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Abstract. In this study, an exact analytical solution for the heat conduction problem in a truncated conical shell is presented. The 
cone is made of functionally graded materials and it is considered that the material properties vary according to power-law 
functions. The general thermal boundary conditions are applied to cover a wide variety of actual applications. The results are 
successfully validated. Two examples, which are tried to mimic practical conditions, are studied using the derived solution, and a 
parametric study is done to shed light on the problem. The outcomes of this research provide useful information for 
understanding the nature of heat transfer behavior in the specific geometry of a cone. Regarding the specific applications of 
conical shells, the results can be used in the prefabrication process of these shells and tailoring the design parameter of 
functionally graded materials. 

Keywords: Exact Analytical study, Conical shell, Functionally graded material, Heat conduction, General thermal boundary 
conditions. 

1. Introduction 

Functionally graded composite material has grown and also continued to grow in popularity due to its superior applications in 
biological fields, sports commodity and many others [1-8]. This is mainly resulted from their high durability, structural efficiency, 
better serviceability, and performance in harsh condition like exposure to high thermal and stress load [1, 9, 10]. Functionally 
graded material (FGM) is definitely considered as one of the most sophisticated and diverse classes of materials [11-14]. The rate 
of enhancement and study therefore accelerated in recent years, and it is shown that FGM has been used to remedy most 
problems seen during the utilization of other materials like conventional composites [15, 16]. Many structures are composites, 
particularly natural biological ones like tendon-to-bone insertion zone which are generally comprised of several different 
constituents [1, 11, 17]. Compared to traditional composite materials [18-24], FGMs are rather different. For one thing, FGM is a 
new and advanced generation of composite materials in which different materials are merged together continuously [25]. As a 
result, a non-homogeneous microstructure with continuously varied macro properties (like thermal conductivity and density) is 
obtained [25, 26].  

Generally, FGMs are designed to handle and endure high temperature situation. Thus, studying them under complex and large 
temperature gradient is of great value [25, 27, 28]. To do so, a number of different methods such as numerical and analytical 
techniques have been utilized to conduct researches [29]. As for the former, one can refer to finite element method [30] as well as 
boundary element method [31]. In the case of materials with continuously varying property, finite element method is not 
efficient. boundary element method also requires treating singular and near-singular integrals which results in high 
computational costs [31]. However, the latter has shown promising results in the case of studying thermal characteristics of FGMs 
[2, 20, 21]. To benefit from the inherent merits of accurate results, many have utilized analytical methods to tackle various 
problems [2, 11, 32-34]. 

As for common geometries like tubes, plates [35], cylinders [36-41], and spheres [42] there are a number of studies concerning 
them. A thorough review on the different theoretical methods which are utilized for studying FGM shells and plates subjected to 
thermal and mechanical loading is done in Ref. [43]. A critical review on the different analytical and numerical methods utilized 
for analyzing heat inclusion in FGM plates is reported in [35] and it is tried to classify various solution methods. Lu et al. [33] 
presented an analytical method to acquire a closed-solution for temperature distribution in a cylinder. Hosseini et al. [44] studied 
the problem of heat transfer inside an axisymmetric cylindrical shells made of FGM by means of analytical methods. The material 
properties are assumed to be nonlinear and distributed with a power-law function through its thickness [44]. Dai et al. [36] 
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collated the research done on the cylindrical FGMs between 2005 and 2015. Amiri Delouei et al. [2] recently reported an analytical 
axisymmetric solution for heat conduction in a finite FG cylinder subjected to general boundary conditions. Also, two exact 
analytical solutions for heat conduction in FG cylindrical segments [34] and FG spherical shells [35] under general thermal 
boundary conditions are presented. Eslami et al. [45] studied the behavior of a spherical shell made of FGM when temperature 
distribution is solely a function of radius. Unlike above-mentioned outlines, for complex shells such as cones, literature is very 
narrow [46, 47]. However, due to the numerous applications of these types of shells, thermal investigation of them seems 
necessary. Some studies in this regard were restricted to mechanical buckling and free vibration [48-50].  

FGMs superior benefits, particularly for thermal loading, mainly stem from the fact that for various uses one can tailor them 
and customize their response especially for harsh thermal environment. As a result of which, the knowledge over the 
performance of FGM and the prediction of its behavior is of great importance. Authors in this study, therefore, aimed at studying 
the problem of two-dimensional (2D) heat conduction in a truncated conical shell made of FGM which is subjected to general 
thermal boundary conditions. Unfortunately, despite the widespread use of this geometry in various commercial industries, little 
research has been done in this area. The analytical approach is employed to obtain the most accurate results. Two illustrative case 
examples are also investigated to check the capability of the obtained analytical solution.  

2. Mathematical approach 

In the current study, the steady-state heat conduction in a conical shell made of FGM is investigated. Fig. 1 shows the 
coordinate system of the present geometry. Accordingly, y is in the direction of coincident on the straight line that links apex 
point of cone to its base. φ  is parallel with the base plane in the tangent direction in the lateral surface. 

It is worth mentioning that 2D heat transfer in FG structures can be orthotropic, so conduction tensor for such materials is 

diagonal in which there is only yk  and kφ  [51, 52]. Applying the balance of energy on the element presented by Fig. 1, the 

subsequent relation will be obtained: 

)1( ( ),

y

r

T T
k Rd k dy

y R T
dy d h T T dyRd c dV

y y t

φ
ε φ ε

φ
φ φ ρ∞

   ∂ ∂ ∂ ∂    ∂ ∂ ∂   
+ − − =

∂ ∂ ∂
, 

here T, c and ρ  respectively indicate the temperature distribution, heat capacity and density. The thickness of the shell is 

identified with ε . The parameter of  R (radius of cone’s annular cross section) is shown in Fig. 2. ky, k are the heat conductivity in 

y and φ  directions, respectively. Also, and ,rT ∞  is the ambient temperature. It is presumed that the thermal conductivity, ky, is 

the power functions of y as [53]: 

)2( 1yk yk α−= , 

k is equal to k2, k, k1, k2 and α  are the material constants for the ceramic material and β  is the ratio of k1 to k2. Further, α  is 

considered to express the inhomogeneity of the structure [51, 53].  
Because of the small thickness of the cone, the lump condition is considered in thickness direction. Eq. 3 is binding between R 

and y: 

)3( sinR y ϕ= . 

 

Fig. 1. Schematic illustration of the problem 
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In practice, coefficient of heat conduction is not a constant value and generally depends on the outline of the body and flow 
around it. In the case of a cone, following relation is used to describe this coefficient around the shell [54, 55]: 

)4( 2
h

y

λ
≈ , 

where λ  is a constant, and h is the heat convection coefficient. By substituting Eq. (4) into Eq. (1), the following equation is 
achieved for heat transfer conduction of conical shell: 
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By considering the following modified temperature 

)6( ,( , ) ( , ) ry T y Tφ φ ∞Θ = − . 

Steady-state conduction in the axisymmetric condition is expressed as: 
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or 
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The exploited general linear boundary conditions are as follows: 
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w1() and w2() are known as the arbitrary functions. The constants δ  and µ  take the similar dimension as the coefficient of 

convection, and the constants ε  and ν  take the similar dimension as the coefficient of conduction.  

3. Analytical solution 

The following equation is obtained by introducing Eq. (2) into Eq. (8): 
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Two independent functions can be used to define the temperature distribution: 

)12( ( , ) ( ) ( )y yφ φΘ = Λ Γ , 

Introducing Eq. (12) to Eq. (11):  
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where ∆  is a constant and considered to be an eigenvalue for heat transfer equation. Applying the separation of variables (SOV) 
technique to solve Eq. (11) and applying homogeneous boundary conditions, the following equations in the φ  direction are 

obtained: 

)14( 2( ) ( ) 0φ φ′′Γ +∆ Γ = , 

)15( (0) (2 )πΓ = Γ , 

)16( 
(0) (2 )π

φ φ

∂Γ ∂Γ
=

∂ ∂
. 

General answer for Eq. (14) is as: 

)17( ( ) cos( ) sin( )n n n na bφ φ φΓ = ∆ + ∆ , 

Substituting Eq. (17) on boundary conditions (Eqs. (15) and (16)), the following equations are found: 

)18a( ( )cos(2 ) 1 sin(2 ) 0n n n na bπ π∆ − + ∆ = , 
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)18b( ( )sin(2 ) cos(2 ) 1 0n n n na bπ π∆ − ∆ − = . 

As known, these equations are homogeneous. Consequently, related answers are zero unless they are linear dependent. In 
other words, if the determinant of coefficients in Eqs. (18) is zero then answers are available. 

)19( ( )2 2cos(2 ) 1 sin (2 ) 0n nπ π∆ − + ∆ = . 

By solving trigonometric Eq. (19), eigenvalues will be achieved: 

)20( 0,1,2,...n n n∆ = = . 

The following relations are resulted from Eq. (13) and corresponding boundary conditions in the y direction (Eqs. (9) and (10)): 
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The general solution of this equation will be as: 
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The temperature distribution is achieved by the product of independent functions: 
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Lastly, by introducing the inner and outer boundary conditions in y direction, the unknown coefficients will be achieved. 
Introducing the temperature distribution of Eq. (23) into equations of 9 and 10, the following equations will be obtained:  
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In continue, the following equations via the existing relations for orthogonal functions will be constructed: 
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The unknown coefficients of An, Bn, Cn and Dn can be achieved as follows: 

)29a( 
0,1 0 0,2 0

0

0 0 0 0

F Q F N
A

P N M Q

−
=−

−
, 

)29b( 
0,1 0 0,2 0

0

0 0 0 0

F P F M
B

P N M Q

−
=

−
, 

)29c( 
cos,1 cos,2n n

n

n n n n

F Q F N
A

P N M Q

−
=−

−
, 

)29d( 
cos,1 cos,2n n

n

n n n n

F P F M
B

P N M Q

−
=

−
, 

)29e( 
sin,1 sin,2n n

n

n n n n

F Q F N
C

P N M Q

−
=−

−
, 

)29f( 
sin,1 sin,2n n

n

n n n n

F P F M
D

P N M Q

−
=

−
, 

4. Results and discussion 

The solution developed in the previous section is now hired here to assess the temperature distribution for two illustrative 
cases. It is tried to capture the practical conditions. Parameters used for the two aforementioned cases are shown in Table 1. The 
schematic illustrations of two cases along with applied thermal boundary conditions for case 1 and 2 are plotted in Fig. 2 and 3, 
respectively. 
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Table 1. Parameters used for the two aforementioned cases 

 
Parameter Case 1 Case 2 

1 ϕ  / 9π  / 9π  

2 ε [m] 0.01 0.01 

3 a [m] 0.1 0.1 

4 b [m] 1 1 

5 δ [W/m2K] 10 10 

6 ,y
T ∞ [K] 200 250 

4.1. Verification test 

Before proceeding, the credibility of the obtained solution is checked against acquired numerical results. Finite element 
method (FEM) is used to numerically solve the problem. In order to assess mesh independence, four various grid numbers, namely 
56400, 98900, 134800, and 278600, are used. Out of many, 134800 elements is chosen to satisfy the computational accuracy and 
avoid computational costs.  

Both first and second cases are tested and 21357 / , 1, 2 /W m W Kη β λ= = =  are selected for the simulation purpose. 
Temperature distribution for two different values of α  (2 and 3) in y direction is considered. As can be seen from Fig. 4 a and b, 
there is a good match among the results which shows the solution is capable of adequately predicting the distribution of 
temperature. 

 

 

Fig. 2. Geometry and thermal boundary conditions of case 1 

 

Fig. 3. Geometry and thermal boundary conditions of case 2 
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a b 

Fig. 4. Comparison of temperature distribution via numerical and analytical approaches in y direction for 21357 / , 1, 2 /W m W Kη β λ= = = , and 

four values of α  for a) case 1 and b) case 2 

 

Fig. 5. Temperature distribution in y direction at 21357 / , 1, 2 /W m W Kη β λ= = =  and (a) 1α = , (b) 2α = , (c) 3α = , (d) 4α =  for case 1. 

4.2. Parametric study 

4.2.1. Case one 

As for the case 1 (Fig. 2 and Table. 1), the impact of different parameters like α , η , β  and λ  on the distribution of 

temperature in y and φ  directions are investigated. As for the boundary conditions, w1 and w2 are considered to be 300 K and 

,(2 sin ) yTη φ δ ∞+ + , respectively. Figure 5 shows temperature distribution in y direction at 21357 / , 1, 2 /W m W Kη β λ= = =  for 

four different values of α  ranging from 1 to 4. Figure 6 also further reveals its impact using contours of temperature distribution 

in both y and φ  directions. As can be seen, there is a wide disparity between that of α  when equals 1 compared to other values. 

As it increases, the difference decreases and it is also seen that for α = 4, the structure maintains almost the same level 

throughout the span. 

The impact of η  is presented by Figs. 7 and 8 which respectively indicate the profiles and contours of temperature 

distribution in y direction at 2, 1, 2 /W Kα β λ= = =  for different values of η  (340, 680, 1010, 1357 W/m2). As expected, with an 

increase in the values of η , temperature will enhance. It is also seen that it leads to a state where structure tries to reach a 

plateau at the end.  

Figures 9-12 are responsible for the influence of β  and λ . Temperature distribution in y direction at 1,α = 21357 / ,W mη =  
2 /W Kλ =  for β = 0.8, 0.9, 1, and 1.1 along with its contours of temperature distribution (in both y and φ  directions) are 

displayed in Figs. 9 and 10, respectively. As noted above, β  is defined as the ratio of k1 to k2. From figures one can deduce that 

there is an equal difference among the figure for various values of conductivity ratio, and also all the lines show almost the same 

behavior. For instance, for β = 0.8 after hitting a low of about 244.3 K, the temperature distribution starts reversing its manner and 

it increases gradually. 
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Fig. 6. Temperature (K) distribution contours in y and φ  directions at 21357 / , 1, 2 /W m W Kη β λ= = =  and (a) 1α = , (b) 2α = , (c) 3α = , (d) 

4α =  for case 1. 

 

Fig. 7. Temperature distribution in y direction at 2, 1, 2 /W Kα β λ= = = and (a) 2340 /W mη = , (b) 2680 /W mη = , (c) 21010 /W mη = , (d) 

21357 /W mη =  for case 1. 

(a)  (b)  

 

 

 
 

Fig. 8. Temperature (K) distribution contours in y and φ  directions at 2, 1, 2 /W Kα β λ= = = and (a) 2340 /W mη = , (b) 2680 /W mη = , (c) 

21010 /W mη = , (d) 21357 /W mη =  for case 1. 
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Fig. 8. Temperature (K) distribution contours in y and φ  directions at 2, 1, 2 /W Kα β λ= = = and (a) 2340 /W mη = , (b) 2680 /W mη = , (c) 

21010 /W mη = , (d) 21357 /W mη =  for case 1. 

 

 

Fig. 9. Temperature distribution in y direction at 21, 1357 / , 2 /W m W Kα η λ= = =  and (a) 0.8β = , (b) 0.9β = , (c) 1β = , (d) 1.1β =  for case 1. 

 

(a)  (b)  

 

 

  

(c)  (d)  

    

 

Fig. 10. Temperature (K) distribution contours in y and φ  directions at 21, 1357 / , 2 /W m W Kα η λ= = =  and (a) 0.8β = , (b) 0.9β = , (c) 1β = , (d) 

1.1β = for case 1. 

 

On the other hand, from Figs. 11 and 12, the impact of λ  on structure’s thermal behavior can be seen. Specifically, 
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temperature distribution in y and φ  directions at 22, 1357 / , 1W mα η β= = =  and for four values of λ  (1, 2, 3, and 4 W/K) is 

assessed. As in figures, there is a rather considerable difference among the obtained results for different values of λ . While in the 

case of λ = 4 W/K, the structure keeps the same value throughout y direction, for other values of that (1, 2, and 3 W/K) 

temperature drops. This puts emphasis on the importance of the convection current around the body. 

4.2.2. Case two 

In the second case (Fig. 3 and Table. 1), like the previous section, the effect of some parameters including , ,α β δ  and λ  are 

considered to investigate temperature distribution. As for the boundary conditions, w1 and w2 are considered to be 200(1 cos )φ+  

and δ Ty,, respectively. Temperature distribution in y and φ  directions at 210 / , 1, 2 /W m K W Kδ β λ= = =  and different values 

of material constant ranging from 1 to 4 is investigated via Figs. 13 and 14. It can be seen that an increase in the value of material 

constant which defines material inhomogeneity will elevate thermal behavior of the cone. It also can be found out that for the 

lowest considered value of α , temperature distribution after reaching a minimum (almost 120 K) enhances rather significantly. As 

for the other values of α , the minimum values increase. 

 

Fig. 11. Temperature distribution in y direction at 22, 1357 / , 1W mα η β= = =  and (a) 1 /W Kλ = , (b) 2 /W Kλ = , (c) 3 /W Kλ = , (d) 4 /W Kλ =  

for case 1. 
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(c)  (d)  

 

 

 

 

 

Fig. 12. Temperature (K) distribution contours in y and φ  directions at 22, 1357 / , 1W mα η β= = =  and (a) 1 /W Kλ = , (b) 2 /W Kλ = , (c) 

3 /W Kλ = , (d) 4 /W Kλ =  for case1. 
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Fig. 13. Temperature distribution in y direction at 210 / , 1, 2 /W m K W Kδ β λ= = =  and (a) 1α = , (b) 2α = , (c) 3α = , (d) 4α =  for case 2. 

 

(a)  (b)  

 

 

 

 

(c)  (d)  

 

 

 

 

 

Fig. 14. Temperature (K) distribution contours in y and φ  directions at 210 / , 1, 2 /W m K W Kδ β λ= = =  and (a) 1α = , (b) 2α = , (c) 3α = , (d) 

4α = for case 2. 

 

To further analyze, the effect of δ  on the temperature distribution is also examined at 1, 1, 2 /W Kα β λ= = =  in both y and 

φ  directions (Figs. 15 and 16). It is seen that there is no significant difference in the figure for temperature between different 

values of δ  until y = 0.25m. After which, the difference between them enhances. All the lines show somewhat the same manner. 

This can be seen from the contours of temperature distribution which is plotted in Fig. 16. 

In addition, in both aforementioned directions, temperature distribution on the cone for different values of β  at 1,α =  
210 / , 3 /W m K W Kδ λ= =  as well as its corresponding contours is demonstrated in Figs. 17 and 18. At first, the quantity of 

temperature for the highest considered value, 1β = , was higher than other values. Afterwards, it was outstripped by β =0.1, and 

then the other values. Further, it is seen that the quantity of the temperature for 0.1β =  after reaching the low of about 12 K at    

y = 0.4m, rises significantly so reaches its primary value. 

Last but not least, temperature distribution at 21, 10 / , 1W m Kα δ β= = =  in both y and φ  directions for various values of λ  

are discussed through Figs. 19 and 20.  With an increase in the values of λ  from 1 to 4, temperature as well as the difference 

among the lines reduces. 
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Fig. 15. Temperature distribution in y direction at 1, 1, 2 /W Kα β λ= = =  and (a) 28 /W m Kδ = , (b) 210 /W m Kδ = , (c) 212 /W m Kδ = , (d) 

214 /W m Kδ =  for case 2. 

(a)  (b)  

 

 

 

 

(c)  (d)  

 

 

 

 

Fig. 16. Temperature (K) distribution contours in y and φ  directions at 1, 1, 2 /W Kα β λ= = =  and (a) 28 /W m Kδ = , (b) 210 /W m Kδ = , (c) 

212 /W m Kδ = , (d) 214 /W m Kδ =  for case 2. 
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Fig. 17. Temperature distribution in y direction at 21, 10 / , 3 /W m K W Kα δ λ= = =  and (a) 0.1β = , (b) 0.5β = , (c) 0.8β = , (d) 1β =  for case 2. 

(a)  (b)  

 

 

 

 

(c)  (d)  

 

 

 

 

 

Fig. 18. Temperature (K) distribution contours in y and φ  directions at 21, 10 / , 3 /W m K W Kα δ λ= = =  and (a) 0.1β = , (b) 0.5β = , (c) 0.8β = , (d) 

1β =  for case 2. 

  

 

Fig. 19. Temperature distribution in y direction at 21, 10 / , 1W m Kα δ β= = =  and (a) 1 /W Kλ = , (b) 2 /W Kλ = , (c) 3 /W Kλ = , (d) 4 /W Kλ =  

for case 2. 

 

(a)  (b)  

 

 

 

 

    

Fig. 20. Temperature (K) distribution contours in y and φ  directions at 21, 10 / , 1W m Kα δ β= = =  and (a 1 /W Kλ = , (b) 2 /W Kλ = ,                   

(c) 3 /W Kλ = ,  (d) 4 /W Kλ =  for case 2. 



An Exact Analytical Solution for Heat Conduction in a Functionally Graded Conical Shell  
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 2, (2023), 302-317 

315 

(c)  (d)  

 

 

 

 

 

Fig. 20. Temperature (K) distribution contours in y and φ  directions at 21, 10 / , 1W m Kα δ β= = =  and (a 1 /W Kλ = , (b) 2 /W Kλ = ,                    

(c) 3 /W Kλ = ,  (d) 4 /W Kλ =  for case 2. 

5. Conclusion 

The study presents an analytical solution for the two-dimensional conduction analysis of functionally graded conical shell 
with power-law variations. The general thermal conditions are applied to the functionally graded conical body to study a wide 
range of problems. After properly verifying the results against numerical data, two case examples which are tried to capture the 
practical conditions and subjected to a number of different boundary conditions are examined in details. The impacts of various 
parameters like material constant, conductivity ratio, and heat flux on the temperature distribution are studied. The presented 
analytical solution can help researchers to broaden the scope of research in this field in three ways. 1) The results of the proposed 
general solution can help in the preconstruction process of conical shells made of functionally graded materials. 2) The results of 
this analytical solution can be useful for the verification of more complex numerical studies in this field. 3) The current solution 
which is presented here can help to better understand the mechanisms of heat transfer in FGMs with specific cone geometry. 
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Nomenclature 

An, Bn, Cn, Dn The coefficients of Bessel series w1( φ ), w2( φ ) Arbitrary function of φ (W/m2) 

A0, B0 The constant coefficient zeroth order y, φ  Coordinate system 

a Inner radius (m) ,µ δ  Constant coefficient (W/m2K) 

b Outer radius (m) ,υ ε  Constant coefficient (W/mK) 

c Specific heat capacity (J/Kg K) β  Conduction coefficients ratio 

FGM Functionally graded material ρ  Density (Kg/m3) 

h Convective coefficient of heat transfer (W/m2K) η  Heat flux (W/m2) 

ky, k The heat conductivity coefficients in y and φ directions (W/mK) ( )yΛ  Independent function of y 

k1, k2 The conduction coefficients in y and φ directions (W/mK) ( )φΓ  Independent function of φ  

R Radius of cone’s annular cross section (m) α  Material constant coefficient 

T Temperature distribution (K) 
n
∆  Separation constant 

Tr, The ambient temperature (K)   
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