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Abstract. This study aims at deriving nonlinear expressions of the transmissibility and the driving-point mechanical impedance 
(DPMI) of two nonlinear biodynamic hand-arm models having active restoring and dissipative parameters. It aims also in 
computing explicitly the non-directly measurable stiffness and damping coefficients of the human hand-arm system (HAS). 
Multivariate Padé approximants are used to express the dependence of the HAS mechanical properties on various influencing 
factors. The harmonic balance method is used to derive analytical expressions of the transmissibility and the DPMI. Then, the 
models parameters are identified by minimizing constrained error functions between the theoretical DPMI or transmissibility and 
the measured data. The developed workflow is applied to three experimental data sets of Z-direction vibrations where the 
excitation frequency and/or the grip force are varied. Using the ISO-10068 (2012) limit DPMI values versus the excitation frequency, 
we derived upper and lower limits of the overall stiffness coefficient and damping ratio for the human HAS. Furthermore, the 
model reproduces with high accuracy experimental measurements of the transmissibility, the DPMI and the vibration power 
absorption.  

Keywords: Hand-arm vibration, Nonlinear transmissibility, Driving-point mechanical impedance. 

1. Introduction 

Studying the biodynamic of the hand-arm system (HAS) is a keystone of understanding mechanisms of hand-arm vibration 
syndromes (HAVS) and developing better standards to prevent them. Moreover, the knowledge of the biodynamic response of the 
HAS is useful for designing less vibrating hand tools and for developing hand-arm simulators to test them [1, 2]. The experimental 
characterization of the HAS biodynamic behavior is based on measuring the vibration transmissibility and/or the driving-point 
mechanical impedance (DPMI). The transmissibility [3, 4] gives information about rates of vibrations at different loci of the HAS. 
The DPMI describes the mechanical resistance to vibrations and gives information on the overall behavior of the HAS under a 
specific excitation. It describes also the vibrational absorbing properties of the HAS that can be used to quantify the vibration 
exposure risk [5, 6]. Many factors influence the measured transmissibility and DPMI, we cite among others the forcing properties, 
the hand forces, the hand-arm posture, the human anthropometric characteristics and vibration susceptibility [7-9].  

The HAS is a very complex system that is composed of a large number of non-homogeneous elements such as bones, muscles, 
blood vessels, nerves and skin. Due to this structural and material complexity of the HAS, lumped parameters models are widely 
used in the literature to describe its response to imposed vibrations [3, 10, 11]. These models use linear systems with passive and 
constant masses, stiffness and viscous damping coefficients regardless of the experimental conditions. Furthermore, their 
mechanical behaviors are acknowledged to be nonlinear and that the skin-muscle-bone characteristics change with changing 
experimental conditions. 

In a review paper Rakheja et al. [10] investigated the suitability of 12 mechanical single point hand-handle coupling linear 
models of the HAS, reported in the literature, through their biodynamic responses that are derived from the measured DPMI. 
These models include mass-spring-damper systems (MSD) of 1 to 4 DOF and models combining beams and MSD. They showed 
that the DPMI magnitude and phase determined by the single degree of freedom (SDOF) model, with constant parameters, are 
outside the range of the values recommended in the ISO-10068 (2012) [12], for large frequency intervals. In fact, the SDOF model 
with constant parameters has only three parameters that are the mass, the stiffness and the damping coefficients. Two strategies 
can be attempted to increase the number of the SDOF model control parameters: (1) to use it piecewise, or (2) to allow the three 
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parameters to vary. Reynolds and Soedel [7] used the first strategy by dividing the frequency range between 20 and 500 Hz into 
two regions, corresponding to high and low frequencies. The second strategy is to take restoring and dissipative coefficients 
dependent on the HAS vibration influencing factors. This strategy gives a more realistic model than the one with constant 
parameters. In this framework, Gurram et al. [13, 14], Marcotte et al. [15] and Aldien et al. [5] used linear hand forces dependent 
dissipative and restoring elements in their 3 and 4 DOF models. More recently, Hida et al. [16] used univariate Padé approximants 
and the nonlinear vibration transmissibility at the wrist, to identify the damping ratio and the stiffness coefficients in terms of 
the grip force or the excitation frequency.  

The scope of this work is to use a SDOF mass-spring-damper nonlinear model that reproduces with high accuracy the 
experimentally measured DPMI or transmissibility of the human hand-arm system. To this effect, the mechanical elements of 
this model are taken active and depended on the influencing factors of the HAS biodynamic behavior. This dependence is 
expressed in terms of pole free multivariate Padé approximants [17, 18]. The model parameters identification is obtained by 
minimizing two independent constrained objective functions comprising real and imaginary parts of data errors or the 
transmissibility between the computed and measured DPMI. The main objective is to express the variation of the stiffness and 
the damping coefficients in terms of the influencing factors of the HAS vibration. To be noted that the restoring and dissipative 
parameters are not directly experimentally measurable and are not known for sure. In this framework, Rakheja et al. [10], 
obtained by analyzing 12 linear HAS models, that the computed stiffness coefficients lead to unrealistically high static deflections 
under 50N constant feed force. In addition, they found that the computed damping ratios ranged from 0.05 to 1060.28 in the Z-
direction vibrations.  

In the present work, the harmonic balance method [19] is used to derive analytical expressions of the nonlinear 
transmissibility and the DPMI. Using the proposed workflow, our models reproduce accurately the experimental measurements 
while varying more than one control parameter. More importantly, the proposed models lead to realistic stiffness and damping 
coefficients. 

The present paper is organized as follows: in section 2, the mathematical models, the nonlinear transmissibility and DPMI, 
and the parameters identification workflow are presented. In section 3, the derived models are applied to three Z-direction HAS 
vibration measurement data. Lastly, the conclusion section concludes the paper by discussing the results and future directions.  

2. Mathematical models and methods 

Figure 1 shows the HAS with Z-direction vibration in the case of extended posture with 180° elbow angle. Two single DOF 
biomechanical nonlinear models with one driving point are shown in Fig. 1c and Fig. 1d. The effect of the handle, drawn in blue, is 
taken as an imposed displacement in Fig. 1c, and as an external forcing in Fig. 1d. Figure 1e displays a 5 DOF model of the HAS 
with two driving points and the nonlinearity is assumed localized in the fingers. This model will be investigated elsewhere.  
 

 

 

 

(a) The extended arm posture with 180° elbow angle (b) Illustration of the arm-handle contact 

  

(c) Single DOF in the case of an imposed displacement (d) Single DOF in the case of an external forcing 

 

(e) Five DOF model of the HAS with two driving points 

Fig. 1. Mathematical models of the HAS in the case of Z-direction vibrations. The blue disk is the handle 
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The general equation of motion of single DOF models of the HAS, shown in Fig. 1c and Fig. 1d, can be written in a general 
framework as follows 

( ( ), ( ), , ) 0m x G x t x t t µ+ =ɺɺ ɺ  (1) 

where m is the overall mass of the HAS, and (.)G is a polynomial function of the absolute displacement ( )x t and velocity ( )x tɺ . 
Dots are derivatives with respect to time t and µ is the control parameters vector. Moreover, in our case (.)G contains explicit 
harmonic temporal terms with a frequencyΩ . Then, the harmonic balance method (HBM) [19] is used to seek periodic solutions of 
Eq. (1) with a fundamental frequency equal toΩ , such that 

( ) cos( ) . . .x t X t h o tθ= Ω − +
 

(2) 

where X and θ are the amplitude and the phase of the absolute displacement of the mass, respectively. The contribution of 
higher order harmonics terms (h.o.t) is assumed negligible. In all applications the function (.)G is assumed odd with respect 
to ( )x t and ( ).x tɺ  

2.1 Displacement transmissibility 

The equation of motion of the HAS model shown in Fig.1(c) is given by 

* 3 * 3( ) ( ) ( ) ( ) 0m x c x y k x y c x y k x y+ − + − + − + − =ɺɺ ɺ ɺ ɺ ɺ
 

(3) 

where k and c are the linear stiffness and viscous damping coefficients, respectively. The corresponding nonlinear coefficients 
are denoted *k and *c . The imposed harmonic displacement of the handle is denoted ( ) cos( )y t Y t= Ω , where Y and Ω are its 
amplitude and frequency, respectively. 

Using the harmonic balance method, a first order approximation of the periodic solution of Eq. (3) is given by Eq. (2), where the 
amplitude X and the phase θ are given by 

( )
2

2 * 2 2

2
3 4 2

2

a
X Y k a k m

m
= + + − Ω

Ω  
(4a) 

1 sin( )
tan

cos( )

a

a Y

φ
θ

φ

−
  =    +   

(4b) 

with a and φ are the relative displacement amplitude and phase of the mass, respectively. The amplitude a is solution of the 

following sixth order algebraic equation 

( ) ( )( ) ( )6 *2 *2 6 * 2 * 4 4 2 2 2 2 2 2 2 49 3
( ) 0

16 2
c k a k k m c c a k m c a m YΩ + + − Ω + Ω + − Ω + Ω − Ω =

 
(5) 

The phase φ of the relative displacement is given by 

* 3 2
1

* 2 2

3 4
tan

3 4 4

c a c

k a k m
φ −

 Ω + Ω  =    + − Ω 
 (6) 

The nonlinear parameters *k and *c appear in the fourth and the sixth polynomial terms in Eq. (5). Consequently, the relative 
amplitude a can have at most three real solutions. 

The nonlinear displacement transmissibility is given by 

* 2 22 2

2 2 2

3 4 2
1 2 cos( ) 1

2

k a k mX a a a
T

Y Y Y Y m
φ

 + − Ω  = = + + = +    Ω 
 (7) 

The linear case is obtained by cancelling the effects of nonlinearities i.e., setting * * 0k c= = in Eq. (5). Hence, the amplitude 

La of the relative displacement and the transmissibility LT in the linear case are given by 

2

2 2 2 2( )
L

mY
a

k m c

Ω
=

− Ω + Ω
 

 

(8a) 

2 2 2

2 2 2 2( )L

k c
T

k m c

+ Ω
=

− Ω + Ω
 

 

(8b) 

 To be pointed out that the linear transmissibility (8b) is independent of the imposed handle motion amplitude Y , whereas 
the nonlinear transmissibility (7) depends on it.  

Based on vibration measurements on the HAS, Adewusi et al. [3] found experimentally, using two different magnitudes of 
broad-band random vibrations of handle, that the excitation magnitude affects the transmissibility, especially around the 
characteristic frequencies.  

 

2.2 Driving-point mechanical impedance (DPMI) 

The equation of motion of the HAS model shown in Fig.1(d) is given by 

* 3 * 3 cos( )m x c x kx c x k x F t+ + + + = Ωɺɺ ɺ ɺ  (9) 
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The solution of Eq.(9) is sought in the form (2). Using the HBM, the amplitude X is solution of the following sixth algebraic 
order equation 

( ) ( )( ) ( )6 *2 *2 6 * 2 * 4 4 2 2 2 2 2 29 3
( )

16 2
c k X k k m c c X k m c X FΩ + + − Ω + Ω + − Ω + Ω =  (10a) 

* 3 2
1

* 2 2

3 4
tan

3 4 4

c X c

k X k m
θ −

 Ω + Ω  =    + − Ω 
 (10b) 

The force amplitude F should be measured in order to determine the displacement amplitude X by solving Eq.(10a). The 
DPMI Z is defined as the ratio of the dynamic force exerted on the mass and its velocity ( )x tɺ . It is expressed in the frequency 
space, using the Fourier transforms (.)ℑ , as follows 

( )
( )

cos( )

( ) r im

F t
Z Z jZ

x t

ℑ Ω
= = +

ℑ ɺ
 (11) 

where 1,j= − rZ and imZ are the real and imaginary parts of the DPMI, respectively. They are given by 

2 * 2 23rZ c c f Xπ= −  ; 
*

23
2

2 8im

k k
Z f m X

f f
π

π π
= − −  (12) 

The two parts of the nonlinear DPMI depend explicitly on the excitation frequency 2f π=Ω and the displacement 

amplitude X . Furthermore, the DPMI real part rZ depends on the linear and the nonlinear damping coefficients c and *c . The DPMI 

imaginary part imZ depends on the mass m , the linear and the nonlinear stiffness coefficients k and *k . To be noted that the real 

and imaginary parts of the DPMI can be computed independently.  

The linear case is obtained by setting * * 0k c= = in Eq. (12). Furthermore, the DPMI can also be expressed using its 

modulus Z and its phaseϕ . In the case of a sinusoidal excitation, the vibration power absorption abs℘ into the HAS is expressed in 

terms of the real part of the DPMI and the handle velocity hv  [5, 6]. It is defined in the frequency space as follows 

2

rabs hZ v℘ =  (13) 

The power absorption is used for assessing the risk and the damaging effects of vibration to the human HAS [6, 20].  
 

2.3 Parameters identification 

The majority of the HAS vibrations experiments, reported in the literature, vary only one single parameter at once. The mostly 

investigated parameters of control are the excitation frequency, followed by the grip and/or the push forces [9-11]. The parameters 

influencing the HAS biodynamic response are gathered in the control parameters r-vector ( )1 ,..., rµ µ µ= . This vector includes 

factors like the forcing properties, the grip and the push-pull forces, the anthropometric characteristics, etc.  

In this work, the mass m is assumed constant, the linear stiffness k and the damping c coefficients, are expressed in terms of 

the vector µ , using the following multivariate Padé approximants of order [ ]k kM N and [ ]c cM N , respectively  

1 2
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where (.)α℘ is an α order multivariate polynomial function of its arguments. To be noted that the polynomials in the numerator 

and the denominator can be dense or sparse.  
The choice of the multivariate Padé approximants, instead of the widely used polynomial interpolants, is motivated by its 

performances in fitting data using fewer parameters. Moreover, high order polynomials are required to fit satisfactorily 
experimental data, leading to wild oscillatory models with poor extrapolation and/or interpolation results [17]. However, 
fractional functions suffer from the existence of poles corresponding to zeros of the denominator. In what follows, parameters 
causing poles, in the domain of interest, are excluded. In this work, minimum orders of the rational approximants (14) and (15) 
are sought in order to reduce the complexity of the interpolant. In fact, the polynomials in the numerator and the denominator 
are gradually increased and iteratively all combinations of powers are tested until the best accuracy is obtained. Furthermore, in 
order to ensure that the obtained results are realistic and interpolate reasonably, for all parameters of control, various realistic 
physical constraints are imposed on this multi-objective optimization problem. Hence, the mass, the stiffness and the damping 
coefficients are subjects to the following parametric constraints: 

: 3.5 6mµ∀ < <  Kg ; ( ) 1000k µ > N/m ; 0 ( ) 500c µ< < N.s/m (16) 

The model constraints (16) are based on previously published works [10, 13]. The constraint of the linear stiffness coefficient is 
chosen also to lead to realistic deflections under static feed forces.  

Unknown parameters of the model are identified by minimizing the overall distance between the theoretical and 
experimental DPMI or transmissibility respecting the imposed constraints (16). In the present work, a nonlinear fit least-squares 
error algorithm that minimizes the sum of squares errors is used [21]. In fact, this minimization process is applied independently 
to the real and to the imaginary parts of the DPMI. The unknown parameters of the stiffness and the damping coefficients given 
in Eqs. (14) and (15) are varied iteratively, and the best results that respect the constraints (16) are reported.  
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In order to measure the outcomes quality of the fitting process, we use the correlation coefficient and the root-mean-square 

error (RMSE) between the theoretical thΓ and the measured exΓ quantities. The RMSE is defined as  

( )
2

1

1
( ) ( )

N
th ex

n n
n

RMSE
N

µ µ
=

= Γ −Γ∑  (17) 

where N is the number of measurements and Γ can be , , ,r imT Z Z Z orϕ . 

3. Applications and discussions 

In this section, the identification workflow of the stiffness and damping coefficients presented in the previous section is 
applied to three Zh-direction HAS vibrations measurements. The first application is related to measurement data of 
transmissibility [9]. The second corresponds to the ISO-10068 (2012) limit DPMI values versus the excitation frequency; see [12, 13]. 
The third concerns the experimental DPMI data, in the case of imposing harmonic vibrations, while varying both the excitation 
frequency and the grip force [22, 23].  

 

3.1 Transmissibility versus the grip force 

Pan et al. [9] conducted a series of experiments for a hand-arm posture corresponding to bent-arm with 90◦ elbow angle. In 
the present paper, the wrist vibration transmissibility is investigated when varying the grip force Fg for four handle discrete 
sinusoidal vibrations with frequencies 10Hz, 16Hz, 25Hz and 40 Hz. They are used as imposed displacement on a cylindrical 
handle with a constant velocity of 0.1 m/s.  

In this example, only the linear stiffness coefficient is developed as a [4/2] order sparse fractional function in terms of the grip 

force, the other coefficients are taken constant.  

4

0
2

2

( )
1

n
n g

n
g

g

F

k F
F

κ

β

==
+

∑
 (18) 

Figure 2 shows the displacement transmissibility at the wrist versus the grip force for various excitation frequencies when 
using the nonlinear transmissibility displacement given in Eq. (7). This figure shows the good agreements between the nonlinear 
model and the experimental measurements. Figure 3 shows the predicted displacement amplitude of the wrist versus the grip 
force. It shows that the amplitude is decreasing with increasing the handle frequency. Figure 4 displays the predicted damping 
ratio versus the grip force. This ratio is decreasing with increasing the excitation frequency and the grip force.  

 

Fig. 2. Displacement transmissibility at the wrist versus the grip force for various excitation frequencies. Lines correspond to the computed 
transmissibility. The measured data [9] are shown in symbols  

 

Fig. 3. Predicted displacement amplitude X at the wrist versus the grip force for various excitation frequencies.  
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Table 1. RMSE and correlations, of various DPMI quantities, between the measured data and the results of our model 

 r
Z  [N.s/m] 

im
Z  [N.s/m] Z  [N.s/m] ϕ  [degrees] 

RMSE Corr RMSE Corr RMSE Corr RMSE Corr 

Lower limit 0.90 0.999 2.47 0.997 1.23 0.998 1.16 0.997 

Upper limit 1.20 0.999 2.16 0.999 1.51 0.999 0.34 0.998 
 

3.2 DPMI versus frequency 

The workflow is applied to the synthesized DPMI data presented in [20] as the most probable range of the driving point 
mechanical impedance phase and magnitude of the HAS. These data sets contain, in the three hand directions, the lower and the 
upper limits of the accepted modulus and phase of the DPMI values versus the frequency of excitation. Moreover, these data were 
adopted by the ISO-10068 (2012).  

In this work, only the Z-direction DPMI is investigated in terms of the excitation frequency. The data set contains 24 one-third 

octave frequency bands measurements in the frequency range of 10 to 500 Hz, see [20]. Hence, the stiffness k and the 

damping c coefficients are expressed as functions of the frequency f as follows 
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=

=
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∑

∑
 (19) 

The dependency on the excitation frequency, of restoring and dissipative parameters, is a realistic way to model the visco-
elastic properties of the skin-muscle-bone system composing the HAS. All combinations of the univariate Padé approximants 

powers up to order [ 5 / 5]M N= = are tested. Then, the best fitting theoretical model, which leads to the minimal error function, is 

selected. Hence, the fractional polynomials of order [4/3] and [5/3] are selected for the stiffness and the damping coefficients, 
respectively. In Table 1 are given the root-mean-square errors (RMSE) and the correlation coefficients (Corr), between the 
measured data and our models results, for various quantities of the DPMI. Table 1 reveals the excellent agreement between the 
results of our model and the measured data. In fact, all correlation coefficients are higher than 0.99 and all RMSE are below 2.5. 

Figure 5 shows comparisons of Z-direction DPMI modulus and phase, of the theoretical model and the ISO data, versus the 
excitation frequency in the range [10 Hz, 500 Hz]. The computed results are drawn in continuous line while the lower and the 
upper bounds given in the ISO-10068 (2012) are presented in circles.  

Figure 6a shows that the stiffness coefficient k of the HAS model increases with increasing the excitation frequency and it 
ranges in the mega-Newton per meter [MN/m] for high frequencies. This range is in agreement with the experimental results 
obtained by Singh et al. [21] when investigating experimentally human male elbow bones. They found that the mean compression 
stiffnesses of Humerus, Ulna and Radius are 16, 12 and 9 [MN/m], respectively. Furthermore, the stiffness coefficient of the lower 
bound is higher than the stiffness of the upper bound of the DPMI modulus. Figure 6b shows that the damping ratio of the HAS is 
decreasing with increasing the excitation frequency. The upper bound has a higher damping ratio than the lower bound for 
frequencies lower than 80 Hz. Above this frequency the two bounds have almost the same damping ratio that tends to zero 
asymptotically. Figures 6a and 6b suggest that soft tissues, which contain skin and subcutaneous tissues, of the HAS are excited 
for low frequencies since the stiffness is low and the damping ratio is high. In fact, bones are excited for high frequencies since 
their stiffness is high and their damping ratio is low. More importantly, the stiffness coefficient and the damping ratio displayed 
in Figure 6 can be viewed as the upper and the lower limits, in the frequency interval [10, 500 Hz] and in the Z direction, of the 
overall stiffness coefficient and damping ratio for the human hand arm system. In addition, these curves can also be used as 
lower and upper envelopes for the constraints to be imposed, on the overall stiffness coefficient and damping ratio, in the process 
of optimization and identification of the parameters of theoretical models. 

In Fig. 7 are displayed the computed static deflections, of the upper and the lower bounds, under 50 N steady feed force in the 
excitation frequency range [10 Hz, 50 Hz]. This deflection is decreasing with increasing the frequency. Moreover, the deflection 
difference between the upper and the lower bounds is decreasing with increasing the frequency. In fact, the upper bound has a 
lower stiffness than the lower bound, consequently it has higher deflection. Figure 8 gives the computed upper and the lower 
limits of the maximum static deflection, in the Z-direction, versus the static feed deflection. It shows that this maximum 
deflection is in millimeter ranges, corresponding to the excitation frequency 10 Hz, and that it increases linearly with the increase 
of the static feed force. Furthermore, these limits can be used as constraints in the optimization process and in the parameter’s 
identification. 

 

 

Fig. 4. Predicted damping ratio versus the grip force for various handle frequencies. 
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a) DPMI modulus b) DPMI phase 

Fig. 5. Comparisons of Z-direction DPMI modulus and phase versus the excitation frequency. Circles are ISO-10068(2012). The theoretical results: 
upper bound in blue and lower bound in black. 

  
a) b) 

Fig. 6. Stiffness coefficient and the damping ratio versus the excitation frequency. The upper bound in blue and the lower bound in black. 

  

Fig. 7. Static deflection versus the excitation frequency under 50 N feed 
force. The upper bound in blue and the lower bound in black. 

Fig. 8. Maximum static deflection versus the feed force for 10 Hz 
excitation frequency. The upper bound in blue and the lower bound in 

black. 
 

3.3 DPMI versus the excitation frequency and the grip force 

Gurram et al. [22, 23] conducted a series of experiments to measure DPMI in the three hands directions. These experiments 

were conducted, using a 38 mm diameter handle, at three different grip force levels of 10 N, 25 N and 50 N under sinusoidal 

imposed vibrations having three constant acceleration amplitudes of , 2g g and 3g . The arm was maintained in a horizontal 

position with the elbow bent 90 degrees. The excitation frequency f and the grip force Fg are varied during this experiment. The 54 

experimental data of the Z-direction DPMI are listed in [22].  

In what follows, the mass of the HAS will be taken constant and equal to 5.8 kg. This value is the mass determined, in the 

previous application, for Z-direction data of the ISO-10068 (2012). The stiffness and the damping coefficients are expressed as 

multivariate Padé approximants function of the excitation frequency f and the grip force Fg, as follows 
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Table 2. Identified parameters of the damping and stiffness coefficients, for 2g amplitude  

Damping coefficient parameters 

0,0
228.4c =  1,1 55560.9538c =  1,2 1278.1341c =  1,0 254548.9576c =  

0,1 15016.1727c =−  2,1 52.2810c =  2,0 3751.2992c =−  0,2 69339.8850c =  

1,3 30.0261c =−  3,0 124.6218c =  0,3 4018.8253c =  2,2 9.8503c =−  

4,0 0.2034c =−  0,4 101.2559c =−  3,1 0.7720c =  1,0 13610.9124=σ  

0,1 5117.8455=−σ  1,1 285.1447=−σ  2,0 41.0324=−σ  0,2 3924.9845=σ  

1,2 2.4519=σ  3,0 0.4293=σ  0,3 69.8261=−σ  2,1 0.8906=−σ  

Stiffness coefficient parameters 

0,0 1000.1=κ  2,0 235.1985=κ  3,0 2.0058=−κ  4,0 0.0054=κ  

5,0 0.0000006=−κ  1,1 137.1256=−κ  1,2 5.5754=κ  1,3 0.0653=−κ  

3,1 0.0065=κ  2,1 0.1243=κ  2,2 0.0017=−κ  1,0 0.0086=−β  

2,0 0.00002=β  0,1 0.0003=β  1,1 0.00003=β  0,2 0.000005=−β  

 

  

Case of g acceleration amplitude 

  

Case of 2g acceleration amplitude 

  

Case of 3g acceleration amplitude 

Fig. 9. DPMI modulus and phase versus the excitation frequency, for 10N, 25N and 50N grip forces. Experimental data [18] in circles and theoretical 
results in lines 
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Table 3. RMSE and the correlation of various quantities of DPMI, for 2g amplitude  

 RMSE Correlation 

r
Z [N.s/m] 2.30 0.999 

im
Z [N.s/m] 2.29 0.995 

Z [N.s/m] 2.45 0.999 

ϕ [degrees] 0.59 0.998 
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The identified parameters are listed in Table 2 in the case of 2g acceleration amplitude. Table 3 gives the root-mean-square 
errors (RMSE) and the correlation coefficient between the experimental and the theoretical DPMI. All correlations are above 0.99 
and all RMSE are below 2.5, this proves the high accuracy and the validity of the theoretical model. 

Figure 9 illustrates comparisons of the theoretical and the experimental DPMI modulus and phase in the case of g , 2g and 3g  
acceleration amplitude of the handle. Three grip forces are considered that are 10N, 25N and 50N. These plots show the agreement 
between the experimental data [22], in circles, and the theoretical model in continuous lines.  

Figure 10 shows the variation of the derived theoretical stiffness coefficient versus the excitation frequency for the three grip 
forces (10N, 25N and 50N), in the case of 2g excitation amplitude. This figure reveals that the stiffness increases with increasing 
the excitation frequency regardless of the grip force values. For high frequencies, values of the stiffness coefficient are in the 
range of mega Newton per meter. The same tendencies of the stiffness coefficient are obtained for the excitation acceleration 
amplitudes 1g and 3g .  

In Figure 11 are shown ratios of the stiffness coefficients of the excitation amplitudes 2g and 3g to the stiffness coefficient 
corresponding to g , in the case of 50 N grip force. These ratios are decreasing with increasing the excitation frequency and they 
tend to unity for high frequencies. This decreasing indicates that the overall stiffness coefficient of the HAS is becoming 
independent of the excitation acceleration amplitude for excitation frequencies beyond 100 Hz. Moreover, in low frequencies, 
Figure 11 reveals that increasing the acceleration amplitude of the handle increases the stiffness of the HAS in a nonlinear 
manner. This tendency in low frequencies can be explained by additional muscular contraction caused by the tonic vibration 
reflex [24].  

 
Fig. 10. Stiffness coefficient versus the excitation frequency for various grip forces, in the case of 2g excitation amplitude 

 
Fig. 11. Ratios of stiffness coefficients versus the excitation frequency for 50 N grip force 
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Fig. 12. Static deflection versus the excitation frequency for various grip forces, in the case of 2g excitation amplitude 

 
Fig. 13. Damping ratio, for 2g excitation amplitude, versus the excitation frequency for various grip forces 

  
 

Fig. 14. Vibration power absorption spectra for various grip forces, in the case of 2g excitation amplitude. Circles denote the experimental 
measurements.  

Figure 12 displays the static deflection of the driving point, under a constant feed force of 50 N, versus the excitation 
frequency for the three grip forces. Figure 12 demonstrates that the static deflection is decreasing with increasing the frequency, 
regardless of the grip force. Furthermore, in low frequencies, increasing the grip force induces higher static deflection. In high 
frequencies, the effect of the grip force is negligible and the static deflection tends to zero. For the same data sets that we are 
using, Rakheja et al. [10] computed the static deflection; under 50N feed force, of a 3-DOF and a 4-DOF models. They found 
unrealistic constant static deflections of 566.2 mm for the 3-DOF model and 571.5 mm for the 4-DOF model. As reported in the 
magnification of Figure 11, the maximum static deflection computed by our model is less than 4 mm for the three used grip 
forces. Our results are realistic since the static deflection of the skin and tissues in the human hand, in contact with the handle, 
are relatively low. 

Figure 13 displays the derived damping ratio versus the excitation frequency for the three grip forces (10N, 25N and 50N) in 
the case of 2g acceleration amplitude. It reveals that the derived damping ratio is decreasing to increasing the excitation 

frequency for the three values of the grip force. The decrease rate is bigger for low frequencies (< 40 Hz). In addition, the damping 
ratio is less than 0.18 for all three grip forces. For the same Z-axis experimental measurements, Rakheja et al. [10] found the 
following constant damping ratios: (2.36, 42.31, 0.10) for the 3-DOF model and (2.94, 3.52, 15.44, 0.23) for the 4-DOF model. They 
concluded that the models with high damping ratios and low stiffness coefficients are not adequate for the realization of a 
mechanical hand-arm simulator. To be noted that the damping ratio is behaving similarly for the accelerations levels 1g and 3g . 

Figure 14 illustrates comparisons of the measured and theoretical vibration power absorption spectra, in the case 
of 2g excitation amplitude, for 10N, 25N and 50N grip forces. These spectra reveal that the power absorption of the HAS is 

predominant in the low-frequency range [10 Hz, 30 Hz] and it is decreasing with increasing the excitation frequency.  
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Fig. 15. Vibration power absorption versus the grip force, for various excitation frequencies, in the case of 2g acceleration amplitude. Circles denote 

the experimental measurements 

Figure 15 shows the vibration power absorption of the HAS versus the grip force, in the case of 2g excitation amplitude, for 

various excitation frequencies. The experimentally measured power absorption in [22] is shown as circles. Figure 15 reveals that 
the grip force has a major influence on the absorbed power only at low frequencies where increasing the grip force increases the 
absorbed power.  

4. Conclusion 

This study aimed at the development of simple biodynamic models of the human hand-arm system (HAS) that enables 
among others the computation of the stiffness and the damping coefficients. The models consisted of two nonlinear single DOF 
system with the stiffness and the damping coefficients dependent on the HAS vibration influencing factors. These dependencies 
were expressed using multivariate Padé approximants. Using the harmonic balance method, expressions of the nonlinear 
displacement transmissibility and DPMI were derived. The model parameters were identified by minimizing constrained objective 
function errors between the computed and measured target transmissibility or DPMI characteristics. The proposed workflow was 
applied to three different Z-direction measured data. The stiffness coefficient and the damping ratio were computed in terms of 
the excitation frequency and/or the grip force. The proposed models can be utilized as a simulator of the HAS using Magneto-
rheological dampers and variable stiffness materials. It is noteworthy that our single-DOF models give the overall biodynamic 
response of the HAS and are not able to give information about the response in the HAS subsystems. Our future research venues 
will focus on applying the same workflow to Multi-DOF linear and nonlinear models of the HAS, with varying parameters, in order 
to have more information on the distribution of the biodynamic responses of the HAS. 
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