Symmetry Reduction and Exact Solutions of a Class of Wave Equations

Yi Tian

College of Data Science and Application, Inner Mongolia University of Technology, Hohhot, 010080, China

Received September 01 2020; Revised September 19 2020; Accepted for publication September 19 2020.

Abstract. In this paper, the Lie symmetries and similarity reduction of a class of wave equations are investigated. First, Lie algorithm is used to get the determining equations of symmetry for the given equations which are complicated and difficult to be solved. Next, differential form of Wu’s method is used to solve this problem. Moreover, a special case of differential invariant method is used to get similarity reduction of the given equations.

Keywords: Lie algorithm, Similarity reduction, Differential form Wu’s method.

1. Introduction

The partial differential equations (PDEs) arises in many fields like the condense matter physics, fluid mechanics and optics, etc, which exhibit a rich variety of nonlinear phenomena. Finding the exact solutions of the PDEs is always one of the central interests in mathematics and physics. Over the past decades, various of methods have been developed trying to develop exact solutions for different types of PDEs. Few of the wellknown methods can be listed as: the homotopy perturbation method [1-3], the variational iteration method [4-6], the exp-function method [7-9], the semi-inverse variational method [10], the Taylor series method [11], the dynamical systems method [12], the Rayleigh–Ritz method [13], the method of separation of variables [14], etc. The Lie group method is a powerful and direct approach to construct exact solutions of nonlinear differential equations. Moreover, the Lie group method considers different types of exact solutions for PDEs can be considered, such as the traveling wave solutions, similarity solutions, and so on [15]. Tian et al. have performed some work on symmetries of PDEs; in [16] the Wu’s method is used to complete symmetry classification of PDEs. The traditional Lie algorithm is used to complete symmetry classification of the diffusion-convection equation in [17]. The Wu’s method, in [18], is used to simplify the symmetry computation of PDEs.

In this paper, it is focused on a class of wave equation:

$$\frac{1}{u_t} = u_{xx} + u_x,$$ \hspace{1cm} (1)

and its corresponding systems

$$u_t = \frac{1}{u_x} = u + u_x,$$ \hspace{1cm} (2)

where, the physical interpretation is not known at present. In a special case of similarity reduction method, the analytical solution of Eqs. (1) and (2) are presented in this work. To the best of the author knowledge, there has been no report on this special case of similarity reduction method.

2. Lie Algorithm

Consider the following PDEs:

$$F[u] = F(x,u,u_{ij}, \ldots) = 0, i = 1, 2, \ldots,$$ \hspace{1cm} (3)

Definition 1. The one-parameter Lie group of point transformations
leaves invariants the PDEs (3), i.e., is a point symmetry admitted by PDEs (3), if and only if its k th extension leaves Eq. (3) invariant.

Theorem 1. Let

\[X = \xi(x, u, \eta) \frac{\partial}{\partial x} + \eta(x, u) \frac{\partial}{\partial u}, \]

be the infinitesimal generator of the Lie group of point transformations (4). Let

\[X^{(k)} = \xi(x, u) \frac{\partial}{\partial x} + \eta(x, u) \frac{\partial}{\partial u} + \eta^{(i)}(x, u, \partial u, \partial^2 u, \ldots, \partial^i u) \frac{\partial}{\partial u_{i+k}}, \]

be the k th-extended infinitesimal generator of (5). Then one-parameter Lie group of point transformations given in (4) is admitted by Eq. (3), if and only if:

\[X^{(k)} F[u] = 0, \text{ when } F[u] = 0. \]

An over-determined system of PDEs

\[\Delta = \Delta(x, u, \xi, \eta), \]

Eq.s (8) are called determining equations (DTEs) for the infinitesimal \(\xi, \eta \), which is obtained by equating the coefficients of the polynomials in Eq. (7) in \(\partial^i u \) to zero. Consequently, the problem of computing symmetry in (4) is reduced to find the corresponding (5), which is equivalent to solve the DTEs (8) for \(\xi \) and \(\eta \). Generally it is difficult to solve Eq.(8). In this paper, the differential form Wu’s method is used to solve it.

3. Differential Form of Wu’s Method

Suppose DTEs and IP are differential polynomials system (dps), introduce the following notations:

- Zero(DTEs)= All solutions of DTEs=0;
- Zero(DTEs/IP)= All solutions of DTEs=0 such that IP = 0;
- Zero(DTEs,IP)= All solutions of DTEs=0 such that IP = 0;

In the following, we list the basic results of differential form Wu’s theory [19].

Theorem 2. (characteristic set) Let DPS be a finite differential polynomials system, there is an algorithm (Wu’s method) which allowing determining a differential chain DCS, called characteristic set of system DPS , such that

\[\text{Zero(DCS / IS)} \subset \text{Zero(DPS)} \subset \text{Zero(DCS)}, \]

\[\text{Premd(DPS / DCS)} = 0, \]

\[\text{Zero(DPS)} = \text{Zero(DCS / IS)} \cup \text{Zero(DPS,IS)}, \]

where, IS is a product of initials and separants of the characteristic set DCS.

Theorem 3. (zero decomposition theorem) For a given finite differential polynomials system DPS, then Wu’s algorithmic yield finite number characteristic set DCSi of DPS with initials and separates products ISi such that the following zero decomposition

\[\text{Zero(DPS)} = \sum_{i} \text{Zero(DCSi / ISi)}, \]

is held.

The algorithm to determine characteristic set DCS is as follows:

Input A dps DPS.

Output A differential characteristic set DCS.

Start Let i = 0;

Step 1 Select a basic set DBS, from DPS;

Step 2 Compute all the nonzero coherent dps of DBSi, and put them in set ITi;

Step 3 ∀IP (nonzero coherent differential polynomials) ∈ ITi, compute Premd(IP / DBS) \\{0\}, and put the results in set ITi;
Step 4 Compute \(R_i = \text{Prim}(\text{DPS} \setminus \text{DBS}) \setminus \{0\} \), and let \(R_j = IT \cup R_i \).

Step 5 If \(R_j = \emptyset \) (Empty), then \(\text{DCS} = \text{DBS} \), and stop, else \(i = i + 1 \) and \(\text{DPS} = \text{DPS}_{i-1} \cup R_{i-1} \), go to Step 1.

4. Symmetry and Exact Solutions of Equation (1)

Suppose the infinitesimal generator admitted by Eq.(1) is

\[
X = \xi(x,t,u)\partial_x + \tau(x,t,u)\partial_t + \eta(x,t,u)\partial_u
\]

the determining equations derived from Eq. (7) are

\[
\begin{align*}
\zeta_x &= \zeta_t = \eta_x = \tau_x = 0, \\
\eta_u &= \zeta_u - \zeta \eta_u = 0, \\
-\zeta_x + \zeta_u &= -2\eta_u, \\
\eta_u + \eta_x + \eta_u &= 0, \tau_u = 0,
\end{align*}
\]

(10)

taking left hand side for each equation, we have following corresponding differential polynomial system

\[
\begin{align*}
\xi_x, \xi_t, \xi_u, \eta_x, \eta_t, \eta_u, \\
\xi_u - \xi \eta_u, \\
-\xi_x + \xi_u - 2\eta_u, \\
\eta_u + \eta_x + \eta_u, \tau_u, \tau_u
\end{align*}
\]

(11)

using the differential form Wu’s method, we obtain characteristic set \(\text{DCS} \) of \(\text{DPS} \)

\[
\text{DCS} = \{ \xi_x, \xi_t, \xi_u, \eta_x, \eta_t, \eta_u, \eta_u + \eta_x + \eta_u, \tau_u, \tau_u \}
\]

(12)

solving the characteristic set corresponding equations \(\text{DCS} = 0 \), we have

\[
\begin{align*}
\text{Zero(DCS)} &= \xi(x,t,u) = c_1 + c_4 e^{-s}, \\
\eta(x,t,u) &= (c_1 - c_2 u)e^{-s} + c_4, \\
\tau(x,t,u) &= c_1 + c_4 t,
\end{align*}
\]

(13)

where, \(c_1, c_2, \ldots, c_4 \) are arbitrary constants. Thus, Eq.(1) admits four parameter symmetry, the infinitesimal generator is

\[
X = (c_1 + c_4 e^{-s})\partial_x + (c_1 + c_4 t)\partial_t + ((c_1 - c_4 u)e^{-s} + c_4)\partial_u.
\]

(14)

From Eq.(14), the global symmetry is obtained

\[
\begin{align*}
x' &= -\ln \left(\frac{c_1}{c_2 + c_4 e^{c_4}} - c_1 \right), \\
\xi' &= -c_1 + c_4 t + c_4 e^{c_4}, \\
u' &= \left(c_1 - c_4 \left(1 - \frac{1}{c_4} \right) + c_4 e^{-u} + c_4 e + u \right) c_4 e^{c_4}, \\
u_1' &= (c_1 + c_4 e^{-s})^-1,
\end{align*}
\]

(15)

where, \(c_1, c_2, \ldots, c_4 \) are arbitrary constants and \(c_1 \neq 0 \).

From Eq.(15), recurrence formula can be achieved. Once the recurrence formula is attained, a new exact solution \(u_n(x,t) \) of Eq. (1) can be obtained from already known \(u_{n-1}(x,t) \),

\[
u_n(x,t) = \left(c_1 - c_4 \right) \left(1 - \frac{1}{c_4} \right) c_4 e^{-\nu_{n-1}} + c_4 e^{-u} + c_4 e + u \left(c_1 + c_4 e^{-s} \right)^{-1},
\]

(16)

where

\[
u_{n-1}(x,t) = u \left(-\ln \left(\frac{c_1}{c_2 + c_4 e^{-s}} - c_1 \right), \frac{-c_1 + c_4 t + c_4 e^{c_4}}{c_4} \right) \]

(17)

and \(n = 1, 2, \ldots \).
Next, Eq. (1) is solved. From (14), invariant solutions of Eq. (1) satisfies

$$\frac{du}{(c_1 - c_2)e^{x + c_2}} = \frac{dt}{c_1 + c_2} = \frac{dx}{c_1 + c_2}\quad (18)$$

solving this equation, we have

1. \(c_1c_2 = 0\)

 Considering the following invariants

 $$U = (c_1t + c_1)(c_2e^{x + c_2})^{-c_1/c_2}$$

 $$V = -c_2(c_1 + c_2e^{x + c_2})\ln(c_1 + c_2e^{x + c_2}) - c_2xc_2e^{x + c_2} - ((x - 1)c_1 + c_2c_1)c_1$$

 Therefore, Eq. (1) have the following form invariant solution

 $$u = (c_1 + c_2e^{x + c_2})G(U) + \frac{c_2c_4(c_1 + c_2e^{x + c_2})(x + \ln(c_1 + c_2e^{x + c_2})) - c_4c_1c_2 + c_4c_3}{c_1c_2}\quad (19)$$

 substitute of Eq. (19) into Eq. (1) results in an ODE where \(G(U)\) satisfies

 $$c_4 + Uc_4(-c_1 + c_3G'(U) + U\cdot c_1\cdot G''(U) + \frac{G'''(U)}{G'(U)^2}) = 0.\quad (20)$$

2. \(c_1 = 0, c_2 = 0\)

 Eq. (1) have the following form invariant solution

 $$u = e^{-x}G(U) + \frac{2c_3 + c_1}{2c_2}, \quad U = (c_4t + c_1)e^{-x/c_2 + c_2}\quad (21)$$

 in which \(G(U)\) is the solution of the following equation

 $$\frac{c_2c_4G'(U)^2 + c_2^2G''(U) + Uc_4G'(U)[G'(U) + UC'(U)]}{G'(U)^2} = 0.\quad (22)$$

3. \(c_1 = c_2 = 0, c_3 = 0\)

 Eq. (1) have the following form invariant solution

 $$u = G(U)e^{x} + \frac{2c_3 + c_1}{2c_2}, \quad u = \frac{-c_3e^{c_1 - c_2}}{c_2}\quad (23)$$

 in which \(G(U)\) is the solution of the following equation

 $$\frac{c_4}{c_1} + \frac{c_2^2G''(U)}{c_2} + \frac{G'''(U)}{G'(U)^2} = 0.\quad (24)$$

4. \(c_2 = 0, c_1c_3 = 0\)

 Eq. (1) have the following form invariant solution

 $$u = G(U) + \frac{xc_3 - c_2e^{-x}}{c_1}, \quad U = (c_4t + c_1)e^{-x/c_2 + c_2}\quad (25)$$

 in which \(G(U)\) is the solution of the following equation

 $$\frac{c_2G'(U)^2(-c_1 + Uc_3G'(U)) - c_2^2G''(U) - Uc_4G'(U)[G'(U) + UC'(U)]}{G'(U)^2} = 0.\quad (26)$$

5. \(c_1 = c_2 = 0, c_3 = 0\)

 Eq. (1) have the following form invariant solution
\[u = G(U) + \frac{x c_2 - c_2 e^{-x}}{c_1}, \quad U = t - \frac{x c_2}{c_1}, \] (27)

in which \(G(U) \) is the solution of the following equation

\[-c_1 + c_1 G'(U) \frac{c_2 G''(U)}{c_2} + \frac{G''(U)}{G(U)^2} = 0. \] (28)

6. \(c_1 = 0, c_2 \neq 0 \)

Eq. (1) have the following form invariant solution

\[u = (c_1 + e^{-c_2})(c_2 + e^{-c_2})(x + \ln(c_1 + e^{-c_2})) - c_1 c_2 c_3, \] (29)

where

\[U = t - \frac{c_1 \ln(c_2 e^x + c_1)}{c_1}, \] (30)

and \(G(U) \) is the solution of the following equation

\[c_2 G'(U)^2 - c_2 c_1 G'(U)^3 + (1 + c_2^2 G'(U)^2)G''(U) = 0. \] (31)

5. **Symmetry and Exact Solutions of Equation (2)**

Suppose the infinitesimal generator admitted by Eq. (2) is

\[X = \xi(x, t, u, v)\partial_x + \eta(x, t, u, v)\partial_t + \varphi(x, t, u, v)\partial_u \] (32)

the determining equations derived from (7) are

\[
\begin{align*}
\xi_x &= 0, -ur_x + \varphi_x = 0, \\
\xi_t &= 0, -\xi_t + \eta_x = 0, \\
\xi_u &= 0, \xi_u - 2ur_x - \tau_x + \varphi_u = 0, \\
\xi_v &= 0, \xi_v - 2ur_x - \tau_x + \varphi_v = 0, \\
-\xi_x + \eta_x - 2ur_x - \tau_x + \varphi_x &= 0, \\
-\xi_t + \varphi_x &= 0, \\
-\xi_u + \varphi_u &= 0, \\
-\xi_v + \varphi_v &= 0,
\end{align*}
\] (33)

taking left hand side of each equation, we have

\[
\begin{align*}
\xi_x, r_x, -ur_x + \varphi_x, \\
\xi_t, -\xi_t + \eta_x, \\
\xi_u, -\xi_u + \eta_x + r_x, \\
\xi_v, -\xi_v - 2ur_x - \tau_x + \varphi_u, \\
-\xi_x + \eta_x - 2ur_x - \tau_x + \varphi_x, \\
-\xi_t + \varphi_x &= 0, \\
-\xi_u + \varphi_u &= 0, \\
-\xi_v + \varphi_v &= 0,
\end{align*}
\] (34)

using the differential form Wu's method, characteristic set \(DCS \) of \(DPS \) are obtained as following

\[
\begin{align*}
\xi_x, \xi, \xi_t, \xi_u + \xi_v, \\
\eta_x - \eta_t + \eta_x + \eta_u + \eta_v, \\
\tau_x - \tau_t + \tau_x + \tau_u - \varphi_x, \\
\varphi_x, \eta + \eta_t - \varphi_x, \\
\end{align*}
\] (35)

solving the characteristic set corresponding equations \(DCS = 0 \), we have
Symmetry Reduction and Exact Solutions of a Class of Wave Equations

\[\text{Zero(DCS)} = \begin{cases} \zeta(x,t,u,v) = c_1 + c_2 e^{-x}, \\ r(x,t,u,v) = c_1 + c_2 t, \\ g(x,t,u,v) = (c_6 - c_7) e^{-x} + c_8, \\ \varphi(x,t,u,v) = c_6 + c_7 t + c_8, \end{cases} \quad (36) \]

where, \(c_1, c_2, \ldots, c_8 \) are arbitrary constants.

The above general solution contains seven arbitrary constants, hence, the symmetries of (2) form the seven-dimensional Lie algebra spanned by following linearly independent operators:

\[
\begin{align*}
X_1 &= \partial_x, \\
X_2 &= \partial_x, \\
X_3 &= \partial_x, \\
X_4 &= e^{-x} \partial_x, \\
X_5 &= \partial_x + t \partial_t, \\
X_6 &= t \partial_t + v \partial_v, \\
X_7 &= e^{-x} \partial_x - u e^{-x} \partial_v,
\end{align*}
\]

in order to obtain symmetry reductions and exact solutions, the associated Lagrange equation has to be solved

\[\frac{dx}{\zeta(x,t,u,v)} = \frac{dt}{r(x,t,u,v)} = \frac{du}{\varphi(x,t,u,v)} = \frac{dv}{\varphi(x,t,u,v)} \quad (37) \]

Following cases are considered in this paper:

Case 1 \(c_1 c_2 = 0, c_1 = 0, c_3 = 0, c_4 = 0, c_5 = 0 \).

The symmetry \(c_1 X_1 + c_2 X_2 + c_3 X_3 \) gives rise to the group-invariant solution

\[
\begin{align*}
\zeta(U) &= (c_1 + c_2) G(U), \\
\eta(U) &= (c_1 c_2 + c_3) \phi(U), \\
\zeta(U) &= e^{-x} G(U), \\
\eta(U) &= e^{x} \phi(U),
\end{align*}
\]

where \(U = t(e^{x} + c_7) \). Substitution of (38) into (2) results in the system of ODEs where \(G(U) \) and \(F(U) \) satisfy

\[
\begin{align*}
-1 + F(U)c_7 G'(U) - U c_7 F'(U) G(U) = 0, \\
- G(U) c_7 + F'(U) + U c_7 G'(U) = 0.
\end{align*}
\]

Case 2 \(c_1 = 0, c_2 c_3 = 0, c_4 = 0, c_5 = 0, c_6 = 0, c_7 = 0 \).

The symmetry \(c_2 X_2 + c_3 X_3 \) gives rise to the group-invariant solution

\[
\begin{align*}
\zeta(U) &= e^{-x} G(U), \\
\eta(U) &= e^{x} \phi(U),
\end{align*}
\]

where \(U = \frac{x}{c_7} \). Substitution of (40) into (2) results in the system of ODEs where \(G(U) \) and \(F(U) \) satisfy

\[
\begin{align*}
-1 + F(U) c_7 (-F(U) U G'(U)) = 0, \\
- G(U) c_7 + F'(U) + U c_7 G'(U) = 0.
\end{align*}
\]

Case 3 \(c_2 = 0, c_1 c_3 = 0, c_4 = 0, c_5 = 0, c_6 = 0, c_7 = 0 \).

The symmetry \(c_1 X_1 + c_2 X_4 + c_3 X_6 \) gives rise to the group-invariant solution

\[
\begin{align*}
\zeta(U) &= G(U) - \frac{c_5 e^{-x}}{c_1}, \\
\eta(U) &= e^{x} \phi(U),
\end{align*}
\]

where \(U = e^x + c_1 \). Substitution of (42) into (2) results in the system of ODEs where \(G(U) \) and \(F(U) \) satisfy

\[
\begin{align*}
-1 + F(U) c_7 (-F(U) U G'(U)) = 0, \\
- G(U) F'(U) + U c_7 G'(U) = 0.
\end{align*}
\]
6. Conclusion

In this paper, we use Lie algorithm to determine the symmetry of a given PDEs. First, an over-determined PDEs (determining equations), for which an analytical solution is difficult to develop, is solve. Next, differential form Wu’s method is used to decompose the determining equations into easier resolvable characteristic set. Finally, considering a special case of similarity reduction method, the given PDEs are reduced, the examples show the reliability of the proposed method.

Acknowledgments

The author is thankful to the anonymous reviewers for their valuable comments.

Conflict of Interest

The author declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Funding

The work is supported by National Natural Science Foundation of China (Grant No. 11561051, 61862048), the Scientific Research Project Foundation of Inner Mongolia University of Technology (ZZ201820).

Nomenclature

<table>
<thead>
<tr>
<th>u(x,t)</th>
<th>Speed of travelling wave [ms⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Time [s]</td>
</tr>
<tr>
<td>x</td>
<td>Space [m]</td>
</tr>
</tbody>
</table>

References

ORCID iD

Yi Tian https://orcid.org/0000-0001-7669-2822

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

How to cite this article: Tian Y. Symmetry Reduction and Exact Solutions of a Class of Wave Equations, J. Appl. Comput. Mech., 7(1), 2021, 128-134. https://doi.org/10.22055/JACM.2020.34861.2488