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Abstract. Theoretical investigation of variable mass diffusivity, thermal conductivity, and viscosity on unsteady squeezed flow of 
dissipative Casson fluid is presented. Physically, for any effective heat and mass transfer process, a proper account of 
thermophysical properties in such a system is required to attain the desired production output. The magnetized free convective 
flow of unsteady Casson fluid encompassing Joule dissipation, radiation, and chemical reactive influence is induced as a result of 
squeezing property. The governing model assisting the magnetized flow is formulated and transformed via an appropriate 
similarity transformation. The resulting set of ordinary differential equations is solved numerically using Chebyshev based 
Collocation Approach (CCA). However, variable viscosity, thermal conductivity, and mass diffusivity effects are seen to diminish 
the fluid flow velocities, temperature, and concentration respectively along with the lower plate. Heat and mass transfer 
coefficient, skin friction downsized to an increasing value of variable thermal and mass diffusivity parameters while variable 
viscosity pronounces the skin friction coefficient. Furthermore, the present analysis is applicable in polymer processing, such as 
injection molding, extrusion, thermoforming among others. 

Keywords: Casson fluid; Chebyshev Collocation Method, Squeezing flow, MHD, Thermophysical properties. 

1. Introduction 

The study of the deformation process between plates or objects was first investigated by Stefan [1], the process that describes 
the external and internal factors such as viscoelasticity and temperature effects, the outward droplet of materials, etc., generally 
referred to as Squeezing flow. The biological and industrial applications include, the flows through nasogastric tubes, syringes, 
synthetics transportation, and exhibition of squeezing movement such as to-and-fros locomotion in pistons, clutching flow, 
electric motors, automobile engines, bioengineering, squeezed films in power transmission, and many more ([2],[3]). The 
temperature common-cause effect in the heat and mass transfer process known as thermophysical variation is best explained as 
the required temperature variation within the flow system. Due to low sensitivity to temperature changes, it is imperative to 
examine the temperature variation effect in MHD squeezing flow of dissipative Casson fluid considering its application 
occurrence both in industries and nature. 

With these numerous practical and industrial applications, the dynamic of squeezing flow in different geometries and base 
fluid is pronounced. Series of literature on the modeling of squeeze flow include Mustafa et al. [2] on heat and mass transfer of 
Newtonian fluid flow, Ahmed et al. [4], Khan et al. [3], Qayyum et al. [5], Naduvinamani and Shankar [6] on Casson rheology 
through a parallel plate with distinct flow assumptions. Singh et al. [7] assumed water as a base fluid with the presence of 
nanoparticles and velocity slip, Ghadikolaei et al. [8] on Eyring-Powell fluid, Hussain et al. [9] on Walters'B viscoelastic fluid. 
Ahmad et al. [10] present the slip analysis of squeezing flow in a doubly stratified fluid. Ahmad et al [11] gave the squeezing flow 
analysis of convectively heated fluid in a porous medium with activation energy and binary chemical reaction. Hosseinzadeh et al. 
[12] accounted for the MHD squeezing nanofluid flow problem by employing a series of semi-analytical methods. Local 
linearization (Spectral) technique was employed by Thumma and Magagula [13] to approximate the solution of squeezing flow 
between two parallel Riga plates. They reported that a rise in squeezing property improved both momentum and temperature 
profiles. 

Recently, Salehi et al. [14] presented the analysis of Hydrothermal MHD squeezing mixture fluid suspended by hybrid 
nanoparticles. Electroviscous study of squeezing flow of thin electrolyte solution films by Zhao et al. [15] reveals that the velocity 
profile is enhanced to a higher value of dissipative hydrodynamic interaction force. Khan et al. [16] modeled the Squeezing flow of 
nanofluids with mixed convection effects in the three-dimensional region. They reported that a significant influence of 
nanofluids on the velocity profile is perceived to an enormous value of mixed convection parameter. While Ahmad et al. [17] 
introduced the melting phenomenon on squeezing flow of chemically reacting Jeffrey fluid past infinite parallel plates. In their 
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study energy and momentum of Jeffrey fluid is appreciated to a higher magnitude of melting parameter while energy distribution 
decays for dominant of thermal radiation parameter. Qayyum et al. [18] analyzed the magnetic field influence in three 
dimensional nanofluid motion. Their analysis reveals the significant impact of squeezing number on the flow motion. Korczyk et 
al. [19] account the droplet formation in the microfluidic channel while predicting the droplet characterizes and size transitions 
from leaking-squeezing-jetting in microfluidic channels, and Perturbation-Iteration Algorithm (PIA), a numerical approach was 
implemented by Al-Saif and Harfash [20] on the squeezing flow encompassing the dissipative effect rather than well know semi-
analytical methods. 

Without loss of generality, the fluid thermophysical features are most sensitive to temperature rise, hence, these properties 
are known to vary significantly when subjected to temperature changes. For instance, a corresponding rise in temperature and 
heat generated by the internal friction of a lubricating fluid affects the fluid viscosity, while a rise in temperature appreciates the 
local increase in transport mechanism by depreciating the viscosity across the momentum boundary layer (Animasaun [21]). The 
higher the temperature the more frequent the spontaneous fluctuations in blood flow (Barcroft and Edholm [22]). On these notes, 
the assumptions of constant fluid physical properties failed. However, researchers attention drawn into the thermophysical 
modeling in different fluid rheology and physical geometry was analyzed, among which Khan et al. [23] and Basha et al. [24] 
presented their thermophysical investigation on Williamson Nanofluid, Waqas et al. [25] on Carreau fluid, Abdul Wahab et al. [26] 
on Eyring-Powell fluid with Double Stratification effects, Omowaye and Animasaun [27] on upper Maxwell converted fluid, and 
series of studies on Casson fluid includes Mondal et al. [28], Salahuddin et al. [29], Idowu and Falodun [30] with Soret-Dufour 
influence, Gbadeyan et al. [31] with velocity slip and convective heating effect. Hazarika et al. [32] presented their variable 
thermophysical study past a cone geometry. Lu et al. [33] analyzed the variable thermal conductivity effects on three-dimensional 
Carreau fluid flow over a convectively heated bidirectional sheet subject to modified Fourier law. Recently, Idowu and Falodun [34] 
observed a decrease in both energy and concentration distributions, while fluid velocity is appreciated to a higher magnitude of 
thermophysical effects. Idowu et al. [35] established the connection between the Casson fluid and plastic dynamic viscosity 
boundary layer. Amirsom et al. [36] analyzed the MHD and slip effects over a melting surface with dissipative nanofluid subjected 
to variable thermo-physical properties. They deduced that a rise in temperature-dependent viscous gave rise to energy 
distribution but reduces fluid concentration accordingly. Chu et al. [37] investigated the flow past a Riga plate which explains the 
role of double diffusion in second-grade fluid, therein, variable thermal conductivity, and mass diffusivity upsurge entropy 
generation and concentration field accordingly. Akolade et al. [38] implement the impacts of variable fluid property in their Soret-
Doufur with modified heat flux examination. Sajid et al. [39] investigated the variable diffusivity and thermal conductivity 
influence on the flow of Maxwell-Sutter by a fluid with activation energy over a stretching surface. While Amani et al. [40] 
modeled and optimized the viscosity and thermal conductivity effect on the magnetized flow of nanofluid using artificial neural 
networks. More recently, Ghalambaz et al. [41] and Zadeh et al. [42] investigated the nano-sized capsules flow analysis through 
the eccentric horizontal cylinder and 2D enclosure respectively where the finite element method was employed to solve the flow 
analysis of encapsulated phase change material. 

Anyakoha [43] and Meyers et al. [44] emphasized on the sensitivity of thermophysical properties, therefore, for an effective 
estimate of flow processes of heat and mass transfer, it is imperative to account for such variation in any fluid model. Apparently, 
from the literature analysis and to the knowledge of the authors, little or no study is presented yet on the variable thermophysical 
effects of squeezing flow as all were based on constant physical properties. As a result, this paper aimed at investigating the 
influence of variable mass diffusivity, viscosity, and thermal conductivity on MHD, free convective, and unsteady flow of Casson 
fluid encompassing joule dissipation, radiation influences. 

2. Governing systems and problem description 

The thermophysical properties namely: mass diffusivity, thermal conductivity and viscosity were assumed variable in the 
flow problem of an unsteady, two-dimensional incompressible, dissipative, radiating and squeezing flow of MHD conducting 
Casson fluid through an infinitely parallel plates with metric 1 /2( ) = (1 )h t l tα± − apart. The motion is induced as a result of the 
squeezing property. The lower plate is positioned at 0y=  and upper subjected to a metric (t)h . The configuration model of the 
problem is pictured in Fig. 1 with a non-uniform magnetic field 1 /2

0( ) = (1 )B x B tα− of variable strength 0B  imposed perpendicular 
to the fluid. Joule heating is also considered in this model. At the time t , l  denotes the initial plates metric and α  represents 
the characteristic parameter of the squeezing motion of the plate with a dimension of the inverse time. 

 

Fig. 1. Model physical coordinate system and configuration 
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For an isentropic and incompressible Casson fluid, the kinematic viscosity depends on the Casson parameter β , density ρ  

and temperature dependent plastic dynamic viscosity µ  thus given as ([6], [8], [35])  

( ) 1
= 1 ,

Tµ
ν

ρ β

  +   
 (1) 

The equations supporting the flow of thermophysical effects in dissipative, chemically radiating and MHD squeezing flow of 
Casson fluid is presented as thus ([2], [6], [31], [35]); 
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The variability in plastic dynamic viscosity, coefficient of heat diffusivity and of mass diffusivity and magnetic field is 
assumed respectively ([35], [31] and [29]) 
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To simplify Eqs. (3) and (4) into a single equation and eliminating the pressure term present, we utilize the continuity Eq. (2) 

and introduce the vorticity equation = / /v x u yω ∂ ∂ −∂ ∂ , thus Eqs. (3) and (4) is reduced to (Ahmed et al. [2]); 
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utilizing Eq. (8) on Eqs. (9), (5), (6), (7) and introducing the following transformations in Eq. (10) 
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Equations (5), (6) and (9) together with conditions in Eq. (7) are reduced accordingly to an ordinary non-linear, coupled system 
of equations; 
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The physical quantities of interest includes; skin friction coefficient, Nusselt number and Sherwood number defined as, 
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the local Reynolds number define by ( )1/2
= 1 / 2exR t lxα α ν− .  

3. Numerical Solution 

The governing ordinary, nonlinear, coupled system of Eqs. (12) – (13) with the associated boundary conditions in Eq. (14) is 
solved via Chebyshev based Collocation Approach (CCA). The approach requires associating an unknown coefficient to the 
Chebyshev base functions that will represent the trial solution, implement the trial function on the boundary condition and the 
governing systems to generate the residue. Hence, utilize the collocation techniques so as to approximate the residual error close 
to zero. CCA is found accurate, and simple considering its effectiveness, simplicity and rapid convergence in approximating both 
finite, and semi-infinite domain problems (Idowu et al. [35], Babatin [45], Javed, and Mustafa [46], Mallawi [47]). 

3.1 Application of Chebyshev based Collocation 

The unknown functions ( ), ( )F η θ η and ( )ϕ η  are assumed as the sum of Chebyshev base functions 
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[0,1] . In order to obtained the values of constants ,n na b , and nc , Eq. (18) is substituted into the boundary conditions in Eq. (14) to 
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Also, by substituting Eqs. (18) into Eqs. (11) - (13), residues ( ,a , ), ( ,a , )F n n n nR b R bθη η  and ( , , )n nR a cϕ η  are derived. The residues are 

minimized as small as possible using collocation techniques as follows 
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Table 1. Validation of Chebyshev Collocation Method (CCM) results with the results of Mustafa et al. [2] for: 

2 1 3
Ec = 1,Sc = 1, = 0.1, = 1,Pr = 1, = = = = = Nr = 0Haδ λ ξ ξ ξ β  

 ,
(0)F

η η
−  (0)

η
θ−  (0)

η
ϕ−  

ε  Present Mustafa et al. [2] Present Mustafa et al. [2] Present Mustafa et al. [2] 

-1.0 2.170090 2.1700908 3.319899 3.3198992 0.804558 0.8045587 

-0.5 2.614038 2.61740384 3.129491 3.1294910 0.7814023 0.78140234 

0.01 3.007134 3.0071337 3.047092 3.0470919 0.7612252 0.76122521 

0.5 3.336449 3.3364494 3.026324 3.0263235 0.7442243 0.74422428 

2.0 4.167389 4.1673891 3.118551 3.1185506 0.7018132 0.70181323 
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where jη  is the shifted Gauss lobatto collocation points defined as 
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⋯  (24) 

In this manner, Eqs. (19 -23) form a system of 3N+3 algebraic equations with 3N+3 unknown coefficients ,n na b , and nc  are 

obtained. The obtained system of equations is solved using Newton method. All the computation in this work are carried out with 

the help of Mathematical symbolic package MATHEMATICA 11.3. The square residual error for ( ), ( )F η θ η and ( )ϕ η are computed as 

presented in Eq. (25) and the graph of total average square residual error ( = ( ) / 3)Ftotal θ ϕε ε ε ε+ +  is displayed in Fig. 2. It is 

observed that the total average square residual error reduces as the value of n is increased. 

1 1 1

2 2 2

0 0 0

( ) , ( ) ( )F FR d R d R dθ θ ϕ ϕε η η ε η η ε η η= = =∫ ∫ ∫  (25) 

In order to check for the accuracy of the used method, the obtained results are compared with that of Mustafa et al. [2], and a 
good agreement is found 

4. Result and Discussion 

The results of velocities, energy, concentration, Skin friction, Nusset number and Sherwood number are obtained and 
computed for the fixed values of 1 2 3= = = 0.1,  = 0.2,  Nr = 0.1 , = 0.5,  Sc = 0.7,ξ ξ ξ β δ = 0.1, Ec = 0.1, Pr = 1,  = 0.5 , 0.5Haλ ε =  
throughout the investigation else otherwise stated, thus Fig. 2-10 present the graphical results of the influence of pertinent 
parameters on the flow field. In order to test for the accuracy of the used method, the obtained results for skin friction, Nuselt 
number and Sherwood number are compared with the results of Mustafa et al. [2] and Al-Saif and Harfash,. [20], thus, a good 
agreement is found as it is shown in Table 1 and 2. 

Figure 3 displayed the influence of variable viscosity 1( )ξ  and squeezing ( )ε parameters on the dimensionless normal ( )F η  
and radial ( )Fη η  velocities. Viscosity being an important (determinant) flow characteristic of any non-Newtonian fluid, among 
which Casson fluid is of no exception, with shear thinning behavior. Physically, good enhancement of fluid viscosity results to 
fluid flow velocities resistivity. Hence resulted to reduction in fluid velocities as perceived on Fig. 3. Obviously seen in Fig. 3b the 
radial velocity ( )Fη η  appreciates along the moving plate but depreciate on the lover plate. Squeezing effect likewise displayed a 
reduction pattern on velocity profiles for both negative and positive ε . Knowing that a rise in squeeze parameter deforms the 
fluid property, thus the radial velocity is seen appreciable within the flow region 0.5η > .  

 

Fig. 2. Minimized residual error 
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Table 2. Validation of Chebyshev Collocation Method (CCM) results with the work of Al-Saif and Harfash, [20] for varying η  at  

2 1 3
Ec = 0.5, 0.5, Sc = 1, = 0.1, = 1,Pr = 2, = = = = = Nr = 0Haε δ λ ξ ξ ξ β=  

 ( )F η  ( )θ η  ( )ϕ η  

η  Present Al-Saif, and Harfash [20] Present Al-Saif, and Harfash [20] Present Al-Saif, and Harfash [20] 

0 0 0 1.6841811265 1.6853846217 0.7952078482 0.7930840909 

0.1 0.1453846919 0.1453798050 1.6837054338 1.6849083511 0.7971963182 0.7950970401 

0.2 0.2882598533 0.2882508397 1.6816666187 1.6828642524 0.8031671989 0.8011410434 

0.3 0.4260659649 0.4260542054 1.6761885934 1.6773661830 0.8131374065 0.8112320454 

0.4 0.5561433939 0.5561306350 1.6640033631 1.6651314686 0.8271368359 0.8253982358 

0.5 0.6756820190 0.6756700441 1.6402214098 1.6412547142 0.8452109893 0.8436825495 

0.6 0.78167054549 0.7816608303 1.5979721550 1.5988535623 0.8674248191 0.8661463397 

0.7 0.8708455258 0.8708389416 1.5278701919 1.5285420825 0.8938679679 0.8928744148 

0.8 0.9396402218 0.9396368409 1.4172394643 1.4176628081 0.9246616732 0.9239817330 

0.9 0.9841336037 0.9841326623 1.24899186775 1.2491703840 0.9599677220 0.9596221744 

1.0 1 1 1 1 1 1 

 
 

 

     (a)                                                                     (b) 

Fig. 3. Behavior of 
1
ξ  and ε  on (a) normal F( )η  and (b) radial ( )F

η
η  velocities 

 

     (a)                                                                    (b) 

Fig. 4. Behavior of Ha  and β  on (a) normal F( )η  and (b) radial ( )F
η
η  velocities 

 

   Figure 4 depicts the influence of Hartmann number ( )Ha  and Casson ( )β  parameter on the dimensionless (a) normal ( )F η  

and (b) radial ( )Fη η  velocities. The present investigation proved that continuous injection of β  into the flow system nullifies the 

present model to Newtonian category. The characterization of β  within the flow region obeys the law of viscosity (i.e. β→∞ ). 

An appreciation in β  produce a reduction in yield stress, thus a decline behavior of both normal and radial velocities was 

experienced. A rise in Hartmann number ( )Ha  signifies an enhancement of the transverse magnetic field which magnified the 

resistivity (Lorentz) force, thereby reducing the magnitude of both normal and axial squeezing flow velocities. 
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Fig. 5. Behavior of Pr  and 
2
ξ  on ( )θ η  Fig. 6. Behavior of Nr  and β  on ( )θ η  

  

Fig. 7. Behavior of Ec  and ε  on ( )θ η  Fig. 8. Behavior of Ha  and 
1
ξ  on ( )θ η  

 
 

 

Variability of thermal conductivity and Prandtl number is accounted for in Fig. 5. The random movement of molecular motion 
(thermal conductive property), 2( )ξ , across the squeezing channel presents a destructive influence to the thermal field and seen 

conserving the heat generated by the fluid, thus rise in 2ξ  enhances the temperature field. Hence, liberating 2ξ  may be 
attributed to weakening bound of Casson fluid as a result of temperature difference. Physically, during heat transfer analysis, 

accelerated thermal field is attributed to lessen in thermal conductivity values. Thus, temperature profiles are appreciated to a 
hike in mass diffusion to thermal diffusion ratio (Pr) . 

Figure 6 portrays the rheological representation of blood (Casson fluid) parameter ( )β  and Radiation ( )Nr  influence on 
energy profile. Radiation acts as a heat source within the fluid region, however, in energy equation (5), thermal relation is seen 

lessening the mean absorption coefficient, thus a hike in radiation dosage decreases the fluid temperature. Similarly, an 
appreciable value of β  decelerates the energy distribution significantly throughout the entire flow medium.Dissipation (Ec)  

and squeezing ( )ε  effects on temperature field are presented in Fig. 7. In this flow process, an improvement in heat generation is 
perceived due to higher friction force between the fluid particles arising from higher magnitude of Ec . Thus, collision between 

the fluid molecules increases and the fluid energy improved significantly. Contrarily, the plate movement parameter (squeezing 
number) demonstrated a downsize behavior on the energy field, as a result of decaying squeeze force to higher squeezing number. 

Figure 8 demonstrates the uplifting values of Hartmann number and variable viscosity on energy distribution. Growing value 
of Hartmann number accelerate the fluid temperature throughout the flow domain while the viscosity effect is seen lessen the 

fluid thermal profiles. Response in Casson fluid concentration with a variation in both variable diffusivity parameter, 3ξ , and 
Schmidt number, Sc , is presented in Fig. 9. Variability of 3ξ  obviously portray a higher profile against concentration field. The 

purpose behind this phenomenon tells that an enhancement in mass diffusivity parameter is required to account for further 
mass transfer. It is worth mentioning that concentration field decreases with a rise in Sc number, but a higher magnitude of 

3ξ indicate that concentration field increases with a positive effect of Sc . 
Figure 10 account for the variation of squeezing and chemical reaction parameters on concentration field. Generally, positive 

reaction parameter retards the flow concentration and accelerates to a decreasing value. Meanwhile, an appreciable value of λ  
decelerate the concentration of the squeezing fluid as depicted. Physically, to-and-fro motion of the plates create an 

intermolecular force within the Casson fluid particles which in turn accelerate the fluid concentration. Thus, rise in squeeze 
parameter ( )ε  appreciate the fluid concentration. 
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Fig. 9. Behavior of Sc  and 
3
ξ  on ( )θ η  Fig. 10. Behavior of λ  and ε  on ( )θ η  

  

(a) (b) 

 
 

(c) 

Fig. 11. Influence of flow physical characteristics (a) Skin friction, (b) Nusselt number and (c) Sherwood number. 

 

The influence of squeezing, Casson and viscosity parameter on Skin friction coefficient is presented in Figs. 11, clearly β  is 
seen decreasing the skin friction coefficient and appreciate to an increasing values of 1ξ  and ε . 3ξ , β  and ε  decreases the 

Heat transfer coefficient, while 3ξ  and ε  downsized off the rate of mass transfer. 

5. Conclusion 

An investigation into thermophysical properties of chemically reacting Squeezed flow of Dissipative Casson fluid 
encompassing the radiation, MHD effects is studied. The governing equations assisting the flow is formulated and transformed 
using a suitable similarity transformation. Hence, the solution to the resulting sets of ODEs dimensionless model is approximated 
numerically via Chebyshev based Collocation Approach (CCA). The solution technique gave an excellent approximation as seen in 
Table 1. Thus, the following conclusions were drawn: 
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1. The concentration field is appreciated to a higher magnitude of 3ξ  and ε  parameters, while velocities and temperature 
depreciate with an increasing function of 1 2,ξ ξ  and ε accordingly, 

2. Velocities and energy fields is downsized to a large value of Ha  and β , 
3. Higher numbers of Ec  and Pr  appreciate the temperature field rapidly, 
4. Chemical reaction decreases the concentration field, 
5. Increasing values of radiation parameter lessen the temperature field, 
6. Skin friction, Heat and Mass transfer coefficients diminished to a rise in variable thermal and mass diffusivity parameter 

while variable viscosity pronounced the skin fiction coefficient. 

Interestingly, present analysis is helpful in optimizing and modeling of viscosity, mass diffusivity and thermal conductivity 
rate of fluid materials in a given system. Future work will involve introduction of nanofluids to enhance the optimality of heat 
transfer conditions and consider squeeze flow in more fluid type and complex geometries. 
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Nomenclature 

B0 Magnetic field [Weber/m2] 1m  variation of viscosity [kg/ms] 

C Fluid concentration [mol.] 2m  variation of thermal conductivity [W/mK]] 
Ca Wall surface concentration [mol.] 3m  variation of mass difusivity [kg/m2/s] 

Cp Specific heat capacity [J/kg.K] Nr  Radiation parameter [-] 
D0 Mass diffusivity [kg/m2/s] P pressure gradient [N·m-2] 

Ec  Eckert number [-] Pr  Prandtl number [-] 
F  Dimensionless velocity [-] Sc  Schmidt number [-] 

Ha  Magnetic parameter [-] t Time [s] 
Ke Absorption coefficient [m-1] T Fluid temperature [K] 

Kr Dimensional chemical reaction parameter [-] Ta Wall surface temperature [K] 

0k  Thermal conductivity [W/mK)] T0 Reference temperature [K] 

l  Initial plate distance [L] u, v Velocities along x and y direction [m/s] 
 

Greek Symbols 
α  Squeezing characteristics parameter [L] ν  Kinematic viscosity [kg m-1 s-1] 

β  Casson parameter 1ξ  dimensionless viscosity [-] 
δ  Fluid Dimensionless number [-] 2ξ  dimensionless thermal conductivity [-] 

ε  Squeezing parameter [-] 3ξ  dimensionless mass difusivity [-] 
η  Dimensionless plate length [L] ρ  Fluid density [kg/m3] 

θ  Dimensionless Temperature [-] σ  Electric conductivity [S/m] 
λ  Dimensionless chemical reaction parameter [-] σ∗  Stefan-Boltzmann constant [W m2 K-4] 

0µ  Dynamic viscosity [kg m-1 s-1] ϕ  Dimensionless Concentration [-] 
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