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Abstract. Chaos and hyperchaos are generated from a new fractional-order system. Local stability of the system’s three equilibria 
is analyzed when the fractional parameter belongs to (0,2]. According to Hopf bifurcation theory in fractional-order systems, 
approximations to the periodic solutions around the system’s three equilibria are explored. Lyapunov exponents, Lyapunov 
spectrum and bifurcation diagrams are computed and chaotic (hyperchaotic) attractors are depicted. Furthermore, a linear control 
technique (LFGC) based on Lyapunov stability theory is implemented to derive the hyperchaotic states of the proposed system to 
its three equilibrium points. Numerical results are used to validate the theoretical results. 

Keywords: Fractional-order; Hopf bifurcation; Chaos; Hyperchaos; Linear control.   

1. Introduction 

Nowadays, fractional calculus is widely used in science and technology [1-10]. The Caputo type fractional-order derivative [11] 
is described as  

 

( )( ) ( ),ssD t J tα αϖ ϖ−=  (1) 

                                            

1

0

( ) [ ( ) ( ) ] / ( ),
t

J t t dµ µρ β ρ β β µ−= − Γ∫  (2) 

such that 0, 0, sα µ> >  is an integer given that 1 .s sα− < <  

Dynamic analysis in fractional dynamical systems (FDS) has received increasing attention [12-14]. So, this paper focuses on 
exploring dynamical behaviors in a novel fractional-order system with three quadratic nonlinearities which is expected to generate 
hyperchaos. Besides, the hyperchaotic case of FDS has important applications [15-16]. According to [17], the equilibrium points of 
linear FDS is locally asymptotically stable (LAS) if 

 

arg( ) / 2, 1,...., ,i i nλ απ> =  (3) 

where iλ  is an arbitrary eigenvalue of the Jacobian matrix of FDS and n represents number of equations in FDS and (0,2]α ∈ . 
Conditions (3) are known as Matignon’s inequalities. In addition, the fractional Routh-Hurwitz (FRH) scheme is efficiently used to 
determine the local stability of the corresponding nonlinear FDS [15,18].  

Controlling chaos (hyperchaos) in FDS is also considered as focal topic for research owing to its numerous essential applications 
[15,19-20]. Moreover, employing fractional controllers in FDS is appropriate in such systems with long memory transients and 
anomalous dynamics since they provide more robustness and high performance. 

In [21], a new integer-order system that generates hyperchaotic attractors was introduced and analyzed by Matouk. The 
existence and type of Hopf bifurcations were analyzed in this system. In addition, the hyperchaotic attractors in Matouk’s system 
were suppressed to its equilibrium states using a simple linear control scheme which is based on the classical Lyapunov stability 
theory. Moreover, chaos synchronization was achieved in a fractional version of Matouk’s system [22] where the fractional 
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parameter lies in (0,1). In [23], the influence of fractional parameter on stabilizing this system to its equilibrium points was shown 
within a specific parameter set generating hyperchaos. This work addresses the fractional form of Matouk’s system with new 
parameter sets that generate rich variety of chaotic and hyperchaotic dynamics; Here, chaotic (hyperchaotic) attractors appear less 
than and above one. Therefore, calculations of Lyapunov exponents and bifurcation diagrams are performed in order to verify the 
existence of this variety of chaotic dynamics. On the other hand, the stability analysis in the fractional Matouk’s system is carried 
out based on the four-dimensional FRH conditions given by Matouk [24-25] in which the fractional parameter lies in (0,2]. 
Furthermore, conditions for approximating periodic solutions are obtained in the fractional Matouk’s system via Hopf bifurcation 
theory in fractional-order systems. Finally, a linear feedback gains control (LFGC) criterion is applied to the fractional Matouk’s 
system so that its new hyperchaotic regions are successfully stabilized to all the system’s equilibria. 

2. The Proposed System 

In [21], new integer-order hyperchaotic system was introduced. The system’s equations are described as 

2

,

,

,

,

dx
au ay hx xu

dt
dy

bx u xz
dt
dz

x cz
dt
du

du
dt

= − + −

= + −

= −

=

 (4) 

where the constants , , , ,a b c d h  ∈  .R  The fractional form of system (4) is described as  

2

,

,

,

,

D x au ay hx xu

D y bx u xz

D z x cz

D u du

α

α

α

α

= − + −

= + −

= −

=

 (5) 

where 0 2.α< ≤ The system (5) has three equilibria ( , , , ), 0,1,2iS x y z u i= given that 0 (0,0,0,0),S = 1 ( , / , ,0),S h a bχ χ=

2 ( , / , ,0),S h a bχ χ= − − , 0, 0.bc a bcχ= ≠ ≥ Moreover, system (5) has the unique equilibrium 0(0,0,0,0)S  if 0a=  or 0.bc<   

Recently, some numerical methods for solving FDS have been appeared, e.g., variational iteration method (VIM) [26]; method of 

transfer function approximation in the frequency domain [27]; Adomian’s decomposition method (ADM) [28] and the method of 

predictor-correctors (PECE) which shows more efficiency and is widely used in practical applications [29]. Henceforth, the fractional 

systems in this work are integrated using the PECE scheme for solving FDS or more precisely, Predict, Evaluate, Correct, Evaluate. 

Here, the PECE algorithm requires total number of points 45 10n = ×  and discretization step 32 10 .−×  

3. Local Stability  

In [15, 24], Matouk introduced and proved the following fractional Routh-Hurwitz (FRH) criterion in the case of four-dimensional 
FDS: 
Let 1 2 3, ,Η Η Η  be defined as follows 

1
1

1 1 2 3 3 2 1
3 2

4 3

1 0
1

, , ,

0

η
η

η η η η
η η

η η

Η = Η = Η =  (6) 

where .  refers to a matrix determinant and , 1,2,3,4i iη =  are coefficient of the characteristic polynomial ( )P λ  of an equilibrium 

( , , , )x y z uS s s s s=  given that 

4 3 2
1 2 3 4( ) 0,P λ λ η λ η λ η λ η= + + + + =   

whose discriminant is determined as 

2 3 3 2 3 2 2
1 2 3 1 3 1 2 3 1 2 4 1 3 4 2 3 4

2 2 3 2 2 3 2 4
1 2 3 4 1 3 4 1 2 3 4 1 2 4 2 3 3

4 2 2 2 4 3
1 4 2 4 2 4 4

( ( )) ( ) 4( ) 18 4 6( ) 144

80 192 18 144 4 27

27 128 16 256 .

Disc P λ η η η η η η η η η η η η η η η η η

η η η η η η η η η η η η η η η η η

η η η η η η η

= − + − − +

− − + + − −

− − + +

 (7) 

Hence, we introduce the following stability theorem given by Matouk [15, 24]. 
 

Theorem 1. (Matouk’s stability theory in four-dimensional FDS)                               

 (i) If 0 2,α< ≤ 1 2 30, 0, 0Η > Η > Η =  and 4 0η >  then ( , , , )x y z uS s s s s=  is LAS. 

    (ii) If 2 / 3 2α< ≤ , ( ( )) 0,Disc P λ > 1 0η >  and 2 0η <  then ( , , , )x y z uS s s s s=  does not achieve Matignon’s inequalities. 

(iii) If 0 1 / 3,α< < ( ( )) 0Disc P λ < and 0, 1,2,3,4i iη > = then ( , , , )x y z uS s s s s= is LAS. In addition, if 0 2, ( ( )) 0,Disc Pα λ< ≤ <

1 3 20, 0, 0η η η< < >  and 4 0η >  then  ( , , , )x y z uS s s s s=  does not achieve Matignon’s inequalities. 
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(iv) If 0 1, ( ( )) 0, 0, 1,2,3,4iDisc P iα λ η< < < > =  and 3 1 4

1 2 2 3

1 0
η η η

η η η η
+ − = then ( , , , )x y z uS s s s s=  is LAS. For 

1 2, ( ( )) 0Disc Pα λ≤ ≤ <  and 3 1 4

1 2 2 3

1 0
η η η

η η η η
+ − =  then ( , , , )x y z uS s s s s=  does not achieve Matignon’s inequalities. 

(v) If 0 2α< ≤  then the condition 4 0η >  must necessarily be satisfied to achieve local stability of ( , , , )x y z uS s s s s= .  

 

The matrix represents the Jacobian of system (5), calculated at ( , , , )x y z uS s s s s=  is  

0

0 1
.

2 0 0

0 0 0

u x

z x

x

h s a a s

b s s
J

s c

d

 − − −    − −  =   −      

 (8) 

 

Theorem 2. The equilibrium 0(0,0,0,0)S  of the fractional-order system (5) is:  

(i) LAS inside (0,2]α ∈  when  0, 0d c< >  if 0, 0ab h> <  or 2 4h ab< , 0,ab>
22 4

arctan( );
ab h

h
α
π

−
<  (ii) Saddle point 

inside (0,1]α ∈  if ( 0ab<  and 0h ≠ ) or 0.dc>   

 

Proof. The Jacobian (8) calculated at 0(0,0,0,0)S  is 

0

0

0 0 1
( (0,0,0,0)) .

0 0 0

0 0 0

h a a

b
J S

c

d

 −      =   −      

 (9) 

Also, the Jacobian 0( (0,0,0,0))J S  has four eigenvalues 
2

1 2 3,4

4
, , .

2

h h ab
d cλ λ λ

± −
= =− =  Therefore, if 0, 0,d c< > then 

1 20, 0λ λ< <  and we have the following cases: 

 As 0, 0ab h> < , then 3,4Re( ) Rλ −∈  which imply that 0(0,0,0,0)S  is LAS (0,2].α∀ ∈   

 Furthermore, if 2 4 ,h ab<  0,ab>
22 4

arctan( ),
ab h

h
α
π

−
<  then all the eigenvalues satisfy the stability conditions (3) 

which also imply that 0(0,0,0,0)S  is LAS (0,2].α∀ ∈  These two items completes that proof of part (i).  

To prove part (ii), we recall that 0(0,0,0,0)S  is saddle if it has two different eigenvalues ,i jλ λ  such that arg( ) / 2iλ απ<  and 

arg( ) / 2.jλ απ>  So, the condition for saddle point is fulfilled if (0,1],α ∈ 0, 0ab h< ≠  since 3arg( ) 0λ =  and 4arg( )λ π= . 

Similarly, the condition for saddle point holds if (0,1],α ∈ 0dc>  which completes the proof of part (ii). □ 

Both the equilibrium points 1,2( , , ,0)
h

S b
a

χ
χ± ±  have the same characteristic polynomial. So, the Jacobian (8) computed at 

1,2( , , ,0)
h

S b
a

χ
χ± ±  yields the same characteristic equation, that is 

4 3 2 2 2( ) ( ) ( 2 ) 2 0.c d h hd hc cd hcd a adλ λ λ χ λ χ+ − − + − − + − + =  (10) 

Clearly, the following inequalities are imperative conditions for 0, 1,2,3,4i iη > = : 

, ( ) , 2 , 0.h c d h d c cd hcd abc abcd< − − > > >  (11) 

Hence, based on the above-mentioned FRH stability scheme, the following results are straightforwardly obtained. 
 

Theorem 3. The points 1,2( , , ,0)
h

S b
a

χ
χ± ±  are LAS if they fulfill any of the following statements: 

a) 0 2,α< ≤ 1 2 30, 0, 0Η > Η > Η =  and 0;abcd>  

b)  0 1 / 3,α< < ( ( )) 0Disc P λ <  and conditions (11) hold; 

c) 0 1, ( ( )) 0,Disc Pα λ< < <  conditions (11) hold and h  equals one of the following quantities: 

     
2 8

2

c c ab± −
 or 

2
22 ( )

, , 8 .
( )

abc d d c
d c c ab

d c d

+ −
≠ >

−
 

However, 1,2( , , ,0)
h

S b
a

χ
χ± ±  is not LAS if they satisfy one of the following: 

 2 / 3 2α< ≤ , ( ( )) 0,Disc P λ > h c d< −  and ( ) ;h d c cd− <    

 0 2, ( ( )) 0,Disc Pα λ< ≤ < , ( ) ,h c d h d c cd> − − > 2hcd abc<  and 0;abcd>   



704 Ahmed Ezzat Matouk, Vol. 7, No. 2, 2021 
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 2, (2021), 701-714   

 1 2, ( ( )) 0Disc Pα λ≤ ≤ <  and h  equals one of the following quantities: 

             
2 8

2

c c ab± −
 or 

2
22 ( )

, , 8 .
( )

abc d d c
d c c ab

d c d

+ −
≠ >

−
  

4. Hopf Bifurcation (HB) 

In autonomous fractional-order system (AFOS) the HB is expected to exist near its exact solution as the system’s dynamical 
parameter ς  crosses the critical value crhς  such that the following conditions hold: 

1) The AFOS, with order less than one, must have a pair of complex conjugate eigenvalues 1,2 ( ) ( ),crh crhiQλ ς ς= Ρ ±

1, 0, 0,i Q= − Ρ> ≠  and other eigenvalues are negative. 

2) There exists a function ( )ςΩ  such that ( ) 0crhςΩ =  and ( ) / | 0.
crh

d d ς ςς ς =Ω ≠  

This gives rise to some asymptotically periodic signals that tend to limit cycles owing to the fact that exact periodic solutions 
do not exist in AFOS [30].  

 

4.1 Approximation to the periodic solution around 0 (0,0,0,0)S =  

According to conditions (3), it is clear that α  has essential role in changing the stability of the fractional system. Therefore, α  

can be selected as a parameter of Hopf bifurcation (HB). Then, we define the function 2( ) / 2 arctan( 4 / ).ab h hα απΩ = − −  Thus, 

0S  changes its stability around 22arctan( 4 / ) / .crh ab h hα π= −  It is also evident that ( ) / | / 2 0.
crh

d d α αα α π=Ω = ≠  For 

3, 15, 0.6, 0.0001, 1.5a b c d h= = = =− = , the critical value for the fractional parameter is 109286746211 10 .crhα
−= ×  So, a periodic 

solution is expected near 0S  for these parameter values and 0.9289.α =  The results are depicted in Fig. 1. 

 

 

(a) (b) 

Fig. 1. The trajectory of system (5) with 3, 15, 0.6, 0.0001, 1.5, 0.9289,a b c d h α= = = = − = = converges to a limit cycle around
0
S . 

  

(a) (b) 

Fig. 2. The creation of an approximating periodic solution around
0
S of system (5) when 3, 15, 0.6, 0.0001, 1a b c d h= = = = − = and 0.95.α =  
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(a) (b) 

Fig. 3. The creation of approximating periodic solutions around the two points
1,2

( , / , ,0)S h a bχ χ= ± ± when 

3, 15, 0.6, 0.0001, 1.5a b c d h= − = = =− = and 0.60935.α =  

 
 

(a) (b) 

  

(c) (d) 

Fig. 4. Chaotic attractor of system (5) appears when 3, 15, 0.6, 0.0001, 1a b c d h= − = = =− = − and 0.95α = . 
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On the other hand, the parameter h can be considered as HB parameter by defining the function 
2( ) / 2 arctan( 4 / )h ab h hαπΩ = − − . Also at the critical value 2 22 (1 tan ( / 2)) / [1 tan ( / 2)] 0,crhh ab απ απ=± + + ≠ (0,1),α ∈  the 

transversality condition holds since ( ) / | 1 / ( tan( / 2)) 0.
crhh h crhd h dh h απ=Ω = ≠ For 3, 15, 0.6, 0.0001,a b c d= = = =−  the critical value 

for the dynamical parameter h is crhh = 91052639222 10 .−×  So, a periodic solution is expected near 0S  using the above-mentioned 

selection of parameters, 0.95α =  and 1.h =  The results are depicted in Fig. 2. Here, the related maximal Lyapunov exponent 

(MLE) is vanishing. 
 

4.2 Approximation to the periodic solution around 1,2 ( , / , ,0)S h a bχ χ= ± ±  

If ( ( )) 0,Disc P λ < where ( )P λ  is defined in Eq. (10), then 1,2S  has a pair of complex conjugate eigenvalues 1,2 iQλ = Ρ±  and two 

real eigenvalues 3 4 0, .dλ λ λ= = We define the function ( ) / 2 arctan( / ),Q Pα απΩ = −  where 
2 2 3 2 2 2 2, 2 ( ) 4 0.P Q ch abc c h a b cγ γ γ γ+ = + − − − = The equilibrium points 1,2 ( , / , ,0)S h a bχ χ= ± ±  change their stability around 

22arccos( / ) / .crhα γ π= Ρ  It is also evident that ( ) / | / 2 0.
crh

d d α αα α π=Ω = ≠  For 3, 15, 0.6, 0.0001, 1.5,a b c d h=− = = =− =  the 

critical value for the fractional parameter is 106093611980 10 .crhα
−= ×  So, a periodic solution is expected near 

1,2 ( , / , ,0)S h a bχ χ= ± ±  using these parameter values and 0.60935.α =  The results are depicted in Fig. 3. Also, the MLE here is very 

close to zero. 

 

 
 

 

(a) (b) 

 

(c) (d) 

Fig. 5. Hyperchaotic attractor of system (5) appears when 3, 15, 0.6, 0.0001, 1.5a b c d h= − = = =− = −  and 0.95.α =  
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(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 6. Lyapunov spectrum of system (5) using: (a) 15, 0.6, 0.0001, 1.5, 0.95b c d h α= = =− =− =  and varying ,a   

(b) 3, 0.6, 0.0001, 1.5, 0.95a c d h α= − = =− = − =  and varying ,b  (c) 3, 15, 0.0001, 1.5, 0.95a b d h α= − = =− = − =   and varying ,c  

(d) 3, 15, 0.6, 1.5, 0.95a b c h α= − = = =− =   and varying ,d  and (e) 3, 15, 0.6, 0.0001, 0.95a b c d α= − = = =− =  and varying .h  
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(a) (b) 

  

(c) (d) 

Fig. 7. Bifurcations diagrams of system (5) using: (a) 15, 0.6, 0.0001, 1.5, 0.95b c d h α= = =− =− =  and varying ,a   

(b) 3, 0.6, 0.0001, 1.5, 0.95a c d h α= − = =− = − =  and varying ,b  (c) 3, 15, 0.0001, 1.5, 0.95a b d h α= − = =− = − =   and varying ,c   

(d) 3, 15, 0.6, 0.0001, 0.95a b c d α= − = = =− =  and varying .h  Here 
m
x  refers to 

max
x . 

 

5. Chaotic and Hyperchaotic Attractors  

A chaotic attractor in the 4D fractional-order system (5) appears as using the parameters 

3, 15, 0.6, 0.0001, 1a b c d h=− = = =− =−  and 0.95α = . The results are depicted in Fig. 4. For these values of parameters, the 

Lyapunov exponents (LEs) ,i sΛ are computed based on Wolf’s algorithm [31] as follows; 1 20.0172, 0.0001,Λ = Λ =−

3 40.9154, 1.1197.Λ =− Λ =−  If the maximal iΛ  (MLE) is greater than zero then the system is chaotic. However, the system is 

hyperchaotic if it has two , 0.i sΛ >  Other values of the parameters 3, 15, 0.6, 0.0001, 1.5, 0.95,a b c d h α=− = = =− =− =  are used 

to generate hyperchaos in system (5). Figure 5 shows the hyperchaotic attractor of system (5) as using this set of parameters. Also, 

the corresponding ,i sΛ  are computed as follows; 1 2 3 40.7861, 0.0204, 0.0001, 3.4472.Λ = Λ = Λ =− Λ =−  

As a result, computations of Lyapunov spectrum and bifurcations diagrams are performed and illustrated in Figs. 6 and 7, 

respectively. In Fig. 6(a-e), it is clear that the largest LE (see red curve) is positive which ensures the existence of chaotic case and 

another LE (see blue curve) is very close to zero and sometimes positive (but near to zero) which ensures the existence of 

hyperchaotic case. Also, figures 7(a-d), respectively, show that the dynamics in this system exhibit sensitive dependence on initial 

conditions when [ 4, 0.3], 15, 0.6, 0.0001, 1.5, 0.95;a b c d h α∈ − − = = =− =− = 3, [2,16], 0.6, 0.0001, 1.5, 0.95;a b c d h α=− ∈ = =− =− =  

3, 15, [0,2.3], 0.0001, 1.5, 0.95a b c d h α=− = ∈ =− =− =  and 3, 15, 0.6, 0.0001, [ 2, 0.6], 0.95.a b c d h α=− = = =− ∈ − − =  

On the other hand, hyperchaos can be generated from system (5) when the fractional parameter 1.α>  This interesting 

foundation is depicted in Fig. 8 when using the parameters 3, 15, 0.6, 0.0001, 1.5a b c d h=− = = =− =− and fractional-order 

1.02.α =  

Also, more numerical simulations are performed by fixing  3, 15, 0.6, 0.0001, 1.5a b c d h=− = = =− =−  and varying the 

fractional parameter α . Therefore, more hyperchaotic attractors exist as 0.98, 0.96, 0.94, 0.92α α α α= = = =  and 0.90α =  

which are illustrated in Fig. 9. The corresponding Lyapunov spectrum verifies the existence of hyperchaos as depicted in Fig. 10 

which draw similar conclusion as pointed out in Fig. 6. 
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(a) (b) 

  

(c) (d) 

Fig. 8. Hyperchaotic attractor of system (5) appears when 3, 15, 0.6, 0.0001, 1.5a b c d h= − = = =− = −  and 1.02.α =  

 

  

(a) (b) 

Fig. 9. Hyperchaotic attractors of system (5) appear when 3, 15, 0.6, 0.0001, 1.5a b c d h= − = = =− = −  and (a) 0.98;α =  (b) 0.96;α =  (c) 

0.94;α =  (d) 0.92;α =  (e) 0.90.α =  



710 Ahmed Ezzat Matouk, Vol. 7, No. 2, 2021 
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 2, (2021), 701-714   

  

(c) (d) 

 

(e) 

Fig. 9. Continued. 

 

Fig. 10. Hyperchaos is shown via the Lyapunov spectrum of system (5) as α is varied and with 3, 15, 0.6, 0.0001a b c d= − = = = − and 1.5.h = −  
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6. Chaos Control via a Linear Feedback Gains Control (LFGC) Scheme 

We take into our consideration the fractional-order controlled system 

( ) ( ( )) ( ( )), (0,1],D t t U tαξ ξ ξ α=Ν + ∈  (12) 

where ( ) ,nt Rξ ∈ Ν  is nonlinear vector function and ( ( ))U tξ  is a linear control vector function. Suppose that S  be an origin 

equilibrium point for the uncontrolled form of system (12). Hence, we present the following lemma [22]: 
 

Lemma 1. If a Lyapunov function ( ( ))V tξ  exists for the controlled system (12) as 1,α =  then the origin equilibrium S  is at least 

LAS as 0 1α< < . 
 

6.1 Stabilizing 0 (0,0,0,0)S =  via LFGC 

For 0 (0,0,0,0)S =  and the feedback control gains (FCGs) , 1,2,3,4,ik R i+∈ = a controlled version of eqns. (5) is  

1

2

2
3

4

( ) ,

,

( ) ,

( ) .

D x au ay h k x xu

D y bx u xz k y

D z x k c z

D u d k u

α

α

α

α

= − + − −

= + − −

= − +

= −

 (13) 

So, we have 
 

Theorem 4. The hyperchaotic attractors in eqns. (13) are suppressed to 0 (0,0,0,0)S =  provided that 

2
2 2

1 4 2 2 4

2 4 3

2

4

3 4

1 1
( ( ) ) ( ) ( ( ) )

4 (4 1) 2 2 ( ) 4

,

1
,

4 4

, ,

y

z u

a a b a a b
k a b k d a k k k d

k k d c k

h

k
k d

k c k d

ε

ε ε

  + + > + − + + + + − −  − + +  
+ + +

>
−

>− >

 (14) 

                                                                                       

where , , .y z uy z uε ε ε< < <  

 

Proof. The following function is candidate for the controlled hyperchaotic system (13) to be its Lyapunov function as 1α =   

4
2

1 2 3 4
1

( , , , ) / 2,i
i

V ξ ξ ξ ξ ξ
=

=∑  (15) 

where iξ  refers to a state variable of eqns. (5), i.e. 1 2 3 4( , , , ) ( , , , )x y z uξ ξ ξ ξ ξ= = . Hence, we get 

4
1 1
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2 2 2 2
3 4 1 1 2 2 3 3 4 4 1 2 1 2 3 1 4 2 4

22 2 2

1 1 2 2 3 3 4 4 1 2

1 3 1 4 2 4
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i i
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z u
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y

D V D

h k k k c d k b a a

k h k k c d k b a

a

ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ε ε ξ ξ ξ ξ ξ ξ

ε ξ ξ ξ ξ ξ ξ ζ ζ

=

=

= − + − − − + + − + − − + +

≤ + − + − − + + − + +

+ + + =− Μ

∑

 (16) 

where 

1

2

3

4

( ) / 2 / 2 / 2

/ 2 0 1 / 2
, .

/ 2 0 0

/ 2 1 / 2 0

z w y

T

y

h k b a a

b a k
x y z u

k c

a k d

ε ε ε

ζ
ε

 − − − + − + − −     − + −   = Μ =     − +      − − − 

  

The Hermitian matrix Μ  is strictly positive if all the inequalities (14) are satisfied. Therefore, it follows that 1
1 2 3 4( , , , ) 0D V ξ ξ ξ ξ <  

for all 1 2 3 4( , , , ) (0,0,0,0)ξ ξ ξ ξ ≠  belongs to a domain 3CΨ ⊂  that contains a neighborhood of 1 2 3 4( , , , ) (0,0,0,0).ξ ξ ξ ξ =  Therefore, it is 

shown that the function V  represents a Lyapunov function for the system (13) with 1.α =  Thus, based on Lemma 1, we conclude 

that the origin equilibrium point of eqns. (13) is at least LAS when 0 1.α< <  This implies that the hyperchaotic states of eqns. (5) 

are controlled to the origin 0 (0,0,0,0).S =  □   

System (13) is integrated with 3, 15, 0.6, 0.0001, 1.5, 0.95a b c d h α=− = = =− =− =  and the FCGs 1 2 3 4165, 1k k k k= = = =  

which satisfy Theorem 4. Also, according to Fig. 5, the positive bounds , ,y z uε ε ε  are specified as 20, 40, 0.02.y z uε ε ε= = =  So, Fig. 11 

depicts the successful stabilization results. 
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Fig. 11. The trajectories of eqns. (13) tend to
0
S using 3, 15, 0.6, 0.0001, 1.5, 0.95a b c d h α= − = = = − = − = and FCGs

1 2 3 4
165, 1, 1, 1k k k k= = = = . 

 
Fig. 12. The trajectories of eqns. (17) tend to 

1
( , / , ,0)S h a bχ χ=  using 3, 15, 0.6, 0.0001, 1.5, 0.95,a b c d h α= − = = = − = − =  FCGs 

1 2 3 4
165, 1, 1, 1k k k k= = = =  and controllers (18). 

 
 

6.2 Stabilizing 1,2 ( , / , ,0)S h a bχ χ= ± ±  via LFGC 

Now, suppose that ( , , , )x y z uS s s s s′ =  represents the non-origin equilibrium points 1S  or 2.S So, we use the transformation 

1 2 3 4, ( , , , )TS y y y yξ ξ ξ′ ′ ′= − =  to translate the point ( , , , )x y z uS s s s s′ =  to the origin of coordinates. 

Then a controlled version of eqns. (5) to the equilibrium point ( , , , ),x y z uS s s s s′ =  is introduced by 

1 4 2 1 1 4 1

2 1 4 1 3 2

2
3 1 3 3

4 4 4

,

,

,

,

D y ay ay hy y y u

D y by y y y u

D y y cy u

D y dy u

α

α

α

α

′= − + − +

′= + − +

′= − +

′= +

 (17) 

where 1 2 3 4, , ,u u u u′ ′ ′ ′  are linear control functions given as  

1 1 4 1 1

2 1 3 2 2

2
3 1 3 3

4 4 4

,

,

2 ,

.

u y u x x u x

x z x x z

z x x

u

u as as s y s y s s hs k y

u bs s y s y s s k y

u cs s y s k y

u ds k y

′ = − + + + + − −

′ =− + + + −

′ = − − −
′ =− −

 (18) 

Hence, we get 
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Fig. 13. The trajectories of eqns. (17) tend to 
2

( , / , ,0)S h a bχ χ= − −  using 3, 15, 0.6, 0.0001, 1.5, 0.95,a b c d h α= − = = = − = − =  FCGs 

1 2 3 4
165, 1, 1, 1k k k k= = = =  and controllers (18). 

 

Lemma 2. The hyperchaotic states in system (17) are suppressed to 1,2 ( , / , ,0)S h a bχ χ= ± ±  if the linear controllers (18) are 

implemented provided that the conditions (14) hold. 

For the previously mentioned parameter set, FCGs and fractional order 0.95α = , the controlled system (17) is numerically 

integrated with the linear controllers (18). So, based on Lemma 2, all trajectories of eqns. (17) approach to 1,2 ( , / , ,0).S h a bχ χ= ± ±  

Therefore, Fig. 12 and Fig. 13 depict the successful stabilization results to 1S  and 2 ,S  respectively. 

7. Conclusion  

The fractional-order system given by Matouk is discussed. Local stability of the system’s three equilibria has been examined 
when the fractional (0,2]α ∈ . Approximations to the periodic solutions around the system’s three equilibria have been explored 
based on Hopf bifurcation’s conditions in fractional-order systems. Lyapunov exponents, Lyapunov spectrum and bifurcation 
diagrams have been computed for the fractional Matouk’s system and rich variety of new chaotic and hyperchaotic attractors have 
been reported within (0,2]α ∈ . Moreover, based on Lyapunov stability theory, the LFGC technique has been implemented to derive 
the hyperchaotic states of Matouk’s system with fractional orders to its three equilibrium points. Discussions on circuit realization 
of integer and fractional-order Matouk’s systems with applications to text encryption, secure communications and obtaining 
conditions for its chaotifiction are suggested points for future studies. 

Acknowledgments 

Dedicated in memory of Prof. E. Ahmed. The author thanks the reviewers and the handling editor for giving useful dis
cussion that improved the presentation in this work.  

Conflict of Interest  

The author declared no potential conflicts of interest with respect to the research, authorship, and publication of this article. 

Funding  

The author received no financial support for the research, authorship, and publication of this article. 

References 

[1] Hegazi, A.S., Ahmed, E., Matouk, A.E., The effect of Fractional Order on Synchronization of Two Fractional Order Chaotic and Hyperchaotic Systems, 
J Fract Calc Appl, 1(3), 2011, 1-15. 
[2] El-Sayed, A.M.A., Elsonbaty, A., Elsadany, A.A., Matouk, A.E., Dynamical Analysis and Circuit Simulation of a New Fractional-Order Hyperchaotic 
System and Its Discretization, Int J Bifurcat Chaos, 26, 2016, Article ID 1650222, 35 pages.                   
[3] Song, P., Zhao, H., Zhang, X., Dynamic Analysis of a Fractional Order Delayed Predator-Prey System with Harvesting, Theory Biosci, 135(1-2), 2016, 59-
72. 
[4] Matouk, A.E., Chaos Synchronization of a Fractional-Order Modified Van der Pol-Duffing System via New Linear Control, Backstepping Control and 
Takagi-Sugeno Fuzzy Approaches, Complexity, 21, 2016, 116-124. 
[5] Sayed, W.S., Fahmy, H.A.H., Rezk, A.A., Radwan, A.G., Generalized Smooth Transition Map Between Tent and Logistic Maps, Int J Bifurc Chaos, 27(1), 
2017, Article ID 1730004. 
[6] Al-khedhairi, A., Matouk, A.E., Khan, I., Chaotic Dynamics and Chaos Control for the Fractional-Order Geomagnetic Field Model, Chaos, Solitons 
Fractals 128, 2019, 390-401. 
[7] Mondal, A., Sharma, S.K., Upadhyay, R.K., Mondal, A., Firing Activities of a Fractional-Order FitzHugh-Rinzel Bursting Neuron Model and its Coupled 
Dynamics, Scientific Reports, 9, 2019, Article number 15721. 11 pages. 
[8] Chen, Y., Fiorentino, F., Negro, L.D., A Fractional Diffusion Random Laser, Scientific Reports, 9, 2019, Article number 8686. 14 pages. 
[9] Kyriakis, P., Pequito, S., Bogdan, P., On the Effects of Memory and Topology on the Controllability of Complex Dynamical Networks, Scientific Reports, 10, 



714 Ahmed Ezzat Matouk, Vol. 7, No. 2, 2021 
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 2, (2021), 701-714   

2020, Article number 17346. 13 pages. 
[10] Chu, Y-M., Ali, R., Asjad, M.I., Ahmadian, A., Senu, N., Heat Transfer Flow of Maxwell Hybrid Nanofluids Due to Pressure Gradient Into Rectangular 
Region, Scientific Reports, 10, 2020, Article number 16643. 18 pages. 
[11] Caputo, M., Linear Models of Dissipation Whose Q is Almost Frequency Independent-II, Geophys J R Astron Soc, 13, 1967, 529-539. 
[12] Matouk, A.E., Chaos, Feedback Control and Synchronization of a Fractional-Order Modified Autonomous Van der Pol-Duffing Circuit, Commun 
Nonlinear Sci Numer Simul, 16, 2011, 975-986. 
[13] Hegazi, A.S., Ahmed, E., Matouk, A.E., On Chaos Control and Synchronization of the Commensurate Fractional Order Liu System, Commun Nonlinear 
Sci Numer Simul, 18, 2013, 1193-1202. 
[14] Ahmed, E., Matouk, A.E., Complex Dynamics of Some Models of Antimicrobial Resistance on Complex Networks, Math Meth Appl Sci, Accepted 2020.  
[15] Matouk, A.E., Stability Conditions, Hyperchaos and Control in a Novel Fractional Order Hyperchaotic System, Phys Lett A, 373, 2009, 2166-2173. 
[16] Hegazi, A.S., Matouk, A.E., Dynamical Behaviors and Synchronization in the Fractional Order Hyperchaotic Chen System, Appl Math Lett, 24, 2011, 
1938-1944. 
[17] Matignon, D., Stability Results for Fractional Differential Equations with Applications to Control Processing, Proccedings of IMACS, IEEE-SMC, Lille, 
1996, 2, 963. 
[18] Ahmed, E., Elgazzar, A.S., On Fractional Order Differential Equations Model for Nonlocal Epidemics, Physica A, 379, 2007, 607-614. 
[19] Radwan, A.G., Moaddy, K., Salama, K.N., Momani, S., Hashim, I., Control and Switching Synchronization of Fractional Order Chaotic Systems Using 
Active Control Technique, J Adv Res, 5, 2014, 125. 
[20] Mahmoud, G.M., Ahmed, M.E., Abed-Elhameed, T.M., Active Control Technique of Fractional-Order Chaotic Complex Systems, Eur Phys J Plus, 131, 
2016, 200. DOI: 10.1140/epjp/i2016-16200-x. 
[21] Matouk, A.E., Dynamics and Control in a Novel Hyperchaotic System, Int J Dyn Control, 7, 2019, 241. 
[22] Al-Khedhairi, A., Matouk, A.E., Askar, S.S., Computations of Synchronisation Conditions in Some Fractional-Order Chaotic and Hyperchaotic 
Systems, Pramana–J Phys, 92, 2019, 72, 11 pages. 
[23] Matouk, A.E.M., On the Influence of Fractional Derivative on Chaos Control of a New Fractional-Order Hyperchaotic System, In Advanced Applications of 
Fractional Differential Operators to Science and Technology, pp. 115-132, IGI Global, 2020. 
[24] Matouk, A.E., Complex Dynamics in Susceptible-Infected Models for COVID-19 with Multi-Drug Resistance, Chaos Solit Fract, 140, 2020, 110257. 
[25] Matouk, A.E., Khan, I., Complex Dynamics and Control of a Novel Physical Model Using Nonlocal Fractional Differential Operator With Singular 
Kernel, J Adv Res, 24, 2020, 463-474. 
[26] He, J.H., Approximate Solution of Non Linear Differential Equations With Convolution Product Nonlinearities, Computer Meth Appl Mech Eng, 167, 
1998, 69-73. 
[27] Hartley, T.T., Lorenzo, C.F., Qammer, H.K., Chaos in a Fractional-Order Chua’s System, IEEE Trans CAS-I, 42, 1995, 485-490. 
[28] El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E., Adomian’s Decomposition Method for Solving an Intermediate Fractional Advection-Dispersion 
Equation, Computers & Mathematics with Applications, 59, 2010, 1759-1765. 
[29] Diethelm, K., Ford, N.J., Freed, A.D., A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations, Nonlinear Dynam, 
29, 2002, 3-22. 
[30] Tavazoei, M.S., Haeri, M., A Proof for Non Existence of Periodic Solutions in Time Invariant Fractional Order Systems, Automatica, 45(8), 2009, 1886-
1890. 
[31] Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A. Determining Lyapunov Exponents From a Time Series, Physica D: Nonlinear Phenomena, 16(3), 1985, 
285-317. 

ORCID iD  

Ahmed Ezzat Matouk  https://orcid.org/0000-0001-5834-4234 
 

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms 
and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) 
(http://creativecommons.org/licenses/by-nc/4.0/). 

 

How to cite this article: Matouk A.E. A Novel Fractional-Order System: Chaos, Hyperchaos and Applications to Linear Control, 
J. Appl. Comput. Mech., 7(2), 2021, 701–714. https://doi.org/10.22055/JACM.2020.35092.2561 

 


