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Abstract: A nonlinear oscillator arising in the microelectromechanical system is complex and it is difficult to obtain a variational 

principle. This paper begins with a wrong variational formulation and uses the semi-inverse method to obtain a genuine 

variational principle. Additionally, this paper gives simple formula for the fast frequency estimation of the nonlinear oscillator. 

Only simple calculation is needed to have a relatively high accuracy results when compared with the other methods. 
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1. Introduction 

The microelectromechanical system (MEMS) refers to the high technology devices of small sizes and has become a hot topic 

in both academic and industrial communities [1-11]. The MEMS are intelligent structures and their systems are of commonly 

micron or nanometer. Micro electronic technology is the origin of these tiny devices used in vibrators, sensors, switches and so 

on [3-4,6,9-11]. These systems are modeled by means of Galerikin’s method generally and represented by nonlinear mathematical 

models. Therefore, the approximate solution of these nonlinear models are very important to predict their dynamic behaviour. 

Recently Fu et al. [8] studied the following electrically excited MEMS oscillator by employing energy balance method (EBM) 

2 4 3 5 7
0 2 4 1 3 5 7( + ) =0u a a u a u a u a u a u a u′′ + + + + +  (1) 

The parameters ia (i=0~7) are constants and can be found in Appendix. A detailed derivation of Eq.(1) and the physical 

understanding of each coefficient are available in Ref.[8]. This paper aims at establishing a variational formulation for Eq.(1) by 

the semi-inverse method[12-23] and proposed a simple frequency formula based on previous work [24]. The results obtained from 

the proposed technology not only shows excellent matching with the results those obtained numerically using the Runge-Kutta 

method of order four (RK4) but also yields better accuracy when compared to other established methods. 

2. Variational Principle 

Fu et al. obtained the following variational principle[8] 

{ }2 2 4 2 4 6 8
0 2 4 1 3 5 7

1 1 1 1 1
( ) ( + )

2 2 4 6 8
J u u a a u a u a u a u a u a u dt′= − + + + + +∫  (2) 
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This variational principle is valid only for the case when 2 4= =0a a . The stationary condition is 

( ) 0
L d L

u dt u

∂ ∂
− =

′∂ ∂
 (3) 

where L is the Lagrange function is defined as 

2 2 4 2 4 6 8
0 2 4 1 3 5 7

1 1 1 1 1
( + )

2 2 4 6 8
L u a a u a u a u a u a u a u′=− + + + + +  (4) 

It is obvious that 

2 3 3 5 7
2 4 1 3 5 7

1
(2 4 )

2

L
u a u a u a u a u a u a u

u

∂ ′=− + + + + +
∂

 (5) 

and 

2 4
0 2 4( + )

L
u a a u a u

u

∂ ′=− +
′∂

 (6) 

So we have the following Euler-Lagrange equation 

2 3 3 5 7 2 4
2 4 1 3 5 7 0 2 4

1
(2 4 ) + ( + ) 0

2

d
u a u a u a u a u a u a u u a a u a u

dt
 ′ ′− + + + + + + =    (7) 

After simple operation, Eq.(7) becomes 

2 4 3 5 7 2 3
0 2 4 1 3 5 7 2 4( + ) + ( 2 )=0u a a u a u a u a u a u a u u a u a u′′ ′+ + + + + +  (8) 

It is obvious that Eq.(8) is not equivalent  to Eq.(1), so Eq.(2) is not a genuine variational principle.  

In order to obtain a genuine one, we write Eq.(1) in the form 

3 5 7
1 3 5 7

2 4
0 2 4

=0
+

a u a u a u a u
u

a a u a u

+ + +′′ +
+

 (9) 

By the semi-inverse method, its variational formulation is 

{ }21
( ) +

2
J u u F dt′= −∫  (10) 

where F is the potential satisfying the following relationship 

3 5 7
1 3 5 7

2 4
0 2 4+

a u a u a u a uF

u a a u a u

+ + +∂
=

∂ +
 (11) 

Calculating F from Eq.(11) we have 

2
4 2 4 20 7 2 7 2 5 3 457 2 7

4 2 02 2
4 4 4 4

2 3 3 2 2 2
0 2 4 7 0 4 5 1 4 2 7 2 4 5 2 3 4 4 2

3 2 2
4 0 4 2 0 4 2

( + )
( ) ln( )
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3 2 4 1 2
arctan( )

2 4 4

a a a a a a a aaa a a
F u u a u a u a

a a a a

a a a a a a a a a a a a a a a a a a u a

a a a a a a a

− −
= − − − + +

− + − + − +
+

− −

 (12) 

It is easy to prove that Eq.(10) is a genuine variational principle.  

3. Frequency-Amplitude Relationship 

Consider the following general nonlinear oscillator 

( )=0u f u′′ + ,  (0) , (0)=0u A u′=  (13) 
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Fig. 1. Comparison of solution and error between FAF and EBM with RK4 

Two most simplest frequency-amplitude formulae are listed as follows [24] 

2= ( / 2)
df

u A
du

ω =  (14) 

2 ( ) 3
= ( )

2

f u
u A

u
ω =  (15) 

In our problem f(u) is defined as 

3 5 7
1 3 5 7

2 4
0 2 4

( )
+

a u a u a u a u
f u

a a u a u

+ + +
=

+
 (16) 

By Eq.(15), we have 

2 4 63 9 27
2 1 3 5 74 16 64

2 43 9
0 2 44 16

=
+

a a A a A a A

a a A a A
ω

+ + +
+

 (17) 

The approximate solution using frequency-amplitude formulation (FAF) reads 

2 4 63 9 27
1 3 5 74 16 64

2 43 9
0 2 44 16

cos
+

a a A a A a A
u A t

a a A a A

 + + + =   +  
 (18) 
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4. Results and Discussion 

Fig. 1 includes the results obtained from the FAF, numerical results using RK4, and those obtained by EBM [8]. Two sets of 

parameters are considered for the study. The left column shows the solution obtained from numerical results using RK4 (blue 

line), Fu et. al. [8] (black line), and FAF from Eq. (18) (red line) and this comparison authenticates that the approximate analytical 

results from the proposed FAF match exceptionally well with the computational results of RK4. We also map error against time for 

the same parameter values in the right column of Fig. 1. Black stars and red square with solid lines indicate the error of EBM 

(difference of RK4 solution and EBM solution [8]) and error of the FAF (difference of RK4 solution and FAF solution from Eq. (18)) 

respectively. Although both errors are small but all right side panels ensure the superiority of the FAF over EBM. It is also noted 

that as we increase the amplitude value, the error of EBM also increases but the error of the FAF is negligible.  

5. Conclusion 

In this short paper, we obtained a genuine variational principle for MEMS oscillator, it can be used to study the frequency-

amplitude relationship in an energy view, and we will discuss it in a forthcoming paper. Moreover, this paper gives a simple 

formula for the fast prediction of the frequency of MEMS oscillator and all obtained results are of a relatively high accuracy. 
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Nomenclature 

A  Amplitide of the oscillator L  Lagrange function 

t  Time ω  Nonlinear frequency of the oscillator 

u  Approximate solution J  Variational formulation 
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APPENDIX 

The coefficients ( 0 ~ 7)ja j=  of Eq. (1) can be determined as follows 

1

2
0

0

a dξ η= ∫  (A) 

( )
1

2 2
1

0

a N V dξξ ξξ ξ η′′′′ ′′= − −∫  (B) 

1

4
2

0

2a dξ η=− ∫  (C) 

1 1

3 3 2
3

0 0

2 2a N d dξ ξ ξ ξ αξξ ξ η η
   ′′′′ ′′ ′′ ′= − + −    
∫ ∫  (D) 

1

6
4

0

a dξ η= ∫  (E) 

1 1

5 5 3 2
5

0 0

2a N d dξ ξ ξ ξ αξ ξ ξ η η
   ′′′′ ′′ ′′ ′= − +    
∫ ∫  (F) 

1 1

5 2
7

0 0

a d dαξ ξ ξ η η
   ′′ ′= −    
∫ ∫  (G) 

where 2 2( ) 16 (1 )ξ η η η= −  uses as trail function and prime ( )′•  represents the partial differentiation w.r.t coordinate variable η . 
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