An analytical Technique for Solving New Computational Solutions of the Modified Zakharov-Kuznetsov Equation Arising in Electrical Engineering

Shariful Islam\textsuperscript{1}, Md. Nur Alam\textsuperscript{1}, Md. Fayz-Al-Asad\textsuperscript{2}, Cemil Tunç\textsuperscript{3}\textsuperscript{,1}

\textsuperscript{1}Department of Mathematics, Pabna University of Science and Technology, Pabna- 6600, Bangladesh
\textsuperscript{2}Department of Civil Engineering, Dhaka International University, Dhaka-1212, Bangladesh
\textsuperscript{3}Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, 65080, Van, Turkey

Received October 29 2020; Revised November 30 2020; Accepted for publication December 10 2020.
Corresponding author: Cemil Tunç (cemtunc@yahoo.com)

Abstract. The modified (G'/G)-expansion method is an efficient method that has appeared in recent times for solving new computational solutions of nonlinear partial differential equations (NPDEs) arising in electrical engineering. This research has applied this process to seek novel computational results of the developed Zakharov-Kuznetsov (ZK) equation in electrical engineering. With 3D and contour graphical illustration, mathematical results explicitly exhibit the proposed algorithm’s complete honesty and high performance.

Keywords: The modified (G'/G)-expansion method, Nonlinear partial differential equations, Modified Zakharov-Kuznetsov equation, Computational solutions.

1. Introduction

NPDEs contain unknown multi-variable functions, and its derivatives have been considered fundamental in many applications to formulate precise linear and/or nonlinear phenomena from physics, mathematics, biology, engineering, and mechanical. (See, for instance, [1, 2, 3]). Studying and investigating the computational solutions of these models is considered one of many researchers’ basic interests. According to these computational solutions, many mathematicians, engineers, physicians developed some methods and still trying to find new general methods to get computational solutions of these models, for example, the variation of (G'/G)-expansion method [4], the modified (G'/G)-expansion method [5, 6, 7, 8], extended Jacobian elliptic function expansion method [9], the Jacobi elliptic ansatz method [10], Natural transform method [11], Generalized Exp-Function method [12], Residual power series method [13], the unified method [14], Solitary wave ansatz method [15], Cubic B-spline scheme [16], the G'/G-expansion method [17, 18], modified Kudryashov method [19], the new auxiliary equation method [20], the hyperbolic and exponential ansatz method [21], the ansatz (positive quadratic and exponential functions) technique [22], modified variational iteration algorithm-II [23, 24, 25], Reproducing kernel method [26], fractional iteration algorithm [27, 28], new generalized (G'/G)-expansion method [29, 30], novel (G'/G)-expansion method [31, 32] and so many [33-35].

The goal of this letter is to give the modified (G'/G)-expansion method and the Hamiltonian system [36, 37] to find computational solutions for a discrete nonlinear transmission line equation [38-40]. The above model is also recognized through the modified ZK equation that aids in explaining the device of diverse aspects [41-43] as well as explain the evolution of weakly nonlinear ion-acoustic waves in a plasma consisting of hot isothermal electrons and cold ions in the presence of a uniform magnetic field in the x-direction. NPDEs have been studied as fundamental in various applications. This model has been applied to express multiple physical phenomena, natural, engineering and mechanical. That appears because it includes previously unknown multi-variable functions and its derivatives. For example, the electrical transmission lines, which are considered a good standard of systems for investigating nonlinear excitations, behave inside nonlinear media, as designated in Figure 1. The nonlinear electrical transmission line is constructed based on periodically loading with var-actors or by arranging inductors and var-actors in a one-dimensional lattice. The nonlinear network with some couple nonlinear LC with a dispersive transmission line has consisted of this model. Many identical dispersive lines are coupled with capacitance $C$ at each node, as represented in Figure 1, where a conductor L and a nonlinear capacitor of capacitance $C(V_n)$ are in each line in the shunt branch. The scientific model which represents the discrete nonlinear transmission is given through the modified ZK equation that is expressed by Duan when he implemented the Kirchhoff law on the model, is provided by
where \( V_{pq} = V_{pq}(S) \) is the voltage so that the nonlinear charge is determined as

\[
R_{pq} = C_0 \left\{ V_{pq} + \frac{\alpha_1}{2} V_{pq}^2 + \frac{\alpha_2}{3} V_{pq}^3 \right\}
\]

where \( \alpha_1, \alpha_2 \) are arbitrary constants. Substituting equation (2) into equation (1), yields

\[
C_0 \frac{\partial^2}{\partial S^2} \left\{ V_{pq} + \frac{\alpha_1}{2} V_{pq}^2 + \frac{\alpha_2}{3} V_{pq}^3 \right\} = \frac{1}{L} \left\{ V_{pq+1} - 2V_{pq} + V_{pq-1} \right\} + C_0 \frac{\partial^2}{\partial S^2} \left\{ V_{pq+1} - 2V_{pq} + V_{pq-1} \right\}
\]

Replacing \( V_{pq}(S) = V_{\eta}(p,q,S) \), leads to

\[
C_0 \frac{\partial^2}{\partial S^2} \left\{ V + \frac{\alpha_1}{2} V^2 + \frac{\alpha_2}{3} V^3 \right\} = \frac{1}{L} \frac{\partial^2}{\partial p^2} \left\{ V + \frac{1}{12} \frac{\partial^2}{\partial p^2} \right\} + C_0 \frac{\partial^4}{\partial S^4} \left\{ V + \frac{1}{12} \frac{\partial^2}{\partial q^2} \right\}
\]

Based on the reductive perturbation technique, equation (4) is reduced to the following model:

\[
\phi_1 + f_1 \phi \partial \phi_2 + g_1 \phi \partial \phi_3 + d \phi \partial \phi_4 + g \partial \phi_5 = 0,
\]

where

\[
y = \sqrt{\alpha_1} x = \sqrt{\gamma} (p - v_1 S), t = \sqrt{\gamma} S, V(p,q,S) = \gamma \phi(x,y,t), \mu_1 = \frac{1}{LC_0}, k_1 = -\alpha_1 v_1, q = -\alpha_2 v_2, d = \frac{1}{24 \alpha_1 L_0 v_1}, g = \frac{\alpha_1}{288 \gamma L_0 v_1 C_0}.
\]

Since \( x,y,t \) are independent transformation variables. Implementing the wave transformation \( \phi = \psi(x,y,t) = \psi(\eta) \), where \( \eta = k_1 x + k_2 y + k_3 t \) and integrate the obtained ODE once with zero constant of integration, give

\[
6k_1 \psi_1 + 3f_1 k_1 \psi_2 + 2qk_1 \psi_2 + 6k_1 (d k_1 + g k_1) \psi_5 = 0.
\]

Balancing the highest order derivative term and nonlinear terms, yields \( N = 1 \).

Section 2 shows the modified \((G'/G)\)-expansion method. And the new computational solutions of the Zakharov-Kuznetsov equation in electrical engineering are expressed applying the studied method in Section 3. Section 4 presents the graphical representations of the obtained solutions. Finally, in Section 5, conclusion is described.

2. The methodology

We are considering the function

\[
P(u, u_1, u_2, u_3, u_4, u_5, \ldots) = 0,
\]

where \( u(x,t) \) is an unknown function and \( P \) is a polynomial in \( u(x,t) \).
**Step 1:** Use the transformation:

\[ u = u(x,t) = u(\eta), \eta = k(x - Vt + \eta_0), \]

where \( k \) and \( V \) are constants to be determined later and \( \eta_0 \) is an arbitrary constant. From equation (7) and equation (8), we have

\[ R(u_ku',k^2u'',-kVu',k^2V'u'',-k^2V''u'',.....) = 0 \]  

**Step 2:** Considering the ansatz method as the form,

\[ u(\eta) = \sum_{i=1}^{N} A_i H^i, \]

where \( H = (G'/G + \lambda / 2) |A_{-n}| + |A_n| \neq 0 \) and \( G = G(\eta) \) satisfies the equation

\[ G'' + \lambda G' + \gamma G = 0, \]

where \( A_1, \pm 2, \pm 3, \pm N \), \( \lambda \) and \( \gamma \) are coefficient constants later. Implementing homogeneous balance principle in equation (9), the positive integer \( N \) can be determined. From the equation (11), we find that

\[ H = r - H', \]

where \( r = (\lambda^2 - 4\mu) / 4 \) and \( r \) is calculated by \( \lambda \) and \( \mu \). So, \( H \) satisfies the equation (12), which admits five types of solutions.

- If \( r > 0 \), then we find:
  \[ H = \sqrt{r} \tanh(\sqrt{r}\eta); \]
  \[ H = \sqrt{r} \coth(\sqrt{r}\eta); \]

- If \( r = 0 \), then we find:
  \[ H = -1; \]

- If \( r < 0 \), then we find:
  \[ H = -\sqrt{-r} \tan(\sqrt{-r}\eta); \]
  \[ H = \sqrt{-r} \cot(\sqrt{-r}\eta). \]

**Step 3:** By implementing equation (10) and (9) and equation (12) and collecting all terms with the same order of \( H \) together, the left-hand side of equation (9) is converted into polynomial in \( H \). Equating each coefficient of the polynomial to zero, we can get a set of algebraic equations which can be solved to find the values of \( A_i, \lambda, \mu \). Finally, we can obtain the general solutions of equation (11) from \( A_i, \lambda, \mu \).

**3. Formulation of the new computational solutions**

Putting \( N = 1 \), then we have from (10):

\[ u(\eta) = \sum_{i=1}^{3} A_i H^i = A_{-1} H^{-1} + A_1 H^1 + A_2 H^2 \]

Using equation (13) into equation (6), collecting the coefficients of \( H \) and solving the resultant system, we find:

**Stage 1:**

\[ A_{-1} = \frac{1}{4} \frac{f_1}{m} (\pm \sqrt{\lambda^2 - 4\mu}), \quad A_2 = -\frac{1}{2} \frac{f_1}{m} A_1 = 0, \quad k_2 = \pm \sqrt{-24f_1^2f_2^2f_3^2f_4^2 - 6k_2^2f_1^2\lambda^2 - f_1^2}, \quad k_3 = 1 \frac{1}{6} \frac{f_1}{m}. \]

Using the values of stage 1 into equation (13), then we have

For \( r > 0 \), then we find:
\[ u_{11}(\eta) = \frac{1}{4m} \left( \pm \sqrt{\lambda^2 - 4\mu} \right) \frac{1}{\sqrt{\lambda^2 - 4\mu} \tanh \left( \frac{\sqrt{\lambda^2 - 4\mu}}{2} \eta \right)} - \frac{1}{2m}. \] (14)

\[ u_{12}(\eta) = \frac{1}{4m} \left( \pm \sqrt{\lambda^2 - 4\mu} \right) \frac{1}{\sqrt{\lambda^2 - 4\mu} \coth \left( \frac{\sqrt{\lambda^2 - 4\mu}}{2} \eta \right)} - \frac{1}{2m}. \] (15)

For \( r = 0 \), then we find:

\[ u_{11}(\eta) = \frac{1}{4m} \eta - \frac{1}{2m}. \] (16)

For \( r < 0 \), then we find:

\[ u_{14}(\eta) = \frac{1}{4m} \left( \pm \sqrt{\lambda^2 - 4\mu} \right) \frac{1}{\sqrt{-\lambda^2 + 4\mu} \tan \left( \frac{\sqrt{-\lambda^2 + 4\mu}}{2} \eta \right)} - \frac{1}{2m}. \] (17)

\[ u_{15}(\eta) = \frac{1}{4m} \left( \pm \sqrt{\lambda^2 - 4\mu} \right) \frac{1}{\sqrt{-\lambda^2 + 4\mu} \cot \left( \frac{\sqrt{-\lambda^2 + 4\mu}}{2} \eta \right)} - \frac{1}{2m}. \] (18)

In particular case, we choose the values of \( \lambda = 3, \mu = 1, m = 3, f_i = -1, f_2 = 1, k_i = 2, q = 1, \eta = k, x + k, y + k, t \). Then, the equations (14) and (15) produce after putting the above values, we find:

\[ u_{11}(x, y, t) = \frac{-1}{12} \left( \pm \sqrt{5} \right) \frac{\sqrt{5}}{\sqrt{2}\tanh \left( \frac{\sqrt{5}}{2} \right)} - \frac{1}{\sqrt{5}} \left[ \frac{361}{90} \right] \left[ y + \frac{t}{9} \right]. \]

\[ u_{12}(x, y, t) = \frac{-1}{12} \left( \pm \sqrt{5} \right) \frac{\sqrt{5}}{\sqrt{2}\coth \left( \frac{\sqrt{5}}{2} \right)} - \frac{1}{\sqrt{5}} \left[ \frac{361}{90} \right] \left[ y + \frac{t}{9} \right]. \]

If \( \lambda = 3, \mu = 1, m = 3, f_i = -1, f_2 = 1, k_i = 2, q = 1, \eta = k, x + k, y + k, t \). Then, the equation (16) produces after putting the above values:

\[ u_{11}(x, y, t) = -\frac{1}{12} \left[ 2x + \left( \frac{361}{90} \right) \left[ y + \frac{t}{9} \right] \right] + \frac{1}{12}. \]

If \( \lambda = 3, \mu = 1, m = 3, f_i = -1, f_2 = 1, k_i = 2, q = 1, \eta = k, x + k, y + k, t \). Then, the equations (17) and (18) produce after putting the above values:

\[ u_{14}(x, y, t) = \frac{-1}{12} \left( \pm \sqrt{3} \right) \frac{\sqrt{3}}{\sqrt{2}\tan \left( \frac{\sqrt{3}}{2} \right)} - \frac{1}{\sqrt{3}} \left[ \frac{361}{90} \right] \left[ y + \frac{t}{9} \right] + \frac{1}{6}. \]

\[ u_{15}(x, y, t) = \frac{-1}{12} \left( \pm \sqrt{3} \right) \frac{\sqrt{3}}{\sqrt{2}\cot \left( \frac{\sqrt{3}}{2} \right)} - \frac{1}{\sqrt{3}} \left[ \frac{361}{90} \right] \left[ y + \frac{t}{9} \right] + \frac{1}{6}. \]
Stage 2:

\[ A_1 = \frac{f_1}{m} \pm \frac{1}{\sqrt{-\lambda^2 + 4\mu}}, \quad A_2 = -\frac{1}{2m}, \quad A_3 = 0, \quad k_1 = \pm \frac{(24k^2f^2u^2m - 6k^2f^2\lambda^2m - f^2_t)}{(-6q\lambda^2m + 24qm)}, \quad k_2 = \frac{1}{6m} \]

Using the values of stage 2 into equation (13), then we have

For \( r > 0 \), then we find:

\[ u_{21}(\eta) = -\frac{1}{2} f_1 + \frac{f_2}{m} \left[ \frac{1}{\sqrt{-\lambda^2 + 4\mu}} \right] \left[ \frac{\sqrt{\lambda^2 - 4\mu}}{2} \tanh \frac{\sqrt{\lambda^2 - 4\mu}}{2} \right]. \]  

(19)

\[ u_{22}(\eta) = -\frac{1}{2} f_1 + \frac{f_2}{m} \left[ \frac{1}{\sqrt{-\lambda^2 + 4\mu}} \right] \left[ \frac{\sqrt{\lambda^2 - 4\mu}}{2} \coth \frac{\sqrt{\lambda^2 - 4\mu}}{2} \right]. \]  

(20)

For \( r = 0 \), then we find:

\[ u_{23}(\eta) = -\frac{1}{2} f_1 + \frac{f_2}{m} \left[ \frac{1}{\sqrt{-\lambda^2 + 4\mu}} \right] \left[ \frac{1}{\eta} \right]. \]  

(21)

For \( r < 0 \), then we find:

\[ u_{24}(\eta) = -\frac{1}{2} f_1 + \frac{f_2}{m} \left[ \frac{1}{\sqrt{-\lambda^2 + 4\mu}} \right] \left[ \frac{\sqrt{\lambda^2 - 4\mu}}{2} \tan \frac{\sqrt{\lambda^2 - 4\mu}}{2} \right]. \]  

(22)

\[ u_{25}(\eta) = -\frac{1}{2} f_1 + \frac{f_2}{m} \left[ \frac{1}{\sqrt{-\lambda^2 + 4\mu}} \right] \left[ \frac{\sqrt{\lambda^2 + 4\mu}}{2} \cot \frac{\sqrt{\lambda^2 + 4\mu}}{2} \right]. \]  

(23)

In particular case, we choose the values of \( \lambda = 3, \mu = 1, m = 3, f_1 = -1, f_2 = 1, k_1 = 2, q = 1, r = k_1 x + k_1 y + k_1 t \). Then the equations (19) and (20) produce after putting the values, we get:

\[ u_{21}(x, y, t) = \frac{1}{6} + \left[ \frac{1}{3} \pm \frac{1}{\sqrt{3}} \right] \left[ \frac{\sqrt{3}}{2} \tanh \left[ \frac{\sqrt{3}}{2} \left( 2x + \frac{\sqrt{361}}{\sqrt{90}} y + \frac{t}{9} \right) \right] \right]. \]

\[ u_{22}(x, y, t) = \frac{1}{6} - \left[ \frac{1}{3} \pm \frac{1}{\sqrt{3}} \right] \left[ \frac{\sqrt{3}}{2} \coth \left[ \frac{\sqrt{3}}{2} \left( 2x + \frac{\sqrt{361}}{\sqrt{90}} y + \frac{t}{9} \right) \right] \right]. \]

If \( \lambda = 3, \mu = 1, m = 3, f_1 = -1, f_2 = 1, k_1 = 2, q = 1, r = k_1 x + k_1 y + k_1 t \). Then the equations (22) and (23) produce after putting the values, we get:

\[ u_{24}(x, y, t) = \frac{1}{6} + \left[ \frac{1}{3} \pm \frac{1}{\sqrt{3}} \right] \left[ \frac{\sqrt{3}}{2} \tan \left[ \frac{\sqrt{3}}{2} \left( 2x + \frac{\sqrt{361}}{\sqrt{90}} y + \frac{t}{9} \right) \right] \right]. \]

\[ u_{25}(x, y, t) = \frac{1}{6} - \left[ \frac{1}{3} \pm \frac{1}{\sqrt{3}} \right] \left[ \frac{\sqrt{3}}{2} \cot \left[ \frac{\sqrt{3}}{2} \left( 2x + \frac{\sqrt{361}}{\sqrt{90}} y + \frac{t}{9} \right) \right] \right]. \]

Stage 3:

\[ A_1 = \frac{f_1}{8m} \left[ \pm \frac{1}{\sqrt{-2\lambda^2 + 8\mu}} \right], \quad A_2 = -\frac{1}{2m}, \quad A_3 = \frac{f_1}{m} \left[ \pm \frac{1}{\sqrt{-2\lambda^2 + 8\mu}} \right], \quad k_1 = \pm \sqrt{\frac{(48k^2f^2u^2m + f^2_t - 12k^2f^2\lambda^2m)}{(-12q\lambda^2m + 48qm)}}, \quad k_2 = \frac{1}{6m} \]
Using the values of stage 3 into equation (13), then we have:
For \( r > 0 \), then we find:

\[
\begin{align*}
    u_{n1}(\eta) &= \frac{\sqrt{1^2 - 4\mu}}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta, \\
    u_{n2}(\eta) &= \frac{\sqrt{1^2 - 4\mu}}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta.
\end{align*}
\]  

(24)

\[
\begin{align*}
    u_{n1}(\eta) &= \frac{1}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta, \\
    u_{n2}(\eta) &= \frac{1}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta.
\end{align*}
\]  

(25)

For \( r = 0 \), then we find:

\[
\begin{align*}
    u_{n1}(\eta) &= \frac{1}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta, \\
    u_{n2}(\eta) &= \frac{1}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta.
\end{align*}
\]  

(26)

For \( r < 0 \), then we find:

\[
\begin{align*}
    u_{n1}(\eta) &= \frac{1}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta, \\
    u_{n2}(\eta) &= \frac{1}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta.
\end{align*}
\]  

(27)

\[
\begin{align*}
    u_{n1}(\eta) &= \frac{1}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta, \\
    u_{n2}(\eta) &= \frac{1}{8\eta} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta.
\end{align*}
\]  

(28)

In particular case, we choose the values of \( \lambda = 3, \mu = 1, m = 3, f_1 = -1, f_2 = 1, k_1 = 2, q = 1, \eta = k_1 x + k_2 y + k_3 t \). Then the equations (24) and (25) produce after putting the values we get

\[
\begin{align*}
    u_{n1}(x,y,t) &= \frac{1}{2\sqrt{2}} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta, \\
    u_{n2}(x,y,t) &= \frac{1}{2\sqrt{2}} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta.
\end{align*}
\]  

(29)

\[
\begin{align*}
    u_{n1}(x,y,t) &= \frac{1}{2\sqrt{2}} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta, \\
    u_{n2}(x,y,t) &= \frac{1}{2\sqrt{2}} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta.
\end{align*}
\]  

(30)

\[
\begin{align*}
    u_{n1}(x,y,t) &= \frac{1}{2\sqrt{2}} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta, \\
    u_{n2}(x,y,t) &= \frac{1}{2\sqrt{2}} \left( \frac{1}{\eta} \right) + \sqrt{\frac{1^2 - 4\mu}{2}} \right) \tanh \left( \sqrt{\frac{1^2 - 4\mu}{2}} \right) \eta.
\end{align*}
\]  

(31)
If $\lambda = 3, \mu = 1, m = 3, f_1 = -1, f_2 = 1, k_1 = 2, q = 1, \eta = k, x + k, y + k, t$. Then the equations (27) and (28) produce after putting the values we get:

$$u_{2s}(x, y, t) = \frac{1}{24} \left( \frac{1}{\sqrt{3}} \right) \sqrt{3} \tan \left( \frac{3}{2} \right) 2x + \left( \pm \frac{\sqrt{33}}{2} \right) \tan \left( \frac{3}{2} \right) 2y + \left( \pm \frac{\sqrt{33}}{2} \right) \tan \left( \frac{3}{2} \right) 2z + \left( \pm \frac{\sqrt{33}}{2} \right) \tan \left( \frac{3}{2} \right).$$

$$u_{3s}(x, y, t) = \frac{1}{24} \left( \frac{1}{\sqrt{3}} \right) \sqrt{3} \cot \left( \frac{3}{2} \right) 2x + \left( \pm \frac{\sqrt{33}}{2} \right) \cot \left( \frac{3}{2} \right) 2y + \left( \pm \frac{\sqrt{33}}{2} \right) \cot \left( \frac{3}{2} \right) 2z + \left( \pm \frac{\sqrt{33}}{2} \right) \cot \left( \frac{3}{2} \right).$$

Stage 4:

$$A_4 = \frac{1}{16 m} \left( \frac{f_1}{\sqrt{3}} \right) - \frac{1}{16 m} \left( \frac{f_1}{\sqrt{3}} \right) \tan \left( \frac{1}{2} \right) \left( \sqrt{\left( -4 \lambda^2 + 16 \mu \right)} \right)$$

$$A_3 = -\frac{1}{16 m} f_2, A_4 = \frac{f_1}{m} \left( \pm \frac{\sqrt{1}}{\sqrt{3}} \right) \left( \sqrt{\left( -4 \lambda^2 + 16 \mu \right)} \right)$$

$$b_3 = \sqrt{\left( -96 k f_4 m^2 - f^2 - 24 k f_4 \lambda m \right) \left( -96 k m - 24 q \right) m}$$

$$b_0 = \frac{1}{6} \frac{k_4}{m}.$$

Using the values of stage 4 into equation (13), then we have

For $r > 0$, then we find:

$$u_{4s}(\eta) = \frac{1}{16 m} \left( \frac{f_1}{\sqrt{3}} \right) \left( \pm \frac{1}{\sqrt{\left( -4 \lambda^2 + 16 \mu \right)} \tan \left( \frac{1}{2} \right) \eta} \right) \pm \frac{1}{16 m} \left( \frac{f_1}{\sqrt{3}} \right) \left( \sqrt{\left( -4 \lambda^2 + 16 \mu \right)} \right) \tan \left( \frac{1}{2} \right) \eta.$$

For $r = 0$, then we find:

$$u_{4s}(\eta) = \frac{1}{16 m} \left( \frac{f_1}{\sqrt{3}} \right) \left( \pm \frac{1}{\sqrt{\left( -4 \lambda^2 + 16 \mu \right)} \tan \left( \frac{1}{2} \right) \eta} \right) \pm \frac{1}{16 m} \left( \frac{f_1}{\sqrt{3}} \right) \left( \sqrt{\left( -4 \lambda^2 + 16 \mu \right)} \right) \tan \left( \frac{1}{2} \right) \eta.$$

For $r < 0$, then we find:

$$u_{4s}(\eta) = \frac{1}{16 m} \left( \frac{f_1}{\sqrt{3}} \right) \left( \pm \frac{1}{\sqrt{\left( -4 \lambda^2 + 16 \mu \right)} \tan \left( \frac{1}{2} \right) \eta} \right) \pm \frac{1}{16 m} \left( \frac{f_1}{\sqrt{3}} \right) \left( \sqrt{\left( -4 \lambda^2 + 16 \mu \right)} \right) \tan \left( \frac{1}{2} \right) \eta.
\[
\begin{align*}
u_{\alpha}(\eta) = & \frac{1}{16} \frac{1}{m} \left( \pm \frac{1}{\sqrt{-\lambda^2 + 4\mu}} \right) \\
& \pm \frac{1}{\sqrt{-\lambda^2 + 4\mu}} \frac{f_1}{m} \left( \pm \frac{1}{\sqrt{-4\lambda^2 + 16\mu}} \right) - \frac{1}{2} \frac{f_1}{m} \left( \pm \frac{1}{\sqrt{-4\lambda^2 + 16\mu}} \right) \sqrt{-\lambda^2 + 4\mu} \frac{1}{2} \frac{f_1}{m} \left( \pm \frac{1}{\sqrt{-4\lambda^2 + 16\mu}} \right) \frac{1}{2}
\end{align*}
\]

(33)

In particular, case, we choose the values of \(\lambda = 3, \mu = 1, m = 3, f_1 = -1, f_2 = 1, k_1 = 2, q = 1, \eta = k, x + k_1, y + k_1 t\). Then the equations (29) and (30) produce after putting the values we get:

\[
u_{\alpha}(x, y, t) = \frac{-1}{48} \frac{1}{\pm \frac{1}{20}} \nu \left( \frac{\sqrt{\nu}}{2} \tanh \left( \frac{\sqrt{\nu}}{2} \sum_{2x + \pm \frac{1}{1441} - 360 \nu} + \frac{t}{9} \right) \right) + \frac{1}{6} \left( \pm \frac{1}{20} \right) \frac{\sqrt{\nu}}{2} \cosh \left( \frac{\sqrt{\nu}}{2} \sum_{2x + \pm \frac{1}{1441} - 360 \nu} + \frac{t}{9} \right) \right) \nu_{\beta}(x, y, t) = \frac{-1}{48} \frac{1}{\pm \frac{1}{20}} \nu \left( \frac{\sqrt{\nu}}{2} \coth \left( \frac{\sqrt{\nu}}{2} \sum_{2x + \pm \frac{1}{1441} - 360 \nu} + \frac{t}{9} \right) \right) + \frac{1}{6} \left( \pm \frac{1}{20} \right) \frac{\sqrt{\nu}}{2} \coth \left( \frac{\sqrt{\nu}}{2} \sum_{2x + \pm \frac{1}{1441} - 360 \nu} + \frac{t}{9} \right) \right)
\]

If \(\lambda = 3, \mu = 1, m = 3, f_1 = -1, f_2 = 1, k_1 = 2, q = 1, \eta = k, x + k_1, y + k_1 t\). Then the equations (32) and (33) produce after putting the values we get:

\[
u_{\alpha}(x, y, t) = \frac{1}{48} \frac{1}{\pm \frac{1}{12}} \nu \left( \frac{\sqrt{\nu}}{2} \tan \left( \frac{\sqrt{\nu}}{2} \sum_{2x + \pm \frac{1}{1441} - 360 \nu} + \frac{t}{9} \right) \right) + \frac{1}{6} \left( \pm \frac{1}{12} \right) \frac{\sqrt{\nu}}{2} \tan \left( \frac{\sqrt{\nu}}{2} \sum_{2x + \pm \frac{1}{1441} - 360 \nu} + \frac{t}{9} \right) \right) \nu_{\beta}(x, y, t) = \frac{1}{48} \frac{1}{\pm \frac{1}{12}} \nu \left( \frac{\sqrt{\nu}}{2} \cot \left( \frac{\sqrt{\nu}}{2} \sum_{2x + \pm \frac{1}{1441} - 360 \nu} + \frac{t}{9} \right) \right) + \frac{1}{6} \left( \pm \frac{1}{12} \right) \frac{\sqrt{\nu}}{2} \cot \left( \frac{\sqrt{\nu}}{2} \sum_{2x + \pm \frac{1}{1441} - 360 \nu} + \frac{t}{9} \right) \right)
\]

\[\text{Fig. 2. Solitary wave of } u_{\alpha}(x, y, t) \text{ in 3D and contour plots.}\]
4. Graphical representations and discussion

In this part, we establish some new computational solutions such as hyperbolic, trigonometric and rational solutions through the modified (G'/G)-expansion method. After implementing the proposed way, we got twenty new computational solutions which are representation kink-type shape and different type of periodic wave shape. To the skilled of our knowledge, implementing the modified (G'/G)-expansion method to the studied equation has not been published earlier. Some of our obtained computational
solutions are represented in the following figures 2, 3, 4, 5 and 6. These figures describe 3D as well as contour shapes. Moreover, their mechanical descriptions of the results are incorporated. Figures 2–6 illustrate the graphical depictions of some selected computational results of the problem received utilizing the studied scheme. They are pictured below. In Figure 2 shows the three-dimensional shape and contour shape of the solution \( u_1(x,y,t) \) represented as the kink-type wave shape. Finally, we show the three-dimensional shape and contour shape of the solutions of \( u_{12}(x,y,t) \), \( u_{14}(x,y,t) \), \( u_{35}(x,y,t) \) and \( u_{44}(x,y,t) \) are plotted in Figures 3, 4, 5 and 6 represented as the different type of periodic wave shapes.

Fig. 6. Solitary wave of \( u_4(x,y,t) \) in 3D and contour plots.

5. Conclusion

This article successfully implemented the modified expansion method on the modified ZK equation to display more physical energy-transportation properties in nonlinear electrical transmission lines. Using the studied method, we get many new computational solutions such as complex, rational, hyperbolic and trigonometric function solutions. Here, we try to see that the nonlinear electrical transmission line is constructed based on periodically loading with var-actors or by arranging inductors and var-actors in a one-dimensional lattice. Some sketches were plotted to illustrate the more physical properties of these models. The principal advantage of the technique implemented in this study over the basic \((G'/G)\)-expansion scheme provides further new computational solutions, including additional free parameters. All the answers obtained by the basic \((G'/G)\)-expansion process are taken via the applied approach as a particular case, and we receive some new solutions as well. The computational answers have vast significance in uncovering the inner device of physical aspects. Apart from the physical relevance, the computational solutions of nonlinear evolution equations help the numerical solvers compare their results’ accuracy and help them in the stability analysis. In the basic \((G'/G)\)-expansion method, if the order of the reduced ordinary differential equation \( (ODE) \) is less than or equal to three, it is mostly possible to find out with the help of computer algebra a useful solution to the algebraic equations resulted. Otherwise, it is generally unable to guarantee an explanation of the resulted algebraic equations; this is because the number of the equations included in the set of algebraic equations is generally more significant than the number of unknowns. But the implemented approach might be utilized less than or equal to fourth-order reduced \( ODE \) since it includes other arbitrary constants compared to the basic \((G'/G)\)-expansion method. To the most beneficial of the author’s understanding, the answers received in this study essentially have not been described in the literature. The recommended method’s advantages are uncomplicated, outspoken, consistent, and minimizing the computational work size, which gives its wide-range applicability. With all these properties, our studied way is effectiveness and influence and its strength to implement other nonlinear partial differential equations arising engineering and deserves future research.

Author Contributions

S. Islam: Conceptualization, investigation and methodology. Md. N. Alam: project administration, methodology, developed the mathematical modeling and examined the theory validation and writing—the original draft, review, and editing. Md. Fayz-Al-Asad: investigation and the experiments and analyzed the empirical results. C. Tunç: project administration, review and editing. All authors read and agreed to the published version of the manuscript.

Acknowledgments

The authors acknowledge and salute the JACM editorial board management, and thank the consequent anonymous referees’ diligent efforts and critiques that helped improve the flow, style and scientific veracity of this paper.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Funding

The authors received no financial support for the research, authorship, and publication of this article.
References


[17] Lu, D., Tariq, K.U., Osman, M.S., Baleanu, D., Younis, M., Exact solutions for the $(3 + 1)$-dimensional Kadomtsev-Petviashvili (KPM) equation and the generalized Boussinesq models and their applications, Results in Physics, 14, 2019, 102491.


Shariful Islam et al., Vol. 7, No. 2, 2021


ORCID iD
Shariful Islam  https://orcid.org/0000-0002-8236-7505
Md. Nur Alam  https://orcid.org/0000-0001-6815-678X
Md. Fayz-Al-Asad  https://orcid.org/0000-0002-1240-4761
Cemil Tunç  https://orcid.org/0000-0003-2909-8753

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).