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Abstract. The present research discusses a generalized thermoelastic model with variable thermal material properties and 
derivatives based on memory. Based on this new model, an infinitely long homogeneous, isotropic elastic body with a cylindrical 
hole is analyzed for thermal behavior analysis. The governing equations are deduced by the application of the principle of 
memory-dependent derivatives and the generalized law on heat conduction. In a numerical form, the governing differential 
equations are solved utilizing the Laplace transform technique. Numerical calculations are shown in graphs to explain the effects 
of the thermal variable material properties and memory dependent derivatives. In addition, the response of the cylindrical hole is 
studied through the effects of many parameters such as time delay, the kernel function and boundary conditions. The results 
obtained with those from previous literature are finally verified. 
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1. Introduction 

Thermoelasticity is a discipline of multi-physics that examines the relationship between thermal and deformation fields. This 
requires thermal conductivity, vibration, strain and stress induced by the heat flow. The various engineering sciences have been 
affected by thermoelasticity. Significant progress has led to various difficulties in the field of aircraft and computer construction, 
in which thermal stresses are of prime importance. Thermoelasticity makes it possible, through the action of time dependent 
forces and heat resources, to identify the stresses generated by the temperature field and measure the temperature dispersion.  

Classical uncoupled thermoelectricity theory (UCTE) is considered to depend on Fourier 's thermal conduction law and does 
not address physical structures and materials, such as amorphous media, glassy, human-made porous materials, polymers and 
colloids. To prevent this problem, Biot [1] has implemented a Coupled Thermoelasticity Theory (CTE) which predicts an infinite 
speed for heat spread in accordance with the nature of the parabolic heat equation. Cattaneo [2] suggested the generalization of 
classical Fourier law in terms of heat conduction in terms of relaxation time in order to obtain the limited velocity of heat 
propagation waves. 
    In order to overcome the paradox of the infinite speed of the thermal waves inherent in UCTE and CTE models, both Lord and 
Shulman [3], Green and Lindsay [4] and Green and Naghdy [5-7] and Tzou [8] formulated generalized thermoelasticity models. 
Also, Tzou in [9] implemented two different time delays, respectively, in temperature gradient and heat flow in the classical 
Fourier law, which are called phase lags.  

 For two decades, numerous researchers have shown that the fractional-order derivatives models have many applications, for 
example in the viscoelastic mechanics, power-law phenomenon in fluid, complex network, polarization, colored noise, electrode-
electrolyte and fractional kinetics, boundary layer effects, and electromagnetic waves.  

In the analysis of viscoelastic materials and proofs of the relation between the linear and fractional derivatives theories, 
Caputo and Mainardi [10-11] found that the practical results are inconsistent. In [12], the author introduced a new mathematical 
framework, under proposed heat conduction of fractional order by the corresponding theorem of uniqueness, of fractional general 
thermoelasticity. Povstenko [13] investigated Cattaneo's generalized model with time-fractional derivatives and developed the 
thermal stress model. Some of these studies also examined in [14-16] with general theories on thermoelasticity with fractional 
derivatives. Abouelregal [17] has developed a new model of generalized thermoelasticity based on time-fractional multi-
relaxation depending on fractional calculations and the expansions of the Taylor series [17].  

Likewise,  thermoelastic response of a rotating hollow cylinder based on generalized model with higher order derivatives and 
phase-lags has been investigated in [18]. Recently, Abouelregal et al. [19] proposed a generalized thermoelastic-diffusion model 
with higher-order fractional time-derivatives and four-phase-lags. Several studies related to the theory of thermal elasticity using 
different beam theories have also been investigated [20-26]. 
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In the last few decades, it has become evident that the next state of the physical system depends not only on its present state 
but also on all its historical ones. The definition of memory-dependent derivatives was introduced in [27] by Wang and Li. This 
new kind of derivative was a valuable mathematics resource and was a necessary link to other physical difficulties. As of now, 
memory-dependent derivatives (MDD) are a crucial mathematical tool in explaining many of the real world's phenomenon 
parallel fractional ordered derivatives. In the Lord-Shulman (LS) generalized theory of thermoelasticity in heat flow speeds, Yu et 
al. [28] have used the Memory-dependent derivatives (MDD). Several recent findings are reviewed in [29-35] on the general theory 
of thermoelasticity with MDD.  

Thermal conductivity is a significant material parameter that is usually regarded as constant. Nevertheless, several 
experimental and theoretical investigations have shown that thermal conductivity is strongly related to changes in temperature 
[36]. In the case of complex high-temperature or high-energy thermal conductivity, the material properties such as elastic 
modulus, specific heat, and thermal conductivity are no longer constants. The linear or exponential functions of the temperature 
are assumed in this case [37]. Li et al. [38] have developed the generalized theory of bio-thermoelasticity based on the generalized 
thermoelastic calculus of modified fractional-order and in the case of varying thermal material properties. Godfrey [39] found that 
the thermal conductivity of ceramic is decreased by 45% if the temperature rises from 1°C to 400°C which indicates the presence 
of properties of temperature-dependent thermal materials. Abouelregal [40] addressed a one-dimensional thermoelastic problem 
based on the fractional-order theory, with a semi-infinite piezoelectric medium with temperature-dependent properties.  

To date, few studies have been conducted to analyze thermoelastic problems with memory-dependent derivative and 
temperature-dependent properties. The present paper is devoted to investigating a theory with variable thermal material 
properties and derivatives based on memory. Under this model and in limited cases, different traditional and generalized 
thermoelasticity models can be derived. As an application of this model, we study an isotropic homogeneous cylindrical hole 
whose inner surface is traction free and subjected to a thermal shock. In addition, the analytical solution for various physical 
fields, using the Laplace transform procedure, is obtained. We depicted our numerical calculations in figures to explain the 
influences of the variable thermal material properties and the memory-dependent derivative. Finally, the results obtained in the 
previous literature are examined in detail and confirmed. 

2. Thermoelastic Model with Memory-dependent Derivative 

The classical Fourier’s law of heat conduction is given by [1] 

θ= − ∇( , ) ( , ).q x t K x t
�

 (1) 

Here, ( , )q x t
�

 denotes the heat flux vector, θ = − 0T T  represents the varying temperature in which T  is the absolute 

temperature above the reference temperature 0T  and K  denotes the thermal conductivity. Cattaneo [2] has proposed a thermal 

wave model of heat transfer based on single phase lagging constitutive relation: 

τ θ+ = − ∇( , ) ( , ),q x t K x t
�

 (2) 

where τ  is the phase lag of the heat flux. Furthermore, a generalized single-phase-lag model has been introduced by Lord and 
Shulman [3] 

τ θ
 ∂  + = − ∇  ∂
1 .q K

t

�

 (3) 

In fractional order thermoelasticity theory, Sherief et al. [36] investigated a heat conduction equation as follows  

α

α
τ θ

 ∂  + = − ∇   ∂ 
1 ,q K

t

�
 (4) 

where α α∂ ∂/ t  is the Caputo derivative (see [37]). 
    Yu et al. [27] incorporated the memory-dependent derivatives (MDD) into the generalized thermoelasticity theory of Lord-
Shulman (LS) in the rate of heat flux to show the dependence on memory in the following way:  

( )ωτ θ+ = − ∇(1)1 ,D q K
�

 (5) 

where ω

(1)D  is the memory dependent derivatives (MDD) of first order defined by 

ω ζ
ω
κ ζ ζ ζ

ω −
′= −∫(1) 1

( , ) ( ) ( , ) ,
t

t
D f r t t f r d  (6) 

ω > 0  being the time delay and κ ζ−( )t  is the kernel function which can be chosen freely with κ ζ≤ − ≤0 ( ) 1t  for [ ]ζ ω∈ − ,t t . 

This form of MDD therefore gives a greater probability of capturing the material response.  
The energy balance equation without heat sources can be written as 

θ
ρ γ

∂ ∂
+ = −

∂ ∂0 (div ) div ,EC T u q
t t

� �
 (7) 

where EC  denotes the specific heat at constant strain, γ λ µ α= +(3 2 ) t  represents the stress temperature modulus, in which αt  

denotes the thermal expansion coefficient λ µ,  are Lamé’s constants, u
�

 is the displacement vector, ρ  is the density of the 

medium. 
By taking the divergence of Eq. (5), using Eq. (7), we obtain the following  

[ ]ω

θ
τ ρ γ θ θ

 ∂ ∂
 + + = − ∇
 ∂ ∂ 

0(1 ) (div ) div ( ) .ED C T u K
t t

�
 (8) 
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The thermal material properties of most materials change with a rise in temperature θ  and such increment temperature 
dependence is constant in a certain temperature range [43,44]. In conjunction with temperature increase, the following linear 
relations are used for the parameters K and EC .  

θ θ θ θ= = + = = +0 1 2 1( ) (1 ), ( ) (1 ),E EK K k k C C k k  (9) 

where 0k  is the value of the thermal conductivity when it independent of temperature and 1k  is a non-positive constant. The 

thermal diffusivity is defined by ρ= / ,EN K C then we have 

θ
ρ θ =

( )
( ) .E

K
C

N
 (10) 

In this case, we use the mapping (Kirchhoff’s transformation):  

θ

ϕ = ∫0
0

1
: ( ) .K x dx
k

 (11) 

Applying the operator ∇  to both sides of Eq. (11), we have 

ϕ θ θ∇ = ∇0 ( ) .k K  (12) 

Again, applying the divergence operator to the above equation, we get 

[ ]ϕ θ θ∇ = ∇2
0 div ( ) .k K  (13) 

In addition, we differentiate both sides of Eq. (12) with respect to time, one gets 

ϕ θ∂ ∂
=

∂ ∂0 .k K
t t

 (14) 

In view of Kirchhoff’s transformation (11) and using Eqs. (13) and (14), Eq. (8) becomes  

ω

ϕ
τ γ ϕ

 ∂ ∂ + + = ∇
 ∂ ∂ 

20
0 0(1 ) (div ) ,

k
D T u k

N t t

�

(15) 

where ϕ θ θ= + 2
1 / 2k . Once ϕ  is known θ  is given by  

θ ϕ = + −  1

1

1
2 1 1 .k

k
 (16) 

Lastly, more fundamental equations of motion, constitutive equations and strain-displacement relationships for a homogeneous 
isotropic thermoelastic solid are given by  

[ ]σ µ δ λ γθ= + −2 ,kkij ij ije e  (17) 

= +, ,2 ,ij j i i je u u  (18) 

σ ρ+ =, ,ij i i iF uɺɺ  (19) 

where ρ  is the mass density, iF  is the component of the external forces. 

The above system is a fully hyperbolic system in the sense that both equations of motion (19) and the equation of heat 

transport (17) present in the system are of a hyperbolic-type. 
Now, Eq. (15) together with Eqs. (9) and (10) describe our generalized thermoelastic model with variable thermal material 

properties and memory-dependent derivative and denoted by MVLS. 
In common practice, the kernel function is considered as the following: 

κ
 − = +   

( , ) 1 .
b

p t
t p

a
 (20) 

In this paper we use the following memory kernel κ ξ−( )t  which investigated by Ezzat et al [40]: 

ξ ξ
κ ξ ξ

τ τ τ

ξ

τ

 = =− −− = − − + = − = =  −  − = =  

2

2

2

2

1, if 0,

( )2 1
( ) : 1 ( ) 1 , if 1, ,

2

1 , if 1,

a b

a tb t
t t a b

t
a b

 (21) 

where ,a b  are constants.  
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Fig. 1. Schematic diagram for the infinitely cylindrical hole. 

3. Maxwell’s laws 
In the case of slow-moving media, the linear equations of electrodynamics homogeneous, electrically and thermally perfect 

conducting elastic solid are: 

ε µ µ
 ∂ ∂ ∂  = ∇× − ∇× = − = − × ∇⋅ =  ∂ ∂  ∂ 

0 0 0, , , 0,
E h u

J h E E H h
t t t

�� �
� �� � � ��

 (22) 

where E
�

 induced electric field, J
�

 refers to current density, µ0  is magnetic permeability, h
�

 is induced magnetic field and H
��

 

is a magnetic field. 
Maxwell's stress τij  can be written as following 

τ µ δ = + −  0
.k kij i j j i ijHh H h H h  (23) 

For a perfect conductor, The Lorentz force iF  induced by the magnetic field H
��

 can be described as 

( )µ= ×
0

.i
i

F J H
� ��

 (24) 

4. Formulation of the problem 
Let us study an infinitely long homogeneous, isotropic elastic body with a cylindrical hole of radius, as showed in Figure 1. 

We suppose that the internal surface of the hole is traction free and subjected to a thermal shock with an axial magnetic field 

= 0(0,0, )H H
��

 effect parallel to the �-axis direction. Also, there are no heat sources or external body forces acting in the medium. 

Further, we take the cylindrical coordinates ξ( , , )r z  where the �-axis and the axis of the cylinder are identical. According to 

symmetry, all the state functions can be expressed as functions of radial distance r  and t .  
  The displacement vector can be written as 

= ( ( , ),0,0).u u r t
�

 (25) 

The strain-displacement relations 

ξξ

ξ ξ

∂
= = =

∂
= = =

, , 0,

0.

rr zz

rz r z

u u
e e e

r r
e e e

 (26) 

The non-vanishing constitutive equations of the generalized Hooke's law can be written as 

ξξ

σ µ λ γθ

σ µ λ γθ

σ λ γθ

∂
= + −

∂

= + −

= −

2 ,

2 ,

,

rr

zz

u
e

r
u

e
r

e

 (27) 

where 

∂ ∂
= = +

∂ ∂
( )1

.
ru u u

e
r r r r

 (28) 

Then the equation of motion with a magnetic field can be expressed as 

ξξ

σ
σ σ ρ

∂ ∂
+ − + =

∂ ∂

2

2

1
( ) .rr

rr r

u
F

r r t
 (29) 
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As the constant magnetic field strength 0H  acts in the direction of the z-axis, we consider the magnetic field = 0(0,0, )H H
��

. Then 

from Eq. (22), we have 

µ ε µ
  ∂ ∂ ∂  = = −    ∂ ∂ ∂ 

2

0 0 0 0 0 2
0, ,0 , 0, ,0 .

u e u
E H J H

r r t

� �
 (30) 

From which and using Eqs. (23), (24), we get 

µ ε µ τ µ
 ∂ ∂  = − =  ∂ ∂ 

2
2 2

0 0 0 0 0 02
, .r rr

e u
F H H e

r t
 (31) 

Now, from Eqs. (27), (31) and Eq. (29), we obtain 

θ
λ µ µ γ ρ ε µ

∂ ∂ ∂
+ + − = +

∂ ∂ ∂

2
2 2 2

0 0 0 0 0 2
( 2 ) ( ) .

e u
H H

r r t
 (32) 

Applying the operator 
∂
∂

1
( )r

r r
 affected on Eq. (32) and using Kirchhoff’s transformation (11), we have 

λ µ µ γ ϕ ρ ε µ
∂

+ + ∇ − ∇ = +
∂

2
2 2 2 2 2

0 0 0 0 0 2
( 2 ) ( ) ,

e
H e H

t
 (33) 

where the Laplacian operator ∇2  has the form 

∂ ∂ ∂ ∂
∇ ≡ = +

∂ ∂ ∂ ∂

2
2

2

1 1
( ) .r

r r r r r r
 (34) 

Furthermore, under Kirchhoff’s transformation Eq. (27) becomes  

ξξ

σ µ λ γϕ

σ µ λ γϕ

σ λ γϕ

∂
= + −

∂

= + −

= −

2 ,

2 ,

.

rr

zz

u
e

r
u

e
r

e

 (35) 

Also, the heat equation appeared in Eq. (15) turn out to be 

ω

ϕ
τ γ ϕ

 ∂ ∂
 + + = ∇
 ∂ ∂ 

20
0 0(1 ) .

k e
D T k

N t t
 (36) 

Now, by using the next non-dimensional parameters 

γϕ
ϕ η τ η τ

λ µ

σ ρ
σ η λ µ ρ µ ρ

λ µ

′ ′ ′ ′ ′= = =
+

′ = = = = + =
+

2
1 1

22
1 0 0 0

0

, { , } { , },{ , } { , },
2

1
, , ( 2 ) / , / .

2
ij

ij

r u c r u t c t

k
c a H

k N

 (37) 

Eqs. (33), (35) and (36) become as (dropping the primes for convenience): 

ω

ϕ
ϕ τ ε

∂ ∂
∇ = + +

∂ ∂
2 (1 )( ),

e
D

t t
 (38) 

ϕ
∂

∇ − ∇ =
∂

2
2 2

2 3 2
,
e

B e B
t

 (39) 

σ β β ϕ
∂

= + − −
∂

2 22 (1 2 ) ,rr

u
e

r
 (40) 

ξξσ β β ϕ= + − −2 22 (1 2 ) ,
u

e
r

 (41) 

σ β ϕ= − −2(1 2 ) ,zz e  (42) 

where 

γ µ
ε β
ρ λ µ ε µ

= = + = + = =
+

2 2 2
20 0 0

2 32 2 2 2
2 1 1 0 0

1
, 1 , 1 , ; .

2

T a a
B B c

k c c c
 (43) 

5. Boundary and initial conditions 

We suppose that the medium initially is at rest so that initial conditions of the problem has the form: 
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θ
θ= =

= =

∂ ∂
= = = =

∂ ∂0 0

0 0

( , ) ( , )
( , ) | 0, ( , ) | 0.t t

t t

u r t r t
u r t r t

t t
 (44) 

We postulated that the internal surface of the cylinder is traction free and subjected to a thermal shock at = .r a  So it is affected 

by two types of boundary conditions as following: 

θ θ

σ

=

=
0( , ) ( ),

( , ) 0,rr

a t H t

a t
 (45) 

where θ0  is constant and ( )H t  is the Heaviside’s unit step function. 

The boundary conditions (45), taking into account ϕ θ θ= + 2
1 / 2k , becomes   

ϕ θ θ= + 2
0 1 0

1
( , ) ( ) [ ( )] .

2
a t H t k H t  (46) 

Moreover, the regularity boundary conditions are 

{ }θ σ
→∞

=lim ( , ), ( , ), ( , ) 0.ij
r

u r t r t r t  (47) 

6. The Solution in the Laplace transform domain 

Applying the Laplace transform technique which defined by the following equation 

∞
−= = >∫0

[ ( , )] ( , ) ( , ); Re( ) 0,stL f r t f r t e dt f r s s  (48) 

to Eqs. (38)-(42) and taking into account Eq. (9), we obtain 

ϕ ϕ∇ = +2
4 1( ),B B e  (49) 

ϕ∇ −∇ =2 2
2 5 ,B e B e  (50) 

σ β β ϕ= + − −2 22 (1 2 ) ,rr

du
e

dr
 (51) 

ξξσ β β ϕ= + − −2 22 (1 2 ) ,
u

e
r

 (52) 

σ β ϕ= − −2(1 2 ) ,zz e  (53) 

where 

τ
ω

ω
= + = ∇ = +

2
2 2

4 5 3 2

1
(1 ( , )), , .

d d
B s G s B s B

dr r dr
 (54) 

Moreover, one can show that the Laplace transform of any function ( )f t  with first order MDD is given by  

ω
ω

ω ω

ω κ ζ ζ ζ ω

ω
ω ω ω

−

− −

 ′= − = 
  

   
   = − − + − − +      

∫
2 2

2 2

2 2

[ ( )] ( ) ( ) [ ( )] ( , );

2 2 2
( , ) (1 ) 1 2 .

t

t

s s

L D f t L t f d L f t G s

b a a
G s e a b e

s s s

 (55) 

If the kernel function in MDD is constant i.e. when κ ζ− =( ) 1t , then, 

ωω −= −( , ) (1 ).sG s e  (56) 

Solving for ϕ  or e  from Eqs. (49) and (50), one obtains 

ϕ∇ − ∇ + =4 2( ){ , } 0,A B e  (57) 

which can be written in the form 

ϕ∇ − ∇ − =2 2 2 2
1 2( )( ){ , } 0,m m e  (58) 

where =2 ; 1,2im i  are the square roots of the following characteristic equation  

ε

− + =

+ +
= =

4 2

5 2 4 4 4 5

2 2

0;

( )
, .

m Am B

B B B B B B
A B

B B

 (59) 
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The solutions of Eq. (57) with taking the conditions regularity condition can be proposed in the form 

ϕ
=

= ∑
2

0
1

( ),i i
i

AK m r  (60) 

where 0(.)K  refers to the modified Bessel functions of the second kinds of zero-order and the parameters =,( 1,2)iA i  can be 

determined from the boundary conditions.  
Similarly, we get 

=

′= ∑
2

0
1

( ),i i
i

e A K m r  (61) 

where ′ =,( 1,2)iA i  are parameters. Substituting the expressions of ϕ  or e  into (49), we obtain: 

 − ′ =    

2
4

4 1

.i
i

m B
A A

B B
 (62) 

Hence, we get  

=

−
= =∑

22
4

0
1 4 1

( ); i
i i i i

i

m B
e L A K m r L

B B
 (63) 

From which together with Eqs. (28), we obtain 

=

= −∑
2

1
1

1
( ).i i i

i i

u L A K m r
m

 (64) 

Also, the thermal stresses that appeared in Eqs. (51)-(53) can be expressed as 

β
σ

=

 
 = − + 
 

∑
22

0 1
1

2
( 1) ( ) ( ) .i

rr i i i i i
i i

L
L A K m r A K m r

m r
 (65) 

( )ξξ

β
σ β

=

 
 = − − − 
 

∑
22

2
0 1

1

2
(1 2 ) 1 ( ) ( ) .i

i i i i i
i i

L
L A K m r A K m r

m r
 (66) 

( )σ β
=

 = − −  ∑
2

2
0

1

(1 2 ) 1 ( ) .zz i i i
i

L A K m r  (67) 

The boundary conditions (45), taking into account ϕ θ θ= + 2
1 / 2k , after using the Laplace transform operator, become 

θ θ
ϕ

σ

= + =

=

2
0 1 0( , ) ( ),

2
( , ) 0.rr

k
a s g s

s s
a s

 
(68) 

 

Therefore, one obtains 

θ θ

=

= +∑
22

0 1 0
0

1

( ) ,
2i i

i

k
A K am

s s
 (69) 

β

=

 
 − + 
 

∑
22

0 1
1

2
( 1) ( ) ( ) .i
i i i i i

i i

L
L A K am AK am

am
 (70) 

By solving the previous equations, the constants =,( 1,2)iA i  can be determined. Hence, using Eq.(16) we obtain the expressions 
for the temperature, the stress components, the displacement and other physical quantities of the medium.  

It is necessary to apply Laplace inversion on the considered physical quantities obtained in the Laplace transform domain. In 
this paper, an accurate and efficient numerical method based on a Fourier series expansion [46] is used to obtain the inversion of 
the Laplace transforms. Using this method, any function in the Laplace domain can be transformed to the time-domain as 

τ π
ψ τ ψ ψ

τ τ=

 
 = + + −  

∑
1

1
( , ) ( , ) Re ( , )( 1) ,

2

c m
n

n

e in
R R c R c  (71) 

where m  is the number of terms,  refers to the real part and = −1i . Form the practical experiments, the value of c  agrees with 
the relation τ = 4.7c  [46]. 

7. Special cases of a generalized thermoelastic model (MVLS) 

In section 2, we investigated a generalized thermoelastic model with variable thermal material properties and memory-
dependent derivative (MVLS). In limited cases, the proposed model is reduced to several previous models in the presence and 
absence of variable thermal material properties and memory dependent derivatives. The obtained models are listed as the 
following:   

 Classical thermoelastic model (CTE): τ = 0,  ω ω= =1( , ) , 0.G s s k   
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Fig. 2. The effect of the memory kernel κ  on the temperature θ . Fig. 3. The effect of the memory kernel κ  on the displacement u . 

  

Fig. 4. The effect of the memory kernel κ  on the radial stress σ
rr

. Fig. 5. The effect of the memory kernel κ  on the hoop stress 
ζζ
σ . 

 

 Lord-Shulman model (LS): τ > 0,  ω ω= =1( , ) , 0.G s s k  

 Lord-Shulman model with MDD (MLS): τ > 0,  ω = =1( , ) Eq(55), 0.G s k  

 The classical thermoelastic model with variable thermal material properties (VCTE): τ = 0,  ω ω= ≠1( , ) , 0.G s s k   

 Lord-Shulman model with variable thermal material properties (VLS): τ > 0,  ω ω= ≠1( , ) , 0.G s s k   

 Lord-Shulman model with variable thermal material properties and MDD (MVLS): τ > 0,  ω = ≠1( , ) Eq(55), 0.G s k   

8. Results and Discussion 
   In this section, we will study the effect of variable thermal material properties and MDD on some different physical models. 
The analytical results outlined above are represented numerically using Mathematica software. The silicon (Si) material was 
chosen for purposes of numerical evaluations to investigate the accuracy of the present numerical data. The physical constants 
for this subject were taken as follows [47]: 

λ µ ρ− − − − −

− −

= × = × =

= = × =

10 1 2 10 1 2 3

-1 1 3 1
0

2.696 10 kg m s , 1.639 10 kg m s , 1740 kg m ,

2.510 W m K , 1.07 10 J kg K , 298 KEK C T
  

The results are presented graphically in Figures (2-17) at different values of the radius ≤ ≤(1 2)r r ). The numerical computation 

was carried out for a single time, > 0.15,t  when τ > 0.  Further for the numerical purpose, we take 

ε− −= =1 1
0 0100 Am , 1.2 FmH  and µ −= 1

0 1.2 Hm . The numerical results of temperature θ , radial displacement u , radial and 

hoop stresses σrr  and ζζσ  variations are performed along with the radial distance r . Numerical calculations are performed for 

four cases as follows: 

8.1 Influence of the kernel function κ   
   This section is devoted to discussing how the memory kernel κ  acts on the field variables corresponding to the modified 

model MVLS. The obtained results are represented in Figures (2-5) for the field quantities corresponding to different values of the 

radius ≤ ≤(1 2)r r  at > 0.15t  and different values of the constants ,a b  when the phase-lag τ = 0.1 . These figures confirm that 

the physical quantities depend not only on the radius r but also on the kernel of memory dependent derivative.   
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Fig. 6. The effect of the memory time delay ω  on the temperature θ . Fig. 7. The effect of the memory time delay ω  on the displacement u . 

  

Fig. 8. The effect of the memory time delay ω  on the radial stress σ
rr

. Fig. 9. The effect of the memory time delay ω  on the hoop stress 
ζζ
σ . 

   

Figure 2 depicts that the variation of temperature θ  with different values of the constants ,a b  (the kernel κ  of MDD) 

decreases with increasing the radius r  for < <1 2r . Also, we conclude that the magnitude of the temperature curve for MVLS in 

the case = =( 1, 0)a b  is greater than that for the other cases of the kernel, although they coincide to a constant value as we 

move away from the hole. It is manifested from the figure that the values of the temperature converge to zero when the radius r  

tends to 2, which agrees with the regularity boundary conditions. From Figure 3, we observe that the memory kernel κ  has a 

weak effect on the displacement u . Moreover, we find that the values of the displacement converge to zero at r  tends to 2,  

which corresponds to the regularity boundary conditions. 

   It is evident from Figures 4 and 5, that the different values of the constants ,a b  (the memory kernel κ ), has clearly effect on 

the radial stress σrr  and the hoop stress ζζσ , respectively. Also, we conclude that the depth of the stress curves for MVLS in the 

case = =( 0, 0)a b  is smaller than that for the other cases of the kernel. It is displayed from the figure that the values of the 

stresses converge to zero when the radius r  tends to 2, which is in quite good agreement with the regularity boundary 

conditions. 

   Finally, we conclude that the kernel of MDD has a significant effect on all the fields except the displacement u  (a weak effect). 

8.2 Influence of the memory time delay ω  on the physical fields 

   Here we study the effect of the changing of the memory time delay ω  on the field variables.  The obtained results are shown 

in Figures (6-9) for the field quantities corresponding to different values of the radius ≤ ≤(1 2)r r  at > 0.15t  and different 

values of the time delay ω  of MDD in the case = =1, 1a b , when the phase-lag τ = 0.2 . These figures emphasize that the 

physical quantities depend not only on the radius r  but also on the time delay ω  of memory dependent derivative.   

   As shown in Figure 6 by increasing the amount of the memory time delay ω , the variation of temperature θ  deceased in the 

interval < <1 2r . The memory time delay ω  has a weak effect on the displacement u  as in Figure 7. Also, the memory time 

delay ω  has clearly effect on the radial stress σrr  and the hoop stress ζζσ , respectively see Figures 8,9. Also, we conclude that 

the depth of the stress curves decreases with increasing the values of ω , although they coincide to a constant value as we move 

away from the hole. Finally, It is displayed from the above figures that the values of all physical fields converge to zero when the 

radius r  tends to 2, which is in quite good agreement with the regularity boundary conditions. Moreover, these figures confirm 

that the memory kernel κ  of MDD has a significant effect on all the fields except the displacement u  (a weak effect). 
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Fig. 10. Comparison between different models of thermoelasticity 
with respect to the temperature θ . 

Fig. 11. Comparison between different models of thermoelasticity with 
respect to the displacement u . 

  

Fig. 12. Comparison between different models of thermoelasticity 

with respect to the radial stress σ
rr

. 

Fig. 13. Comparison between different models of thermoelasticity with 

respect to the hoop stress 
ζζ
σ . 

8.3 Comparison between different models of thermoelasticity 

This section is dedicated to studying the distributions of the physical fields for different models of thermoelasticity 
mentioned in the previous section (CTE, VCTE, LS, VLS and MVLS). The obtained results are represented in Figures (10-13) for the 
field quantities corresponding to different values of the radius ≤ ≤(1 2)r r  at = = −10.15, 0.2t k  and the time delay ω = 0.3  of 
MDD with = =1, 1a b , when the phase-lag τ = 0.1.  These figures assure that the variable thermal material properties and MDD 
have a significant effect on all the physical quantities.   
   The graphs in Figures 10-13 represent the curves predicted by five different theories of thermoelasticity. Figure 10 shows that 
the variations of temperature for the CTE model are larger in comparison with the VCTE, MVLS and VLS, and the values of the 
temperature converge to zero when the radius u  tends to more than 2. Also, the LS model started small than the CTE but soon 
becomes larger and then decreasing again. Clearly, the variations of the displacement u  for the CTE theory are small in 
comparison with the LS theory as in Figure 11. From Figures 12 and 13 we see that the values in the classical theory of 
thermoelasticity (LS model) are different compared to those of other theories. Finally, the above figures emphasize that the results 
of our study (MVLS) differ from the classical thermoelastic model (CTE) and the Lord-Shulman model (LS) of the phenomenon of 
limited velocities of the propagation of heat waves. Hence, our modified model is the best.  

8.4 Influence of the variable thermal material properties on the physical fields 

   This section is devoted to discussing how the variable thermal parameter 1k  affects the field variables of the modified model 
MVLS. The obtained results are shown in Figures (14-17) for the field quantities corresponding to different values of the radius 

≤ ≤(1 2)r r  at = 0.15t  and different values of the variable thermal parameter 1k , when the phase-lag τ = 0.1 , the time delay 
ω = 0.3  of MDD with = =1, 1.a b   
   In Figure 14 we can see that the variable thermal parameter 1k  has a significant effect on the temperature θ  in the interval 

≤ ≤1 2r . Also when decreasing 1k  then the temperature θ  is increased, although the temperature curves coincide to a 

constant value as we move away from the hole. Figure 15, it is shown that the displacement u  increases as 1k  decreases in the 

interval ≤ ≤1 1.1r  and increases in the interval ≤ ≤1.1 2r . The graphs in Figures 16,17 represent the figures the effect of the 

variable thermal parameter 1k  on The radial stress σrr  and the hoop stress ζζσ  and show that the curves increase with a 

decrease in the value of 1k . Finally, these figures assure that the physical quantities depend not only on the radius r  but also on 

the variable thermal parameter 1k .  Also, it is noticed that the variable thermal parameter 1k  has a clear effect on all the fields. 
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Fig. 14. The effect of the variable thermal parameter 1k  on the 

temperature θ . 

Fig. 15. The effect of the variable thermal parameter 1k  on the 

displacement u . 

  

Fig. 16. The effect of the variable thermal parameter 1k  on the radial 

stress σ
rr

. 

Fig. 17. The effect of the variable thermal parameter 1k  on the hoop 

stress 
ζζ
σ . 

9. Conclusion 

In the context of this paper, a generalized thermoelastic model with variable thermal material properties and memory-
dependent derivative (MVLS) is investigated. In limited cases, the proposed model reduces to various classical, generalized 
thermoelasticity models (see section 7). According to this model, the distributions of the physical quantities for an isotropic 
homogeneous cylindrical hole whose inner surface is traction free and subjected to a thermal shock, are discussed. Numerical 
simulation results yield the following conclusions:  

The effects of the variable thermal parameter 1k  and the memory kernel K on all the physical fields under consideration are 

very obvious. The results of our study (MVLS) differ from the classical thermoelastic model (CTE) and the Lord-Shulman model (LS) 
of the phenomenon of limited velocities of the propagation of heat waves. The obtained results are very useful for the material 
science researchers and material designers who are working on the development of the thermo-viscoelasticity models. The 
technique introduced in this study is important in real-life engineering problems and mathematical biology models according to 
the memory-dependent derivative. 
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