc, Rex
1/2Cfc, mc and Rex

−1/2Nuc can be formulated as 
follows:  
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Fig. 4. (a) Local skin friction coefficient (b) local couple-stress , (c) local Nusselt number and (d) corresponding critical values for 
varying M when φ1=0.1, φ2=0.05, Pr = 6.2, K =0.5, Ri=1.0, s=3.0 and δ=−5.0. 
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The variations of the local friction factor, Rex
1/2Cf, local couple-stress, m, and local Nusselt number, Rex

−1/2Nu, with the 
Richardson’s number, Ri, is demonstrated in Figs. 5(a)-(c), respectively. The local friction factor, local couple-stress and local 
Nusselt number are found to increase for higher values of M. The critical points corresponding to M=0.0, 0.5 and 1.0 are −3.66475, 
−4.03850, −4.41725, respectively. So, these results indicate that the dual solutions exist in broader region for larger values of M. 

The effects of the volume fraction of Cu nanoparticles, φ2, on the local friction factor, Rex
1/2Cf, local couple-stress, m, and local 

Nusselt number, Rex
−1/2Nu, are shown in Figs. 6(a)-(c), respectively. The value of φ2 considerably enhances the local friction factor 

and the local couple-stress, but causes a reduction in the local Nusselt number. Figure 5(d) demonstrates the critical values of the 
velocity ratio parameter, γc, local friction factor, Rex

1/2Cfc, local couple-stress, mc, and local Nusselt number, Rex
−1/2Nuc, with the 

change of φ2. It is thus evident from this figure that the domain of the existence of dual solutions exponentially increases owing 
to the increase of φ2. However, there is almost a linear relation between the value of φ2 and the critical values of the local friction 
factor, local couple-stress and local Nusselt number. The changes of the critical values of the velocity ratio parameter, local 
friction factor, local couple-stress and local Nusselt number against φ2 (0≤ φ2≤0.2) can be written in the following relations: 
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Fig. 5. (a) Local skin friction coefficient (b) local couple-stress , (c) local Nusselt number and (d) corresponding critical values for varying K when 
φ1=0.1, φ2=0.05, Pr = 6.2, K =0.5, M=1.0, s=3.0 and δ=−5.0.   

( ) 25.86097
2 2 2

1
4.61373 1.66348 2.45882 ,3, ,

3c e Fϕγ ϕ ϕ ϕ
 =− + +   

 

( ) 21 2 3.96862
2 2 2

1 1
Re 9.48539 6.63926 10.864 , , ,

4 3x fcC e Fϕϕ ϕ ϕ−  = − +   
 

( ) 216.1808
2 2 2

1 1
0.209437 0.0640663 37.1672 , , ,

3 2cm e ϕϕ ϕ ϕ
 = − +   

 

( ) 21 2 15.696
2 2 2

1
Re 16.2345 0.477151 8.9378 ,3, .

4x cNu e Fϕϕ ϕ ϕ
− −  = + −   

 

The influences of the unsteadiness parameter, δ, on the local friction factor, Rex
1/2Cf, local couple-stress, m, and local Nusselt 

number, Rex
−1/2Nu, are presented in Figs. 7(a)-(c), respectively. As the magnitude of δ increases the local friction factor and the local 

couple-stress are found to decrease whereas the local Nusselt number increases. The changes of the critical values of the velocity 
ratio parameter, γc, local friction factor, Rex

1/2Cfc, local couple-stress, mc, and local Nusselt number, Rex
−1/2Nuc, with the unsteadiness 

parameter are shown in Fig. 7(d). For increasing the magnitude of δ, there is an increase in Rex
1/2Cfc, mc and the magnitude of γc but 

a decrease in Rex
−1/2Nuc. This tendency implies that the increase in the magnitude of δ expedites the separation of the boundary 

layer. The values of γc, Rex
1/2Cfc, mc and Rex

−1/2Nuc against the value of δ can be stated as follows:  
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Fig. 6. (a) Local skin friction coefficient (b) local couple-stress , (c) local Nusselt number and (d) corresponding critical values for 
varying K when φ1=0.1, Pr = 6.2, K =0.5, Ri=1.0, M=1.0, s=3.0 and δ=−5.0. 
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Fig. 7. (a) Local skin friction coefficient (b) local couple-stress , (c) local Nusselt number and (d) corresponding critical values for varying K when 
φ1=0.1, φ2=0.05, Pr = 6.2, K =0.5, Ri=1.0, M=1.0 and s=3.0. 



Analysis of Dual Solutions of Unsteady Micropolar Hybrid Nanofluid Flow  
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 1, (2021), 19-33 

29 

γ

R
e x-1

/2
N

u

-4.0 -3.0 -2.0 -1.0 0.0
13.0

15.0

17.0

19.0

21.0
First solution
Second solution

(c)

δ=-12.0, -11.5, -11.0,..., -3.5, -3.0

 
δ

R
e x1/

2 C
fc
, m

c, 
R

e x-1
/2
N

u c

γ c

-12.0 -9.0 -6.0 -3.0
-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

-4.0

-3.5

-3.0

-2.5

-2.0

(d)

γc

Rex
1/2Cfc

mc

Rex
-1/2Nuc

 

Fig. 7. (a) Local skin friction coefficient (b) local couple-stress , (c) local Nusselt number and (d) corresponding critical values for varying K when 
φ1=0.1, φ2=0.05, Pr = 6.2, K =0.5, Ri=1.0, M=1.0 and s=3.0. 
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Fig. 8. (a) Velocity (b) angular velocity and (c) temperature for varying K when φ1=0.1, φ2=0.05, Pr = 6.2, Ri=1.0, M=1.0, s=3.0 and δ=−2.0. 
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The velocity, angular velocity and temperature profiles for different values of K are shown in Figs. 8(a)-(c), respectively. Results 
show that an increase in the value of K diminishes the velocity, angular velocity and temperature. The momentum and thermal 
boundary layers increase a bit for higher values of K.  

Figures 9(a)-(c) demonstrate the variations of the velocity, angular velocity and temperature for the change of the magnetic 
field parameter, M. Because of the increase of the value of M it is observed from the first solutions that the velocity velocity of the 
fluid significantly increases, however, there is negligible impact on the angular velocity and temperature. In the case of second 
solutions, when the value of M is increased the velocity decreases, but the angular velocity and temperature are found to increase.  

The influences of the Richardson’s number, Ri, on the velocity, angular velocity and temperature are illustrated in Figs. 10(a)-(c), 
respectively. From the figures, it is clear that there is a very small effect of Ri on the velocity, angular velocity and temperature.  
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Fig. 9. (a) Velocity (b) angular velocity and (c) temperature for varying M when φ1=0.1, φ2=0.05, Pr = 6.2, Ri=1.0, K=0.5, s=3.0 and δ=−2.0. 
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Fig. 10. (a) Velocity (b) angular velocity and (c) temperature for varying Ri when φ1=0.1, φ2=0.05, Pr = 6.2, K=0.5, M=1.0, s=3.0 and δ=−2.0. 
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Fig. 10. (a) Velocity (b) angular velocity and (c) temperature for varying Ri when φ1=0.1, φ2=0.05, Pr = 6.2, K=0.5, M=1.0, s=3.0 and δ=−2.0. 
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Fig. 11. (a) Velocity (b) angular velocity and (c) temperature for varying Ri when φ1=0.1, Pr = 6.2, Ri=1.0, K=0.5, M=1.0, s=3.0 and δ=−2.0. 

 
Figures 11(a)-(c) exhibit the influences of the volume fraction of Cu nanoparticles, φ2, on the velocity, angular velocity and 

temperature. It is seen that the velocity, angular velocity and temperature increase with the increase of φ2. The second solutions 
also show the similar tendency. It is also evident from the results that the momentum boundary layer decreases and the thermal 
boundary layer increases.  

The effects of the suction parameter, s, on the velocity, angular velocity and temperature are elucidated in Figs. 12(a)-(c), 
respectively. For increasing the value of s the velocity and angular velocity increase, but the temperature decreases. Accordingly, 
the suction parameter reduces the momentum and thermal boundary layers.  
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Fig. 12. (a) Velocity (b) angular velocity and (c) temperature for varying s when φ1=0.1, φ2=0.05, Pr = 6.2, Ri=1.0, K=0.5, M=1.0 and δ=−2.0. 

4. Conclusion 

In this study, the flow and heat transfer characteristics of a micropolar hybrid nanofluid over a non-isothermal 
stretching/shrinking sheet have been investigated taking into account the magnetic field effect. Using similarity variable 
transformations, the governing equations are reduced to a set of nonlinear differential equations. Numerical results provide dual 
solutions in terms of the velocity ratio parameter. For increasing the volume fraction of Cu nanoparticles, magnetic field 
parameter, vortex viscosity parameter and magnitude of the unsteadiness parameter, the results show an increase in the local 
friction factor and the local couple-stress and a decrease in the local Nusselt number. On the contrary, all of these quantities 
significantly increase with the suction parameter. The critical values of the velocity ratio parameter, local friction factor, local 
couple-stress and local Nusselt number are expressed as a function of the pertinent parameters. Moreover, the thicknesses of the 
momentum and thermal boundary layers shrink for higher values of the suction parameter and lower values of the vortex 
viscosity parameter. 

Author Contributions 

Nepal Chandra Roy developed the mathematical modeling, scheme, code of the problem and examined theory validation; Md. 
Anwar Hossain suggested to develop the mathematical modeling and code of the problem; Ioan Pop suggested to find dual 
solutions, develop the mathematical modeling and examined the theory validation. The manuscript was written through the 
contribution of all authors. All authors discussed the results, reviewed, and approved the final version of the manuscript.  

Conflict of Interest  

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article. 



Analysis of Dual Solutions of Unsteady Micropolar Hybrid Nanofluid Flow  
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 1, (2021), 19-33 

33 

References 

[1] Izadi, M., Mohammadi, S. A., Mehryan, S.A.M., Yang, T. F., Sheremet, M. A., Thermogravitational convection of magnetic micropolar nanofluid with 
coupling between energy and angular momentum equations, International Journal of Heat and Mass Transfer, 145, 2019, 118748. 
[2] H. Hashemi, Z. Namazian, S.A.M. Mehryan, Cu-water micropolar nanofluid natural convection within a porous enclosure with heat generation, 
Journal of Molecular Liquids, 236, 2017, 48–60. 
[3] Hashemi, H., Namazian, Z., Zadeh, S. M. H., Mehryan, S.A.M., MHD natural convection of a micropolar nanofluid flowing inside a radiative porous 
medium under LTNE condition with an elliptical heat source, Journal of Molecular Liquids, 271, 2018, 914-925..  
[4] Bourantas, G. C., Loukopoulos, V. C., Modeling the natural convective flow of micropolar nanofluids, International Journal of Heat and Mass Transfer, 
68, 2014, 35–41.  
[5] Bourantas, G. C., Loukopoulos, V. C., MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid, International 
Journal of Heat and Mass Transfer, 79, 2014, 930–944. 
[6] Lok, Y.Y., Amin, N., Pop, I., Unsteady boundary layer flow of a micropolar fluid near the rear stagnation point of a plane surface, International Journal 
of Thermal Sciences, 42, 2003, 995–1001. 
[7] Lok, Y.Y., Amin, N., Campean, D., Pop, I., Steady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface, 
International Journal of Numerical Methods for Heat & Fluid Flow, 15, 2005, 654–670. 
[8] Hussain, S.T., Nadeem, S., Haq, R.U., Model-based analysis of micropolar nanofluid flow over a stretching surface, The European Physical Journal Plus, 
129, 2014, 161. 
[9] Patel, H. R., Mittal, A. S., Darji, R. R., MHD flow of micropolar nanofluid over a stretching/shrinking sheet considering radiation, International 
Communications in Heat and Mass Transfer, 108, 2019, 104322. 
[10] Hussanan, A., Salleh, M. Z., Khan, I., Shafie, S., Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene 
and engine oil, Journal of Molecular Liquids, 229, 2016, 482–488. 
[11] Ishak, A., Nazar, R., Pop, I., Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface, Canadian Journal of Physics, 84(5), 
2006, 399–410. 
[12] Bhattacharyya, K., Mukhopadhyay, S., Layek, G. C., Pop, I., Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous 
shrinking sheet, International Journal of Heat and Mass Transfer, 55, 2012, 2945–2952. 
[13] Hsiao, K. L., Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, 
International Journal of Heat and Mass Transfer, 112, 2017, 983–990. 
[14] Chamkha, A. J., MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects, Applied 
Mathematical Modelling, 21, 1997, 603-609. 
[15] Krishna, M. V., Chamkha, A. J., Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate 
embedded in a porous medium, Results in Physics, 15, 2019, 102652. 
[16] Yasin, M. H. M., Anuar Ishak, A., Pop, I., MHD stagnation-point flow and heat transfer with effects of viscous dissipation, joule heating and partial 
velocity slip, Scientific Reports, 5, 2015, 17848 
[17] Najib, N., Bachok, N., Arifin, N. M., Ishak, A., Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder, 
Scientific Reports, 4, 2014, 4178. 
[18] Waini, I., Ishak, A., Pop, I., Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface, International Journal of 
Numerical Methods for Heat & Fluid Flow, 29(9), 2019, 3110–3127. 
[19] Waini, I., Ishak, A., Pop, I., Hybrid nanofluid flow induced by an exponentially shrinking sheet, Chinese Journal of Physics, 2019. doi: 
https://doi.org/10.1016/j.cjph.2019.12.015 
[20] Devi, S.S.U., Devi, S.P.A., Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet, Journal of Nigerian 
Mathematical Society, 36, 2017, 419–433. 
[21] Lund, L. A., Omara, Z., Khan, I., Seikh, A. H., Sherif, E.-S. M., Nisar, K.S., Stability analysis and multiple solution of Cu–Al2O3/H2O nanofluid contains 
hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation, Journal of Materials Research and Technology, 9(1), 2020, 421–432. 
[22] M. Shamshuddin, T. Thirupathi, P.V. S. Narayana, Micropolar fluid flow induced due to a stretching sheet with heat source/sink and surface heat 
flux boundary condition effects, Journal of Applied and Computational Mechanics, 5(5), 2019, 816-826. 
[23] Al-Hanaya, A. M., Sajid, F., Abbas, N., Nadeem, S., Effect of SWCNT and MWCNT on the flow of micropolar hybrid nanofluid over a curved 
stretching surface with induced magnetic field, Scientific Reports, 10, 2020, 8488. 
[24] Sarkar, J., Ghosh, P., Adil, A., A review on hybrid nanofluids: recent research, development and applications, Renewable and Sustainable Energy 
Reviews, 43, 2015, 164-177. 
[25] Sidik, N.A., Adamu, I.M., Jamil, M.M., Kefayati, G.H., Mamat, R., Najafi, G., Recent progress on hybrid nanofluids in heat transfer applications: a 
comprehensive review, International Journal of Heat and Mass Transfer, 78, 2016, 68-79. 
[26] Sundar, L.S., Sharma, K.V., Singh, M.K., Sousa, A.C., Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor–a review, 
Renewable and Sustainable Energy Reviews, 68, 2017, 185-198. 
[27] Babu, J.R., Kumar, K.K., Rao, S.S., State-of-art review on hybrid nanofluids, Renewable and Sustainable Energy Reviews, 77, 2017, 551-65. 
[28] Huminic, G., Huminic, A., Hybrid nanofluids for heat transfer applications – A state-of-the-art review, International Journal of Heat and Mass 
Transfer, 125, 2018, 82–103. 
[29] Sajid, M.U., Ali, H.M., Thermal conductivity of hybrid nanofluids: a critical review, International Journal of Heat and Mass Transfer, 126, 2018, 211-234. 
[30] Butcher, J. C., Implicit Runge-Kutta processes, Mathematics of Computation, 18, 1964, 50–64. 
[31] Naschtsheim, P. R., Sweigert, P., Satisfaction of asymptotic boundary conditions in numerical solution of systems of non-linear equation of 
boundary layer type, NASA TN D-3004, 1965. 

ORCID iD 

Nepal Chandra Roy  https://orcid.org/0000-0002-5623-9614 

Md. Anwar Hossain  https://orcid.org/0000-0002-3929-6211  
 

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms 
and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) 
(http://creativecommons.org/licenses/by-nc/4.0/). 

 

How to cite this article: Roy, N. C., Hossain, M. A., Pop, I. Analysis of Dual Solutions of Unsteady Micropolar Hybrid Nanofluid Flow 
over a Stretching/Shrinking Sheet, J. Appl. Comput. Mech., 7(1), 2021, 19-33. https://doi.org/10.22055/JACM.2020.34686.2457 

 


