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Abstract: Nonlinear vibration arises in engineering and physics, and the periodic motion of these nonlinear oscillatory systems 
have rich dynamics. An estimation of amplitude-frequency relationship of a nonlinear oscillator is much needed, therefore, well-
known homotopy perturbation method is employed for this purpose. In this paper, two last modifications of the homotopy 
perturbation method are briefly reviewed, which couples with either the parameter-expansion technology or the enhanced 
perturbation method. Both modifications are extremely effective for nonlinear oscillators, and the cubic-quintic-septic Duffing 
oscillator is used as an example to elucidate the solution processes. 
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1. Introduction 

Nonlinear oscillation from the oscillation of a molecule’s vibration to the earthquake happens everywhere, and the periodic 

property performs a critical role in various oscillatory problems of science and enginerring[1-7], for example, the attachment 

oscillator for the controlled manufacturing of nanofiber membranes[8], Fangzhu’s oscillator for collection of water from air[9], 

harmonic oscillator for micr/nano structures[10], and release oscillator for delivery of ions [11]. In recent years, nonlinear 

oscillators have received extensive attention from scientific researchers especially after the invention of microelectromechanical 

systems [12-16]. The exact solutions of these vibratory systems play a crucial role in researching the properties and behavior of 

periodic motion of the aforesaid systems but identifying such exact solutions is very difficult. Although numerical solutions of 

such oscillatory systems with nonlinearities are easy to find, researchers are interested in finding the exact or at least analytic 

solutions to these problems because they have more detail which helps better insight into these systems. Therefore, amplitude-

frequency formulation is an essential property of a nonlinear oscillator. There are many analytical techniques used in open 

literature for amplitude-frequency formulation, for example, the homotopy perturbation method [17-22], the variational iteration 

method [23-28], the Hamiltonian approach [29-30], He’s frequency formulation [31-32] and the max-min approach [33]. 

The homotopy perturbation method was first introduced in 1998 [17], and it has been widely applied to solve various non-

linear problems accurately and efficiently [19-22, 34-38]. The method became famous after 2006 when the review article “some 

asymptotic methods for strongly nonlinear equations” was published in International Journal of Modern Physics B, which has 

been cited 1,345 times according to Clarivate’s Web of Science (December 7, 2018), the review article gave a lucid as well as 

elementary introduction to the homotopy perturbation method [21]. On February 2008, Prof. Ganji told Science Watch 

(http://archive.sciencewatch.com/dr/fbp/2008/08febfbp/08febGanji/) that the homotopy perturbation method is a universal 

mathematical tool for solving nonlinear problems, and it will become as popular as Newton’s iteration method in future. After 

2006, publications increased exponentially and now there are about 200 publications per year, see Fig.1. Fractional differential 

equations [39-41] can be effectively solved by the homotopy perturbation method coupled with Laplace transform, this 

modification is called as He-Laplace method [42,43]. 

Though the homotopy perturbation method has been widely adopted, there are still space for further improvement. In this 

paper we briefly review two modifications using either the parameter expansion technology [44] or the enhanced perturbation 

method [45-46].  
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Fig. 1. Publication numbers on “homotopy perturbation method” per year according to Clarivate’s Web of Science (December 7, 2018) 

2. The homotopy perturbation method with the parameter-expanding method 

Consider the general non-linear oscillator equation as 

( , ) 0x ax f x x′′ ′+ + =  (1) 

where ( , )f x x′  is supposed to be a function with non-linear terms, a is a real number, it can be zero or negative. We can 

construct the homotopy equation for Eq.(1) as 

( , ) 0x ax p f x x ′′ ′+ + =   (2) 

The solution can be written as 

2
0 1 2x x px p x= + + +⋯⋯  (3) 

According to the parameter-expanding method [20,44] we can expand the coefficient of the linear term in the form 

2 2
1 2a a p a p=Ω + + +⋯⋯  (4) 

where constants 2Ω  and ia  can be identified later.  

3. Homotopy perturbation method coupled with the enhanced perturbation method  

The perturbation method has been one of the powerful methods used to solve nonlinear problems. Roughly all perturbation 
theories build on the hypothesis of small parameters. Recently, Filobello-Nino et al. [45] suggested a new perturbation approach to 
solve the nonlinear equations in order to get the solution not influenced by parameters. Filobello-Nino et al. [45] proposed an 
adjustment in the perturbation method which was named as the enhanced perturbation method. This method is highly accurate 
and provides better results, and it can deal problems with both small and large values of the perturbation parameters [46]. To 
understand the idea of the enhanced perturbation method, we consider the following cubic quintic Duffing oscillator [47] 

3 5
1 2 cosx x x x tε ε β′′ + + + =  (5) 

Eq. (7) can be expressed as 

( )2 2 4
1 21 cosD x x x tε ε β+ + + =  (6) 

where D d dt=  is differential operator. 

The enhanced perturbation method [31-32] is to apply the annihilator operator 2 2D β+  to Eq. (6), we have 

( )( )2 2 2 2 4
1 21 0D D x x xβ ε ε+ + + + =  (7) 

This method can solve wide class of non-linear problems. It is more effective in case of non-linear problems with forced term 
but can also apply on problems without forced term [48]. 

4. Solution of cubic-quintic-septic duffing oscillator 

The Duffing equation [47,49-50] is extensively studied non-linear differential equation and related to many engineering 
systems. In this article, this paper focuses on the cubic-quintic-septic Duffing equation [50]: 

3 5 7 0x x x x xα β γ δ′′ + + + + =  (8) 
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with initial conditions 

(0) , (0) 0x A x′= =  (9) 

where α  is coefficient of linear term and β , γ , δ  are the cubic, quintic, septic power coefficients respectively. Eq. (8) 
expresses the Quasi-zero stiffness phenomena which is useful for desiging the applicable structural parameters. This equation 
looks simple but difficult to solve analytically. The difficulty in obtaining accurate result of Eq. (8) is due to the presence of quintic 
and septic power non-linearities which make it more complex and complicated. Recently Remmi and Latha [50] obtained an 
approximate solution using the harmonic balancing method. 

We can construct a homotopy equation for Eq. (8) as [20,44] 

3 5 7 0x x p x x xα β γ δ ′′ + + + + =    (10) 

The coefficient of linear term ( α ) and the solution can be expanded into following forms 

2 2
1 2a p a pα =Ω + + +⋯⋯  (11) 

2
0 1 2x x px p x= + + +⋯⋯  (12) 

Placing Eq. (11) and Eq.(12) into Eq. (10) and proceeding as that by the perturbation method, we have 

2
0 0 0x x′′+Ω =   0 0(0) , (0) 0x A x′= =  (13) 

2 3 5 7
1 1 0 1 0 0 0 0x x x a x x xβ γ δ′′+Ω + + + + = , 1 1(0) 0, (0) 0x x′= =  (14) 

Solving 0x  from Eq. (13), we have 

0 cosx A t= Ω  (15) 

Substituting Eq. (15) into Eq. (14), we obtain 

2 3 3 5 5 7 7
1 1 1 cos cos cos cos 0x x a A t A t A t A tβ γ δ′′+Ω + Ω + Ω + Ω + Ω =  

2 3 5 7 3 5 7
1 1 1

5 7 7

3 5 35 1 5 21
cos cos3

4 8 64 4 16 64

1 7 1
cos5 cos7 0

16 64 64

x x a A A A A t A A A t

A A t A t

β γ δ β γ δ

γ δ αδ

     ′′+Ω + + + + Ω + + + Ω       

     + + Ω + Ω =       

 
(16) 

 No secular term in 1x  requires 

3 5 7
1

3 5 35
0

4 8 64
a A A A Aβ γ δ+ + + =  (17) 

If first order approximation is needed from Eq. (11) we have 

2
1a α= −Ω  (18) 

Thus from Eq. (17) and Eq. (18), we have 

2 4 63 5 35

4 8 64
A A Aα β γ δΩ= + + +  (19) 

In order to introduce the enhanced perturbation method [45-46] into the homotopy perturbation method, we first consider the 
following linear oscillator 

2 2 2( ) 0x x D x′′ +Ω = +Ω =  (20) 

According to the enhanced perturbation method [45-46], Eq. (20) can lead to a higher order form: 

2 2 2 2 2 4( )( ) 2 0D D x x x′′′′ ′′+Ω +Ω = + Ω +Ω =  (21) 

Replacing x′′  by 2α− Ω  from Eq. (20) results in 

4 0x x′′′′ −Ω =  (22) 

We adopt the similar way to increase the order of cubic-quintic-septic Duffing equation. To achieve this, differentiating Eq. (8) 
twice 

2 4 63 5 7 0x x x x x x x xα β γ δ′′′ ′ ′ ′ ′+ + + + =  (23) 

2 2 4 3 2 6 5 23 ( 2 ) 5 ( 4 ) 7 ( 6 ) 0x x x x xx x x x x x x x xα β γ δ′′′′ ′′ ′′ ′ ′′ ′ ′′ ′+ + + + + + + =  (24) 

Replacing x′′  by 3 5 7( )x x x xα β γ δ− + + +  from Eq. (8), we have 
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2 3 5 7 2 2 4 3 2 6 5 23 ( 2 ) 5 ( 4 ) 7 ( 6 ) 0x x x x x x x xx x x x x x x x xα αβ αγ αδ β γ δ′′′′ ′′ ′ ′′ ′ ′′ ′− − − − + + + + + + =  (25) 

or 

2 3 5 7 2 2 4 3 2 6 5 23 6 5 20 7 42 0x x x x x x x xx x x x x x x x xα αβ αγ αδ β β γ γ δ δ′′′′ ′′ ′ ′′ ′ ′′ ′− − − − + + + + + + =  (26) 

A homotopy equation can be established for Eq. (26) as 

2 3 5 7 2 2 4 3 2 6 5 23 6 5 20 7 42 0x x p x x x x x xx x x x x x x x xα αβ αγ αδ β β γ γ δ δ ′′′′ ′′ ′ ′′ ′ ′′ ′− + − − − + + + + + + =    (27) 

The solution can be expanded as Eq. (12) and the coefficient of linear term can be expanded as 

2 4 2
1 2p pα =Ω + Ω + Ω +⋯⋯  (28) 

Substituting Eq. (12) and Eq. (28) into Eq. (27) and continuing as that by the perturbation method, we have 

4
0 0 0x x′′′′−Ω = , 0 0(0) , (0) 0x A x′= =  (29) 

4 3 5 7 2 2 4 3 2 6 5 2
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 6 5 20 7 42 0, (0) 0, (0) 0x x x x x x x x x x x x x x x x x x x xαβ αγ αδ β β γ γ δ δ′′′′ ′′ ′ ′′ ′ ′′ ′ ′−Ω −Ω − − − + + + + + + = = =  (30) 

Using Eq. (15) as its initial approximate solution, we have 

4 3 3 5 5 7 7 3 2 3 3 2 2 5 2 5
1 1 1

5 2 3 2 7 2 7 7 2 5 2

cos cos cos cos 3 cos 6 cos sin 5 cos

20 cos sin 7 cos 42 cos sin 0

x x A t A t A t A t A t A t t A t

A t t A t A t t

αβ αγ αδ β β γ

γ δ δ

′′′′−Ω − Ω Ω − Ω − Ω − Ω − Ω Ω + Ω Ω Ω − Ω Ω

+ Ω Ω Ω − Ω Ω + Ω Ω Ω =
 (31) 

By means of simple calculation, we conclude 

4 3 2 5 2 3 2 3 3
1 1 1

7 2 5 2 5 5 7 2 7 7

(6 )cos (20 9 )cos

(42 25 )cos (49 )cos 0

x x A A t A A A t

A A A t A A t

β γ β αβ

δ γ αγ δ αδ

′′′′−Ω + Ω − Ω Ω + Ω − Ω − Ω

+ Ω − Ω − Ω − Ω + Ω =
 (32) 

or after applying trigonometry formulas, we have 

4 7 7 2
1 1

5 7 5 2 7 2

3 5 7 3 2 5 2 7 2

3 5 7
1

1 49
cos7

64 64

1 7 25 175
cos5

16 64 16 64

1 5 21 9 45 189
cos3

4 16 64 4 16 64

3 5 35 3

4 8 64

x x A A t

A A A A t

A A A A A A t

A A A A

αδ δ

αγ αδ γ δ

αβ αγ αδ β γ δ

αβ αγ αδ

 ′′′′−Ω + − − Ω Ω  

 + − − − Ω − Ω Ω +  

 − − − − Ω − Ω − Ω Ω  

+ − Ω − − − − 3 2 5 2 7 25 35
cos 0

4 8 64
A A A tβ γ δ

  Ω − Ω − Ω Ω =  

 (33) 

Requirement of no secular term needs 

3 5 7 3 2 5 2 7 2
1

3 5 35 3 5 35
0

4 8 64 4 8 64
A A A A A A Aαβ αγ αδ β γ δ− Ω − − − − Ω − Ω − Ω =  (34) 

If the first order approximation is enough, then from Eq. (28), we have 

2 4
1 αΩ = −Ω  (35) 

Solving Ω  from Eqs. (34) and (35), we obtain 

2 4 63 5 35

4 8 64
A A Aα β γ δΩ= + + +  (36) 

which is same as that obtained by the homotopy perturbation method with the parameter- expanding method. 
Thus our approximate solution in both cases is 

2 4 63 5 35
( ) cos

4 8 64
x t A A A A tα β γ δ

  = + + +   
 (37) 

Figure 2 shows the comparison of results obtained from both above explained methods with the numerical one with the help 
of MATLAB for the cubic-quintic-septic Duffing oscillator for some given parameters.We depict the approximate solution obtained 
from modifications of homotopy perturbation method (red circles) Eq. (37) with time for four different amplitudes 

0.05,0.1,0.15,0.2A=  against the parameter values 1α β γ δ= = = =  with the same yielded by computationally using MATLAB 
(solid black lines). All panels are showing good accuracy which validate the approximate solution obtained by homotopy 
perturbation method. 

5. Conclusion 

In this article, we successfully applied the two modifications of the homotopy perturbation method to the cubic-quintic-septic 
Duffing oscillator, both modifications result in a same result, giving a cross-proof of the correctness of the both modifications. 
Comparison with the numerical result show both modifications lead to a high accuracy of the obtained solution.  
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Fig. 2. Comparison of approximate solution with MATLAB solution for the cubic-quintic-septic oscillator 
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Nomenclature 

A  Amplitide of the oscillator β  Cubic power coefficient 

p  Expansion parameter γ  Quintic power coefficient 

x  Approximate solution δ  Septic power coefficient 

t  Time Ω  Nonlinear frequency of the oscillator 

α  Coefficient of linear term   
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