Applications of Higher-Order Derivatives to the Subclasses of Meromorphic Starlike Functions

Bilal Khan1, H.M. Srivastava2,4,5, Nazar Khan5, Maslina Darus6, Muhammad Tahir5, Abdul Samad7

1 School of Mathematical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China, Email: bilalmaths789@gmail.com
2 Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada, Email: harimsri@math.uvic.ca
3 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China
4 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
5 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan, Email: nazarmaths@gmail.com; tahirmuhammad778@gmail.com
6 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, Email: maslina@ukm.edu.my
7 School of mathematics Northwest University Xi’an 710127 P. R. China, Email: abdulsamad@stumail.nwu.edu.cn

Received September 08 2020; Revised October 07 2020; Accepted for publication October 08 2020.

Abstract. In this paper, we introduce and study some new classes of multivalent (p-valent) meromorphically starlike functions involving Higher-Order derivatives. For these multivalent classes of functions, we derive several interesting properties including sharp coefficient bounds, neighborhoods, partial sums and inclusion relationships. For validity of our results relevant connections with those in earlier works are also pointed out.

Keywords: Meromorphic functions, Meromorphically starlike functions, Functions with positive real parts, Higher-order derivatives.

1. Introduction

Let \( \Sigma(p) \) denotes the class of functions \( f \) of the form

\[
f(z) = \frac{1}{z} + \sum_{k=p}^{\infty} a_k z^k, \quad (p \in \mathbb{N} = \{1,2,3,\ldots\})
\]

which are regular and \( p \)-valent in punctured open unit disk \( E' = E \setminus \{0\} \), where

\[
E = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}
\]

and having a pole of order \( p \) at \( z = 0 \).

A function \( f \in \Sigma(p) \) is said to be in the class \( MS^p_\alpha \) (the class of \( p \)-valent meromorphically starlike of order \( \alpha \) \( (0 \leq \alpha \leq p) \)) in \( E' \), if and only if

\[
-\Re \left[ \frac{f''(z)}{f'(z)} \right] > \alpha \quad (z \in E).
\]

Let \( P \) denotes the class of functions \( p \) given by

\[
p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k, \quad (z \in E)
\]
which are analytic in \(E\) and satisfy the condition \(\Re\{p(z)\} > 0\).

The class \(P\) plays a central role in the theory of analytic and multivalent functions because almost all the elementary subclasses of analytic functions were defined using this class of functions (see, for example [1-4]).

Given function \(f\) of the form (1) and another function \(g\), given by

\[
g(z) = \frac{1}{2^p} + \sum_{k \geq 0} b_k z^k,
\]

the Hadamard product (or convolution) denoted by \(f \ast g\) and is defined as

\[
(f \ast g)(z) = \frac{1}{2^p} + \sum_{k \geq 0} a_k b_k z^k = (g \ast f)(z).
\]

Many important properties and characteristics of various interesting subclasses of the class \(\Sigma(p)\) of meromorphically \(p\)-valent functions were investigated extensively by many authors. For example Aouf et al. found new criteria for meromorphically starlike functions and also investigated partial sums for these functions, (see [5, 6]). The class of \(\alpha\)-convex functions, subordination and superordination conditions was investigated by Ali et al. [7, 8], Darus et al. [9, 10], studied the coefficient estimates. Various inclusion and other properties of a certain class of meromorphically \(p\)-valent functions were defined and investigated by Liu and Srivastava [11] (see also [12-14] and Frasin [15]). For some recent investigations, see [16-19].

In recent times mathematical techniques and theories are highly recommended for application in different field of sciences for example mesh free radial basis function has been been implemented by many authors to treat several kind of partial differential equation problems and variational iteration method has been used to treat some complex partial differential equations see [20-31]. Similarly there are some applications of quantum calculus and higher-order derivatives to study certain subclasses of analytic and starlike functions from deferent aspects see for example [32-37].

In this paper, we propose to implement certain higher-order derivatives and generalize the work of Wang et al. [38, 39], we first define some new subclasses \(H^p_m(\beta, \lambda)\) and \(H^p_{m+1}(\beta, \lambda)\) of \(\Sigma(p)\) of multivalent meromorphic starlike functions. We then derive several interesting properties including sharp coefficient bounds, neighborhoods, partial sums and inclusion relationships for the general function class which we introduce here. We also indicate a number of other related works on this subject.

**Definition 1.** For \(\beta \geq 0\) and \(1 - \frac{\lambda}{p} \leq \lambda < p\). A function \(f \in \Sigma(p)\) is said to be in the class \(H^p_m(\beta, \lambda)\) if it satisfies the following condition

\[
\Re\{F(f, m, \beta)\} < \beta \lambda \left(1 - \frac{p}{2} + \lambda\right) + \frac{1}{2} p \beta - \lambda \quad (z \in E, m, p \in \mathbb{N} = \{1, 2, 3, \ldots\})
\]

where

\[
F(f, m, \beta) = \frac{zf^m(z)}{f^m(z)} + \beta \frac{zf^{m+1}(z)}{f^{m+1}(z)}.
\]

Here \(f^m\) denotes the \(m^{th}\) derivative of \(f\) with respect to \(z\).

Throughout in this paper, we assume that \(\beta \geq 0\) and \(1 - \frac{\lambda}{p} \leq \lambda < p\) unless otherwise mentioned. It is worth mentioning that

\[
H^1_0(\lambda) = MS^1_0(\lambda) \quad (0 \leq \lambda \leq p)
\]

and

\[
H^1_0(\beta, \lambda) = H(\beta, \lambda),
\]

where \(MS^1_0(\lambda)\) and \(H(\beta, \lambda)\) are the functions classes, which were studied by Wang et al. [39, 40]. Also Wang et al. [40] proved that \(H(\beta, \lambda)\) is a subclass of \(MS^1_0(\lambda)\).

Let \(H^p_m(\beta, \lambda)\) denotes the subset of \(H^p_m(\beta, \lambda)\) such that all functions \(f\) belonging to \(H^p_m(\beta, \lambda)\) with

\[
f^{m+1}(z) = \frac{(-1)^{m+1}(p + m - 2)!}{(p - 1)! z^p} - \sum_{k \geq 0} \frac{k!}{(k - m - 1)!} a_k z^{k + 1} \quad (a_k \geq 0).
\]

In the present investigation, we will investigate some coefficient inequalities, neighborhoods, partial sums and inclusion relationships for the functions classes \(H^p_m(\beta, \lambda)\) and \(H^p_{m+1}(\beta, \lambda)\).
2. Preliminary Results

Each of the following lemma will be needed in our present investigation.

Lemma 1. (see [41]) If the function \( p \in \mathbb{P} \) is given by (4), then

\[ |k_1| \leq 2. \]

Lemma 2. Let \( \beta > 0 \) and \( (p + m - 1)(1 - \beta(p + m)) - \gamma > 0 \). Suppose that the sequence \( \{A_k\}_{k=1}^{\infty} \) is defined by

\[
A_p = \frac{(p + m - 2)! (p + m - 1)! (p - 1)!}{(2p)! p! (p - 1)!} \left( \frac{(p + m - 1)(1 - \beta(p + m)) - \gamma}{(1 + \beta(1 - 2m)p)} \right)
\]

and

\[
A_{k+p} = \sigma_1 \cdot \left( \sigma_2 + \sum_{j=p}^{k+p-1} \frac{|j-l|!}{(l-m+1)! (k-l+1-m)!} A_l \right) \quad (k \in \mathbb{N}).
\]  

(7)

Then

\[
A_{k+p+1} = A_p \prod_{j=p}^{k+p-2} \sigma_3 \sigma_4' \quad (k + p - 1 \in \mathbb{N} \setminus \{p\}).
\]  

(8)

where

\[
\sigma_1 = \frac{2(k + p - m + 1)!}{(k + p)! (k + 2p + \Upsilon)},
\]

\[
\sigma_2 = \frac{(p + m - 2)! (k + 2p + m - 1)!}{(p - 1)! (k + 2p)!},
\]

\[
\sigma_3 = \frac{(k + p - m + 1)(k + 2p + m - 1)}{(k + p)! (k + 2p + \Upsilon)}
\]

and

\[
\sigma_4' = \frac{(p + m - 2)! (k + 2p + m - 1)!}{(p - 1)! (k + 2p)!} \sum_{j=p}^{k+p-1} \frac{|j-l|!}{(l-m+1)! (k-l+1-m)!} A_l
\]

\[
+ \sum_{j=p}^{k+p-2} \frac{|j-l|!}{(l-m+1)! (k-l+1-m)!} A_l
\]

with

\[
\Upsilon = \beta \left[ (k + p - m)(k + p - m - 1) - (p + m - 1)(p + m) \right].
\]

Proof. From (7) a simple calculation yields

\[
\frac{A_{k+p}}{A_{k+p-1}} = \sigma_3 \sigma_4'.
\]  

(9)

Thus, for \( k \geq 2p \), we deduce form (9) that

\[
A_{k+p-1} = \frac{A_{k+p-1}}{A_{k+p-2}} \cdot \frac{A_{k+p-2}}{A_{k+p-1}} \cdot \frac{A_{k+p-1}}{A_p} = A_p \prod_{j=p}^{k+p-2} \sigma_3 \sigma_4'.
\]

This completes the proof.

Next two Lemmas can be derived by working in similar way as in [42], here we omit the proof.

Lemma 3. Let

\[
p + m - 1 + \beta \left( \frac{1}{2} - \frac{p}{2} \right) - \lambda + \beta \left( \frac{p}{2} - (p + m)(p + m - 1) \right) > 0.
\]  

(10)

Suppose also that \( f(z) \in \Sigma(p) \) is given by (1). If
\[
\sum_{k=0}^{\infty} \frac{k!}{(k - m + 1)!} \left((k - m + 1 - \beta(p + m + 1) - \gamma_p)\right) |p_k| \\
\leq \frac{(p + m - 2)!}{(p - 1)!} \left(p + m - 1 - \beta(p + m)(p - m) - \gamma_p\right)
\]  \quad (11)

where (and throughout this paper unless otherwise mentioned) the parameter \( \gamma_p \) is constrained as follows:

\[
\gamma_p = \lambda - \beta\left(\frac{p}{2} + 1\right) - \frac{1}{2} p\beta
\]  \quad (12)

then \( f(z) \in \mathcal{H}^\lambda_{p}(\beta, \lambda) \).

**Lemma 4.** Let \( f(z) \in \Sigma(p) \), also suppose that \( \gamma_p \) is defined by (12) and the condition (10) holds true. Then \( f(z) \in \mathcal{H}^\lambda_{p}(\beta, \lambda) \) if and only if

\[
\sum_{k=0}^{\infty} \frac{k!}{(k - m + 1)!} \left((k - m + 1 - \beta(p + m + 1) + \gamma_p)\right) |p_k| \\
\leq \frac{(p + m - 2)!}{(p - 1)!} \left(p + m - 1 - \beta(p + m)(p - m) - \gamma_p\right).
\]  \quad (13)

3. Main Results

We begin with proving the following coefficients estimates for the functions belonging to the class \( \mathcal{H}^\lambda_{p}(\beta, \lambda) \).

**Theorem 1.** Let \( \gamma_p \) be defined by (12), if \( f(z) \in \mathcal{H}^\lambda_{p}(\beta, \lambda) \) with \( 0 < \beta < 1 \), \( 0 \leq \lambda \leq p \). Then

\[
|a_p| \leq A_p \quad \text{and} \quad |a_{p-1}| \leq A_{p-1}.
\]

**Proof.** Suppose that

\[
q^{(m-1)}(z) = -zf^{(m)}(z) - \beta z^2 f^{(m-1)}(z) + \beta \lambda \left(\frac{p}{2} + 1\right) + \frac{1}{2} p\beta - \lambda > 0.
\]  \quad (14)

Then by definition of the function class \( \mathcal{H}^\lambda_{p}(\beta, \lambda) \), we know that \( q^{(m-1)}(z) \) is analytic in \( E \) and

\[
\Re\{q^{(m-1)}(z)\} > 0 \quad \text{(z \in E)}
\]

with

\[
q^{(m-1)}(0) = (p + m - 1)(1 - \beta(p + m)) - \gamma_p > 0.
\]

Thus by using (12) and (14), we have

\[
q^{(m-1)}(z) f^{(m-1)}(z) = -zf^{(m)}(z) - \beta z^2 f^{(m-1)}(z) - \gamma_p f^{(m-1)}(z).
\]  \quad (15)

Noting that

\[
h^{(m-1)}(z) = \frac{q^{(m-1)}(z)}{(p + m - 1)(1 - \beta(p + m)) - \gamma_p} \in \mathcal{P},
\]

if we put

\[
q^{(m-1)}(z) = c_0 + \sum_{k=1}^{\infty} \frac{k!}{(k - m + 1)!} c_k z^{k-m-1},
\]

where

\[
c_0 = (p + m - 1)(1 - \beta(p + m)) - \gamma_p,
\]

now, by Lemma 1, we know that
it follows from (15) that

\[
\begin{align*}
&\left|c_0\right| + \sum_{k \geq 1} \frac{k!}{z^{k-1}} c_k z^k \leq 2(1 - \beta(p + m)) - \gamma_p (k \in \mathbb{N}), \\
&\left|c_0\right| + \sum_{k \geq 1} \frac{k!}{z^{k-1}} c_k z^k = \left(-1\right)^{p-1} \left(\frac{p + m - 1}{p - 1}\right) \left(\frac{p + m - 2}{p - 1}\right) \cdots \left(\frac{2}{1}\right) \left(\frac{1}{1}\right) + \sum_{k \geq 1} \frac{k!}{z^{k-1}} a_k z^k - \beta \left(-1\right)^{p-1} (p + m)! \left(\frac{p + m - 1}{p - 1}\right) \left(\frac{p + m - 2}{p - 1}\right) \cdots \left(\frac{2}{1}\right) \left(\frac{1}{1}\right) + \sum_{k \geq 1} \frac{k!}{z^{k-1}} a_k z^k - \gamma_p (k \in \mathbb{N}), \\
&\left|c_0\right| + \sum_{k \geq 1} \frac{k!}{z^{k-1}} c_k z^k = \left(-1\right)^{p-1} \left(\frac{p + m - 1}{p - 1}\right) \left(\frac{p + m - 2}{p - 1}\right) \cdots \left(\frac{2}{1}\right) \left(\frac{1}{1}\right) + \sum_{k \geq 1} \frac{k!}{z^{k-1}} a_k z^k - \gamma_p (k \in \mathbb{N}),
\end{align*}
\]

by the virtue of (16), we get

\[
\begin{align*}
&\left|c_0\right| + \sum_{k \geq 1} \frac{k!}{z^{k-1}} c_k z^k = \left(-1\right)^{p-1} \left(\frac{p + m - 1}{p - 1}\right) \left(\frac{p + m - 2}{p - 1}\right) \cdots \left(\frac{2}{1}\right) \left(\frac{1}{1}\right) + \sum_{k \geq 1} \frac{k!}{z^{k-1}} a_k z^k - \gamma_p (k \in \mathbb{N}),
\end{align*}
\]

and

\[
\begin{align*}
&\left|c_0\right| + \sum_{k \geq 1} \frac{k!}{z^{k-1}} c_k z^k = \left(-1\right)^{p-1} \left(\frac{p + m - 1}{p - 1}\right) \left(\frac{p + m - 2}{p - 1}\right) \cdots \left(\frac{2}{1}\right) \left(\frac{1}{1}\right) + \sum_{k \geq 1} \frac{k!}{z^{k-1}} a_k z^k - \gamma_p (k \in \mathbb{N}),
\end{align*}
\]

From (17) we obtain

\[
\left|a_p\right| \leq A_p.
\]

Moreover, from (18), we conclude that

\[
\left|a_{p+1}\right| \leq \sigma_1 \left(\frac{1}{l} \sum_{i=1}^{k_p} \frac{l!}{(l-m+1)!} \left|A_i\right| \right) (k + p \in \mathbb{N}),
\]

Next, we define the sequence \( \{A_p\} \) as follows:

\[
A_p = \frac{(p + m - 2)! (p - 1)! (p + m - 1)!}{(2p)! p!} \left(\frac{(p + m - 1)(1 - \beta(p + m)) - \gamma_p}{1 + \beta(2m)}\right)
\]

and

\[
A_{p+1} = \frac{(p + m - 2)! (p - 1)! (p + m - 1)!}{(2p)! p!} \left(\frac{(p + m - 1)(1 - \beta(p + m)) - \gamma_p}{1 + \beta(2m)}\right)
\]

In order to prove that

\[
\left|a_{p+1}\right| \leq A_{p+1} (k + p - 1 \in \mathbb{N}).
\]

We make use of the principle of mathematical induction. By noting that

\[
\left|a_p\right| \leq A_p.
\]

Let us consider

\[
\left|a_i\right| \leq A_i (i = p, p + 1, \ldots, k + p - 1; k \in \mathbb{N}).
\]

Combining (20) and (21), we get
\[ |a_{k+p}| \leq \sigma_1 \left[ \sigma_2 + \sum_{j=1}^{k+1 \choose 2} \frac{\Gamma(k-1)!}{(m-j+1)!} \left| \sum_{i=1}^{j-1} \frac{k!}{(k-1-i)!} c_i \right| \right] \]
\[ \leq \sigma_1 \left[ \sigma_2 + \sum_{j=1}^{k+1 \choose 2} \frac{\Gamma(k-1)!}{(m-j+1)!} \left| \sum_{i=1}^{j-1} \frac{k!}{(k-1-i)!} A_i \right| \right] \]
\[ = A_{k+p} \quad (k + p \in N). \]

Hence by the principle of mathematical induction, we have
\[ |a_{k+p-1}| \leq A_{k+p-1} \quad (k + p - 1 \in N) \quad (22) \]
as desired.

By virtue of Lemma 2 and (21), we know that (8) holds true. Combining (22) and (8) we readily get coefficient estimates asserted by Theorem 1.

**Remark 1.** In its special case when \( m = 1 \) and \( p = 1 \), Theorem 1 would yield the known result due to Wang et al. [39].

Following the earlier work based upon the familiar concept of neighborhood of analytic functions by Goodman [43] and Ruscheweyh [44] and recently by Liu and Srivastava [12-14]. Suppose that \( \gamma_p \) is given by (12) and the condition (10) of Lemma 3 holds true, we here introduce the \( \delta \)-neighborhood of function \( f \in \Sigma \) of the form (1) by means of the following definition
\[ N_{f \beta \lambda} (f^{m-1}) = \left\{ \frac{g^{(m-1)}(z)}{1 + \varepsilon} : z \in H_{\beta \lambda}(\delta, \varepsilon) \quad (\varepsilon \in C, |\delta| < \delta, \delta > 0) \right\} \quad (23) \]

Making use of this definition, we prove the following result.

**Theorem 2.** Let the condition (10) holds true. If \( f \in \Sigma(p) \) satisfies the condition
\[ \frac{f^{m-1}(z) + \varepsilon z^{(p+m-1)}}{1 + \varepsilon} \in H_{\beta \lambda}(\delta, \varepsilon) \quad (\varepsilon \in C, |\delta| < \delta, \delta > 0). \quad (24) \]

Then
\[ N_{f \beta \lambda} (f^{m-1}) \subset H_{\beta \lambda}(\delta, \varepsilon). \quad (25) \]

**Proof.** By noting that (5) can be written as
\[ \left| \frac{z^{(m-1)} + \beta z^{(m-1)} + 1}{z^{(m-1)} + \beta z^{(m-1)} + 2\gamma_p - 1} \right| < 1. \quad (26) \]

It is easily seen from (26) that a function \( g(z) \in H_{\beta \lambda}(\delta, \varepsilon) \) if and only if, for a complex number \( \sigma \) with \(|\sigma| = 1\), we have
\[ \frac{zg^{(m)}(z) + \beta zg^{(m-1)}(z) + g^{(m-1)}(z)}{zg^{(m)}(z) + \beta zg^{(m-1)}(z) + 2\gamma_p - 1 g^{(m-1)}(z)} = \sigma \quad (z \in E), \]

which is equivalent to
\[ \left( \frac{g^{(m-1)} h^{m-1}}{z^{(m-1)}} \right)(z) = 0 \quad (z \in E), \quad (27) \]

where
\[ h^{(m-1)}(z) = \frac{(-1)^{m-1}(p + m - 2)!}{(p-1)! z^{(m-1)}} + \sum_{k=0}^{m} \frac{k!}{(k-m+1)!} c_k z^{k-m+1} \quad (28) \]

with
\[ \xi_k = k - (m - 1) + \beta (k - m + 1)(k - m), \]
\[ \xi_k = k - (m - 1) + \beta (k - m + 1)(k - m) + (2\gamma_p - 1), \]
\[ \xi_k = 1 - (p + m - 1) + \beta (p + m - 1)(p + m) \]

and

\[ \xi_k = (p + m - 1) - \beta (p + m - 1)(p + m) - (2\gamma_p - 1). \]

It follows from (28) that

\[ \left| \xi_k - \xi_k^p \right| \leq \frac{k - (m - 1) + \beta (k - m + 1)(k - m) + \gamma_p}{(p + m - 1) - \beta (p + m - 1)(p + m) - \gamma_p} \quad (|z| = 1). \]

If \( f \in \Sigma(p) \) given by (1) satisfies the inclusion property (24), we deduce from (27) that

\[ \frac{\left| f^{(m-1)} \ast h^{(m-1)}(z) \right|}{z^{-(p+m-1)}} \leq \varepsilon \quad (|z| < \delta; \delta > 0), \]

or equivalently,

\[ \frac{\left| f^{(m-1)} \ast h^{(m-1)}(z) \right|}{z^{-(p+m-1)}} \geq \delta \quad (z \in \mathbb{E}). \quad (29) \]

We now suppose that \( \varphi \in \mathcal{N}_p \left( f^{(m-1)} \right) \), with

\[ \varphi^{(m-1)}(z) = \frac{(-1)^{m-1}(p + m - 2)!}{(p - 1)! z^{p+m-1}} + \sum_{k \in \mathbb{Z}} \frac{k!}{(k - m + 1)!} d_k z^{k+m-1}. \]

It follows form (23) that

\[ \left| (\varphi^{(m-1)} - f^{(m-1)}) \ast h^{(m-1)}(z) \right| \leq \sum_{k \in \mathbb{Z}} \frac{k!}{(k - m + 1)!} \left| d_k - a_k \right| z^{k+m-1} \]

\[ \leq d^{p+m-1} \sum_{k \in \mathbb{Z}} \frac{k - (m - 1) + \beta (k - m + 1)(k - m) + \gamma_p}{(p + m - 1) - \beta (p + m - 1)(p + m) - \gamma_p} \left| d_k - a_k \right| < \varepsilon. \quad (30) \]

Combining (29) and (30), we can easily find that

\[ \left| \varphi^{(m-1)} \ast h^{(m-1)}(z) \right| \geq \left| f^{(m-1)} + \left( \varphi^{(m-1)} - f^{(m-1)} \right) \ast h^{(m-1)}(z) \right| \geq 0, \]

which implies that

\[ \frac{\left| \varphi^{(m-1)} \ast h^{(m-1)}(z) \right|}{z^{-(p+m-1)}} \neq 0 \quad (z \in \mathbb{E}). \]

Therefore, we have

\[ \varphi \in \mathcal{H}_p^\infty (\beta, \lambda). \]

This complete the required proof.

**Remark 2.** If we set \( m = 1 \) and \( p = 1 \), in Theorem 2, we are led to the result similar to that given by Wang et al. [39].

Next, we derive the partial sum of the class \( \mathcal{H}_p^\infty (\beta, \lambda) \). For some interesting investigations involving the partial sums in analytic function theory, see [5, 13–15].

**Theorem 3.** Let \( f \in \Sigma(p) \) be given by (1) and define the partial sums \( f^{(m-1)}_{\nu, p}(z) \) of \( f^{(m-1)}(z) \) by
\begin{equation}
\begin{aligned}
f^{m-1}_{n+p-1}(z) &= \frac{(-1)^{m-1}(p+m-2)!}{(p-1)!z^{m-1}} + \sum_{k=p}^{\infty} \frac{1}{k} e^{\gamma_k} z^{-m-1} \quad (n \in \mathbb{N}).
\end{aligned}
\end{equation}

If
\begin{equation}
\sum_{k=p}^{\infty} \frac{k-(m-1)+\beta(k-m+1)(k-m)+\gamma_k}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_k} |a_k| \leq \frac{(p+m-2)!}{(p-1)!},
\end{equation}

where
\[ M = \frac{k!}{(k-m+1)!} \]

and \(\gamma_p\) is given by (12), and the condition (10) holds true. Then
\begin{equation}
\begin{aligned}
R \left\{ \frac{f^{m-1}_{n+p-1}(z)}{f^{m-1}_{n-1}(z)} \right\} &\geq \frac{n-2(m-1) + L + \beta(p+m-1)(p+m)+2\gamma_p}{n-(m-1)+p+L+\gamma_p} (n \in \mathbb{N}; z \in \mathbb{E});
\end{aligned}
\end{equation}

and
\begin{equation}
\begin{aligned}
R \left\{ \frac{f^{m-1}_{n+p-1}(z)}{f^{m-1}_{n-1}(z)} \right\} &\geq \frac{n-(m-1)+L+p+\gamma_p}{n+L+2p-\beta(p+m-1)(p+m)} (n \in \mathbb{N}; z \in \mathbb{E});
\end{aligned}
\end{equation}

where
\[ L = \beta(n+p-m)(n+p-m+1). \]

The bounds in (33) and (34) are sharp.

**Proof.** Suppose that
\begin{equation}
\begin{aligned}
f^{m-1}_{n+p}(z) &= \frac{(-1)^{m-1}(p+m-2)!}{(p-1)!z^{m-1}}.
\end{aligned}
\end{equation}

We note that
\begin{equation}
\begin{aligned}
f^{m-1}_{n+p}(z) + \epsilon \left( \frac{1}{1+\epsilon} \right) \left( \frac{(-1)^{m-1}(p+m-2)!}{(p-1)!z^{m-1}} \right) &\in \mathbb{H}_p^\beta(\beta, \lambda).
\end{aligned}
\end{equation}

From (32), we find that
\begin{equation}
\begin{aligned}
\sum_{k=p}^{\infty} \frac{k-(m-1)+\beta(k-m+1)(k-m)+\gamma_k}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_k} |a_k| - q \leq \frac{(p+m-2)!}{(p-1)!},
\end{aligned}
\end{equation}

which implies that
\begin{equation}
\begin{aligned}
f^{m-1}_{n+p}(z) &\in \mathbb{N}_p \left\{ \frac{(-1)^{m-1}(p+m-2)!}{(p-1)!z^{m-1}} \right\}.
\end{aligned}
\end{equation}

By virtue of Theorem 2, we deduce that
\begin{equation}
\begin{aligned}
f^{m-1}_{n+p}(z) &\in \mathbb{N}_p \left\{ \frac{(-1)^{m-1}(p+m-2)!}{(p-1)!z^{m-1}} \right\} \subset \mathbb{H}_p^\beta(\beta, \lambda).
\end{aligned}
\end{equation}

Next, it is easy to verify that
\begin{equation}
\begin{aligned}
\frac{n-(m-1)+p+L+\gamma_p}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p} &> \frac{n-(m-1)+\beta(n-m+1)(n-m)+\gamma_p}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p} > \frac{(p+m-2)!}{(p-1)!} (n \in \mathbb{N}).
\end{aligned}
\end{equation}
Therefore, we have

\[
\sum_{k=p}^{n-1} |M_k| + \left(\frac{n-(m-1)+p+L+\gamma_p}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p}\right) \sum_{k=p}^{n-1} |M_k| \\
\leq \sum_{k=p}^{n-1} |k-(m-1)+\beta(k-m+1)(k-m)+\gamma_p| |a_k| \leq \frac{(p+m-2)!}{(p-1)!}.
\]  

(35)

If we set

\[
h_p^{(n-1)}(z) = \frac{n-(m-1)+p+L+\gamma_p}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p}
\]

\[
\left\{\begin{array}{l}
f_p^{(n-1)}(z) \\
f_{n-p+1}^{(n-1)}(z)
\end{array}\right.
\]

\[
= 1 + \frac{\sum_{k=p}^{n-1} |M_k| z^k}{\sum_{k=p}^{n-1} |M_k| z^k}.
\]  

(36)

It follows from (35) and (36) that

\[
\frac{|h_p^{(n-1)}(z)|}{|h_p^{(n-1)}(z)|+1} \leq \frac{N}{2\left(\frac{n-(m-1)+p+L+\gamma_p}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p}\right)} \sum_{k=p}^{n-1} |M_k| |a_k| - \frac{N}{2\left(\frac{n-(m-1)+p+L+\gamma_p}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p}\right)} \sum_{k=p}^{n-1} |M_k| |a_k|.
\]  

(37)

where

\[
N = \frac{n-(m-1)+p+L+\gamma_p}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p}.
\]

The last inequality in (37) now shows that

\[
\Re\left(h_p^{(n-1)}(z)\right) \geq 0 \quad (z \in E).
\]  

(38)

Furthermore, by taking

\[
f_p^{(n-1)}(z) = \frac{1}{2^{\gamma_p}} \frac{(p+m-1)+(p+m-1)(p+m)+\gamma_p}{n+p-(m-1)+L+\gamma_p}
\]  

(39)

then

\[
f_p^{(n-1)}(z) = \frac{1}{2^{\gamma_p}} \frac{p+m-1+(p+m-1)(p+m)+\gamma_p}{n+(m-1)+(p+m)+\gamma_p}
\]

\[
\rightarrow \frac{n-2(m-1)+L+\beta(p+m-1)(p+m)+2\gamma_p}{n+p-(m-1)+L+\gamma_p} \quad (z \to 1),
\]

which implies that the bound in (33) is the best possible for each \( n \in N \).

Similarly, we suppose that

\[
\omega_p^{(n-1)}(z) = \frac{n+L+2p-\beta(p+m-1)(p+m)}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p}
\]

\[
\left\{\begin{array}{l}
f_{p-1}^{(n-1)}(z) \\
f_{n-p+1}^{(n-1)}(z)
\end{array}\right.
\]

\[
= 1 - \frac{\sum_{k=p}^{n-1} \omega_k z^k}{\sum_{k=p}^{n-1} \omega_k z^k}.
\]  

(40)

where

\[
\omega = \frac{n+L+2p-\beta(p+m-1)(p+m)}{(p+m-1)-\beta(p+m-1)(p+m)-\gamma_p}.
\]  

(41)

In the view of (35) and (40) we conclude that
\begin{equation}
\frac{w_{p-1}^{(m)}(z) - 1}{w_{p-1}^{(m)}(z) + 1} \leq \frac{2^{2m-2} \pi\beta \pi\beta |z|}{2^{m-1} \pi\beta \pi\beta |z| - 2^{2m-2} \pi\beta \pi\beta |z|} \leq (p + m - 2)! (p - 1)! (z \in E), \tag{42}
\end{equation}

where
\begin{align*}
\varpi &= n - 2(m - 1) + L + \beta(p + m - 1)(p + m) \\
&\quad - (p + m - 1) - \beta(p + m - 1)(p + m) - \gamma_p.
\end{align*}

The inequality in (42) now implies that
\begin{equation}
\Re \left[ w_{p-1}^{(m)}(z) \right] \geq 0 \quad (z \in E). \tag{43}
\end{equation}

Combining (40) and (43), we readily get the assertion (34). The proof of Theorem 4 below is similar to that of Theorem 3, we here choose to omit the analogous details.

**Theorem 4.** Let $f \in \Sigma(p)$ be given by (1) and define the partial sums $f_{m+p-1}^{(m)}(z)$ of $f^{(m)}(z)$ by (31). If the conditions (10) and (32) hold, where $\gamma_p$ given by (12) then
\begin{equation}
\Re \left\{ \frac{f^{(m)}(z)}{f_{m+p-1}^{(m)}(z)} \right\} \geq \frac{(n + p)(2 - m - p + \beta(p + m - 1)(p + m) + \gamma_p) + L - m + 1 + \gamma_p}{n + p - (m - 1) + L + \gamma_p} \tag{44}
\end{equation}
and
\begin{equation}
\Re \left\{ \frac{f_{m+p-1}^{(m)}(z)}{f^{(m)}(z)} \right\} \geq \frac{n + p - (m - 1) + L + \gamma_p}{(n + p)(p + m - \beta(p + m - 1)(p + m) - \gamma_p) + L - m + 1 + \gamma_p}. \tag{45}
\end{equation}

The bounds in (44) and (45) are sharp with the extremal function given by (39).

**Remark 3.** If we put $m = 1$ and $p = 1$, in Theorem 3 and Theorem 4 above, we obtain the results which are precisely the same to those proved earlier by Wang et al. [41].

**Theorem 5.** Let
\begin{align*}
\beta_1 \geq \beta_2 \geq 1 \quad \text{and} \quad 1 - \frac{p}{2} \leq \lambda_1 \leq \lambda_2 < p.
\end{align*}

Then
\begin{equation}
H_p^\gamma(\beta_1, \lambda_1) \subset H_2^\gamma(\beta_2, \lambda_2). \tag{46}
\end{equation}

**Proof.** Suppose that $f \in H_p^\gamma(\beta_1, \lambda_1)$. Then it follows from the definition that
\begin{equation}
\Re \left\{ F(f, m, \beta) \right\} < \lambda_1 \left[ \beta_1 \left( \lambda_1 - \frac{p}{2} + 1 \right) - 1 \right] + \frac{1}{2} p \beta_1 \quad (z \in E). \tag{47}
\end{equation}

Since $\beta_1 \geq \beta_2 \geq 1$ and $1 - \frac{p}{2} \leq \lambda_1 \leq \lambda_2 < p$, we observe that
\begin{equation}
\lambda_1 \left[ \beta_1 \left( \lambda_1 - \frac{p}{2} + 1 \right) - 1 \right] + \frac{1}{2} p \beta_1 \leq \lambda_2 \left[ \beta_2 \left( \lambda_2 - \frac{p}{2} - 1 \right) + 1 \right] + \frac{1}{2} p \beta_2 \tag{48}
\end{equation}

It follows from (47) and (48) that
\begin{equation}
\Re \left\{ F(f, m, \beta) \right\} < \lambda_2 \left[ \beta_2 \left( \lambda_2 - \frac{p}{2} + 1 \right) - 1 \right] + \frac{1}{2} p \beta_2 \quad (z \in E), \tag{49}
\end{equation}
which shows that $f(z) \in H_p^\gamma(\beta_1, \lambda_1)$, subsequently, we see that $f(z) \in M_S^\gamma(\lambda_1)$ that is
\begin{equation}
\Re \left\{ \frac{f^{(m)}(z)}{f_{m+p-1}^{(m)}(z)} \right\} < -\lambda_2 \tag{50}
\end{equation}

Now by setting
so that

\[ 0 < \mu \leq 1. \]

It is easy to verify from (49) and (50) that

\[
\Re \left\{ \mathcal{F}(f, m, \beta) - \lambda_2 \left[ \lambda_2 - \frac{p}{2} + 1 \right] - \frac{1}{2} p \lambda_3 \right\} \\
= \mu \Re \left\{ \mathcal{F}(f, m, \beta) - \lambda_2 \left[ \lambda_2 - \frac{p}{2} + 1 \right] - \frac{1}{2} p \lambda_3 \right\} + (1 - \mu) \Re \left\{ \frac{zf^{(m)}(z)}{f^{(m)}(z)} + \lambda_2 \right\}
\]

\[ < 0 \quad (z \in \mathbb{D}), \]

that is

\[ f(z) \in \mathcal{H}_p^\lambda(\beta_1, \lambda_2). \]

This evidently completes the proof.

From the Theorem 5 and the definition of the function class \( \mathcal{H}_p^\lambda(\beta_1, \lambda_2) \) we easily get the following inclusion relationship.

**Corollary 1.** Let

\[ \beta_1 \geq \beta_2 \geq 1 \quad \text{and} \quad 1 - \frac{p}{2} \leq \lambda_1 \leq \lambda_2 < p. \]

then

\[ \mathcal{H}_p^\lambda(\beta_1, \lambda_1) \subset \mathcal{H}_p^\lambda(\beta_2, \lambda_2) \subset \mathcal{MS}_p(\lambda_2). \]

By use of Lemma 4 on Theorem 5, we obtain the following result.

**Corollary 2.** Let \( f \in \mathcal{H}_p^\lambda(\beta_1, \lambda_2) \). Suppose also that \( \gamma_p \) be defined by (12) and condition (10) holds true. Then

\[
|f| \leq \frac{(k - m + 1)!(p + m - 2)!(p + m - 1 - \beta(p + m)(p + m - 1) - \gamma_p)}{k!(p - 1)!(k - m + 1 - \beta(k - m + 1)(k - m) + \gamma_p)}.
\]

Each of these inequalities is sharp, with the extremal function given by

\[
f^{(m-1)}(z) = (-1)^{m-1} \left[ \frac{(p + m - 2)!}{(p - 1)!z^{p-m-1}} \right]^{-1} \frac{(k - m + 1)!(p + m - 1 - \beta(p + m)(p + m - 1) - \gamma_p)}{k!(k - m + 1 - \beta(k - m + 1)(k - m) + \gamma_p)} z^{k-m-1}.
\]

4. **Conclusion**

Here, in our present investigation, we have successfully applied certain higher-order derivatives to the subclass of meromorphically regular \( p \)-valent functions and defined a new subclass of meromorphic starlike functions in punctured open unit disk \( \mathbb{D}^* \). Many properties and characteristic of this newly defined functions class such as sufficient conditions, coefficient bounds, neighborhoods, partial sums and inclusion relationships have studied. We also highlighted a numbers of known consequences, which are already present in literature.

Here, in this last section on conclusion, we reiterate the fact that the results for the meromorphic starlike functions which we have considered in this article, can easily be translated into the corresponding results for the quantum calculus by applying some obvious parametric and argument variations. Indeed, as observed earlier by Srivastava et al. [45-48].

**Author Contributions**

Manuscript was written through the contribution of all authors and all authors contributed equally. All authors discussed the results, reviewed, and approved the final version of the manuscript.

**Acknowledgments**

The authors would like to express their gratitude to the anonymous referees for many valuable suggestions regarding a previous version of this paper.

**Conflict of Interest**

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.
The authors received no financial support for the research, authorship, and publication of this article.

References

[26] Ahmad, I., Khan, M.T., Tahir, M., Kumam, P., Efficient local foundation for time dependent PDEs, Mathematics, 7(3), 2019, 216.
[38] Ahmad, I., Alsaedi, A., Zaheer-ud-Din, Ahmad, H., Ahmad, M., An efficient local foundation for time dependent PDEs, Mathematics, 7(3), 2019, 216.
[40] Ahmad, I., Khan, M.T., Tahir, M., Qureshi, M.H., Solution of multi-term time-fractional PDEs models in arising in mathematical biology and physics by local meshless method, Symmetry, 12(7), 2020, 1195.
Applications of Higher-Order Derivatives to the Subclasses of Meromorphic Starlike Functions

ORCID iD
Bilal Khan https://orcid.org/0000-0003-2427-2003
H.M. Srivastava https://orcid.org/0000-0002-9277-8092
Nazar Khan https://orcid.org/0000-0003-1123-8578
Maslina Darus https://orcid.org/0000-0001-9138-916X
Muhammad Tahir https://orcid.org/0000-0002-8174-8795
Abdul Samad https://orcid.org/0000-0002-0887-9860

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).