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Abstract. In this article, we come up with a novel numerical scheme based on Haar wavelet (HW) along with non-
standard finite difference (NSFD) scheme to solve time fractional Burgers’ equation with variable diffusion coefficient
and time delay. In the solution process, we discretize the fractional time derivative by NSFD L1 formula and spatial
derivative by HWs series expansion. We use the quasilinearisation process to linearize the nonlinear term. Also,
the convergence of the scheme is discussed. The efficiency and correctness of the proposed scheme are assessed by
L∞-error and L2-error norms.
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1. Introduction

Recently, the study of fractional calculus has been given considerable attention because of its wide applications in modeling of
signal processing, electrochemistry, mathematical biology, fluid dynamics, and other scientific areas. Several books on fractional
calculus have been published by the researchers such as Miller and Ross [1], Oldham and Spainer [2], Podlubny [3] and Kilbas et
al. [4], Agarwal et al. [5]. Also, a delay differential equations have numerous applications in chemical, biological and transportation
systems which can be found in [6–9,11].

In this article, we consider the variable coefficient partial differential equation with time delay, given by

Dσ
t ω(x, t)− (µ(x)ωx(x, t))x + ωp(x, t)ωx(x, t) = g

(
x, t, ω(x, t− τ)

)
, (x, t) ∈ (0, 1)× (0, T ], (1)

with the boundary conditions (BCs)
ω(0, t) = β0(t), ω(1, t) = β1(t), t ∈ (0, T ] (2)

and initial condition (IC)
ω(x, t) = φ(x, t), (x, t) ∈ [0, 1]× [−τ, 0]. (3)

Here

A1 ω(x, t) ∈ C2,1
(
[0, 1]× [−τ, T ]

)
is unknown function with time variable t and space variable x.

A2 p is any positive integer.

A3 µ(x) is space variable coefficient which satisfies 0 < c0 ≤ µ(x) ≤ c1.

A4 φ(x, t) is sufficiently smooth prehistory function.

A5 g(x, t, ω(x, t− τ)) stands for nonlinear delay source term with τ > 0 and the fractional derivative of order σ (0 < σ ≤ 1) is defined
as

Dσ
t ω(x, t) =

{
1

Γ(1−σ)

∫ t
0 (t− ξ)−σ ∂ω(x,ξ)

∂ξ
dξ, 0 < σ < 1,

∂ω(x,t)
∂t

, σ = 1,
(4)

where Γ() represents gamma function (see [4]).
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For σ = 1, Eq.(1) becomes classical semilinear convection reaction-diffusion equation with time delay. Several numerical
schemes have been studied for σ = 1. For instant, Zang et al. [12] discussed a linearized compact multi-splitting scheme to solve
nonlinear partial differential equations (PDEs) with time delay. Pao [13] proposed a monotone iterative technique for the numerical
solutions of a convection reaction-diffusion equation with delay. Zang et al. [14] proposed implicit-explicit multistep finite-element
methods for nonlinear convection-diffusion-reaction equations with time delay. Xie et al. [15] proposed a compact finite difference
scheme for variable coefficient PDEs with time delay.

Meanwhile, fractional differential equations with delay have drawn the attention of researchers due to their broad utilization
in economics, population dynamics, automatic control, etc. (see [16–24] and the references therein). Also, with variable coefficient
more complicated natural phenomena can be modeled (See [25–29]). It is not easy to solve fractional partial differential equations
(FPDEs) with delay accurately and effectively. Because the evolution of dependent variable of FPDEs with delay at time t not only
depends at t − τ, but also depends on all previous solutions due to the character of history dependence of a fractional derivative.
There are only few cases, when analytical solutions of the fractional differential equations with delay can be found. For instant,
Zigen Ouyang [30] discussed the existence and uniqueness of the solution for a class of nonlinear fractional-order partial differential
equations with delay. Rihan [31] proposed an unconditionally stable implicit difference scheme to solve time-fractional PDEs with
time delay. Pimenov et al. [32] discussed an unconditionally stable difference scheme for fractional diffusion equations with non-
linear delay terms. Zang et al. [33] proposed a compact finite difference scheme for semilinear FPDEs with time delay. Mohebbi [34]
proposed finite difference and spectral collocation method for the numerical solution of semilinear FPDEs with time delay. Sweilam
et al. [35] proposed a nonstandard weighted average finite difference method for the numerical study of variable order Burgers’
equation with proportional delay. Jaradat et al. [36] proposed two numerical scheme based on fractional power series and homotopy
perturbation technique to study the propagation of population growth model.

Numerical solutions of fractional differential equations using the wavelets method can be found in [37–44, 58]. Most of the
numerical methods aforementioned, are based on HWs operational matrix of fractional order integration.

In this work, we establish a numerical technique for time-fractional Burgers’ equation with variable diffusion coefficient and
time delay. In the solution process, we discretize the fractional time derivative by NSFD L1 formula and spatial derivative by HWs
series. Also, we use the quasilinearisation process to deal with the nonlinear term. As far as we know, the study of fractional
differential equations with the help of HWs along with NSFD L1 scheme does not exist in literature. The proposed method provides
the implicit form of the approximate solution and has the following advantages:

(i) Compared to other methods, present method is conceptually simple, accurate, fast, memory-efficient, and has minimal compu-
tation cost.

(ii) In the solution process, a few sparse matrices are obtained and there is no complex methodology or integration required.

(iii) The present method is convenient to use for nonlinear boundary value problems as the BCs are automatically used in the
algorithm.

This paper is organized as follows: In Section 2., we discuss the preliminaries of NSFD and HWs. In Section 3., we establish the
numerical scheme for the Eq.(1) with the help of HWs approximation. Section 4., illustrates the convergence of the method with the
help of L2-error norm estimation. In Section 5., we give an algorithm for the entire methodology. In Section 6., we test the method
to some examples and report its L∞-error and L2-error norms in tables. We also illustrate its accuracy with the help of several
graphs. In Section 7., we discuss the conclusion of the paper.

2.Methodology

In this part we discuss about NSFD scheme and HWs.

2.1 NSFD Scheme

The foundation of the NSFD scheme is based on exact finite difference schemes. Originally, it was established by Mickens
[45, 46] to analyze ordinary differential equations (ODEs), and successively, their uses have been investigated in several fields. The
formulation of NSFD scheme depends on two issues: (i) how derivative is discretized and (ii) how the nonlinear term is treated.
One of the simplest discretization is the forward difference scheme. In the finite difference method, first derivative term dω

dt
is

approximated by ω(t+∆t)−ω(t)
∆t

. However, inMickens type scheme dω
dt

≈ ω(t+∆t)−ω(t)
ϕ(∆t)

, i.e., the step size∆t is replaced by an increasing
continuous function ϕ(∆t) which satisfy the following properties:

ϕ(∆t) = ∆t+O(∆t2), 0 < ϕ(∆t) < 1, as ∆t→ 0.

Examples of the denominator functions ϕ(∆t) that follows the above conditions are [45,47–49]

sin∆t, e∆t − 1, 1− e−∆t,
1− e−λ∆t

λ
, etc.

A method is termed as nonstandard if at least one of the following conditions satisfy [50]:

1. In the difference approximation of the derivative, the denominator is replaced by a non-trivial function of the step size which
is more complicated than those conventionally used.

2. A nonlocal approximation is used.

The literature review reveals that there is no general method to find ϕ(∆t) andwhich nonlinear terms are to be placed instead. Some
special techniques can be found in [45,47–49,51,52].

2.2 Haar Wavelets

Definition 2..1. Suppose x belongs to the interval [0, 1]. We define

ψȷκ(x) = ψ(2ȷx− κ), 0 ≤ κ ≤ 2ȷ − 1, ȷ = 0, 1, 2, ..., J. (5)
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where

ψ(x) = χ[0, 1
2
)(x)− χ[ 1

2
,1)(x), (6)

and J is the maximum level of resolution. Then, the HWs are defined by

ℏ1(x) = χ[0,1](x), ℏı(x) = ψȷκ(x) ı = 2ȷ + κ+ 1. (7)

Dividing the interval [0, 1] into sub-intervals having equal length ∆x = 1/2M . In this case the Haar wavelet is given as:

ℏı(x) = χ[ζ1,ζ2) − χ[ζ2,ζ3), (8)

where
ζ1 = 2κρ∆x, ζ2 = (2κ+ 1)ρ∆x, ζ3 = 2(κ+ 1)ρ∆x and ρ =M/m. (9)

In the above relations, J represents maximum level of resolution of HWs and the integersm = 2ȷ, 0 ≤ ȷ ≤ J is parameter related to
dilation and κ, 0 ≤ κ ≤ m−1, is associated with the translation. Using the relation ı = m+κ+1, we can evaluate the index ”ı” of the
Haar function. The minimal value of ı is 2 which is obtained by taking the least values κ and m, i.e., 0 and 1 respectively. Whereas
the largest value of ı is 2J + 1, which is obtained by taking the largest value of ȷ and κ, i.e., ȷ = J and κ = m− 1 respectively. For the
case ı = 1, we have ℏ1(x) = χ[0,1](x).

To analyze the differential equation of qth-order, the following integrals of Haar functions are needed.

Iı,ϑ(x) =
1

(ϑ− 1)!

∫ x

0
(x− ξ)ϑ−1ℏı(ξ) dξ, (10)

where ϑ and ı are integers such that 1 ≤ ϑ ≤ q, 1 ≤ ı ≤ 2M. The integral defined by (10) can be determined easily and is given by

Iı,ϑ =


0, x < ζ1,
(x−ζ1)

ϑ

ϑ!
, x ∈ [ζ1, ζ2),

(x−ζ1)
ϑ

ϑ!
− 2

(x−ζ2)
ϑ

ϑ!
, x ∈ [ζ2, ζ3),

(x−ζ1)
ϑ

ϑ!
− 2

(x−ζ2)
ϑ

ϑ!
+

(x−ζ3)
ϑ

ϑ!
, x ≥ ζ3.

(11)

Formula (11) works with ı > 1. In case ı = 1, we have ζ1 = 0, ζ2 = ζ3 = 1 and

I1,ϑ =
xϑ

ϑ!
. (12)

We choose the collocation points xc = c−0.5
2M

, c = 1, 2, 3, · · · , 2M andM = 2J . We denote the Haar matrix Hx and operational matrix
of integration by Pϑ, ϑ = 1, 2, 3, · · · are defined as

Hx = [ℏ(ı, c)]2M×2M,

and
Pϑ = [Iϑ(ı, c)]2M×2M ,

respectively. Here ℏ(ı, c) = ℏı(xc), Iϑ(ı, c) = Iı,ϑ(xc), and ϑ denotes the order of integration.

3. Discretization

3.1 Semi Discretization at Temporal Grid

Let us consider fractional differential equation (1) and denote Dσ
t ω(x, t) =

∂σω(x,t)
∂tσ

, we have

∂σω

∂tσ
− µ′(x)ωx − µ(x)ωxx + ωpωx = g

(
x, t, ω(x, t− τ)

)
, (x, t) ∈ (0, 1)× (0, T ], (13)

with the BCs
ω(0, t) = β0(t), ω(1, t) = β1(t), t ∈ [0, T ] (14)

and IC
ω(x, t) = φ(x, t), x ∈ [0, 1]× [−τ, 0]. (15)

Suppose ∆t is the size of time step such that ∆t = τ
n
, where n is a positive integer. Also, tℓ = ℓ∆t (−n ≤ ℓ ≤ N), where N = [ T

∆t
].

We discretize the time derivative in Eq.(13) in the Caputo’s sense by L1 formula [53]

∂σω

∂tσ

∣∣∣
tℓ

=
(∆t)−σ

Γ(2− σ)

[
ωℓ − ωℓ−1 +

ℓ−1∑
q=1

Θσ
q

(
ωℓ−q − wℓ−q−1

)]
+O(∆t), (16)

where Θσ
q = (q + 1)1−σ − q1−σ .

Now, we discretize Eq.(13) according to θ−weighted scheme [54], we get

(∆t)−σ

Γ(2− σ)

[
ωℓ+1 − ωℓ

]
+

(∆t)−σ

Γ(2− σ)

ℓ∑
q=1

Θσ
q

[
ωℓ−q+1 − wℓ−q

]
− θµ′(x)(ωℓ+1)x − (1− θ)µ′(x)(ωℓ)x

− θµ(x)(ωℓ+1)xx + (1− θ)µ(x)(ωℓ)x + θ(ωℓ+1)
p(ωℓ+1)x + (1− θ)(ωℓ)

p(ωℓ)x =

θg
(
x, tℓ+1, ω(x, tℓ+1 − τ)

)
+ (1− θ)g

(
x, tℓ, ω(x, tℓ − τ)

)
. (17)
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Taking θ = 1
2
, i.e., average of two successive time levels ℓ and ℓ+ 1 and replacing ∆t by ϕ(∆t), we get

(ϕ(∆t))−σ

Γ(2− σ)

[
ωℓ+1 − ωℓ

]
+

(ϕ(∆t))−σ

Γ(2− σ)

ℓ∑
q=1

Θσ
q

[
ωℓ−q+1 − ωℓ−q

]
−
µ′(x)

2

(
(ωℓ+1)x + (ωℓ)x

)
−
µ(x)

2

(
(ωℓ+1)xx + (ωℓ)xx

)
+

1

2

(
(ωℓ+1)

p(ωℓ+1)x + (ωℓ)
p(ωℓ)x

)
=

1

2

(
g
(
x, tℓ+1, ω(x, tℓ+1 − τ)

)
+ g

(
x, tℓ, ω(x, tℓ − τ)

))
, (18)

with the BCs

ωℓ+1(0) = β0(tℓ+1), ωℓ+1(1) = β1(tℓ+1), 0 ≤ ℓ ≤ N − 1, (19)

and IC
ωℓ+1(x) = φℓ+1(x), − n ≤ ℓ < 0. (20)

Equation (18) can be rearranged at the (ℓ+ 1)th time level as follows:

−
µ(x)

2
(ωℓ+1)xx +

1

2
(ωℓ+1)

p(ωℓ+1)x −
µ′(x)

2
(ωℓ+1)x +Gωℓ+1 = −G

ℓ∑
q=1

Θσ
q

[
ωℓ−q+1 − ωℓ−q

]
+Gωℓ +

µ′(x)

2
(ωℓ)x +

µ(x)

2
(ωℓ)xx −

1

2
(ωℓ)

p(ωℓ)x

+
1

2

(
g(x, tℓ+1, ω(x, tℓ+1 − τ)) + g(x, tℓ, ω(x, tℓ − τ))

)
, (21)

with the BCs

ωℓ+1(0) = β1(tℓ+1), ωℓ+1(1) = β0(tℓ+1), 0 ≤ ℓ ≤ N − 1, (22)

and IC
ωℓ+1(x) = φℓ+1(x), − n ≤ ℓ < 0, (23)

where G =
(ϕ(∆t))−σ

Γ(2−σ)
. At every (ℓ + 1)th time step, Eq.(21) represents a nonlinear ODE. There are several techniques to linearize

the nonlinearity term in Eq.(21). We use the quasilinearisation technique [55] which has quadratic rate of convergence, i.e., |ωr+1
ℓ+1 −

ωr
ℓ+1| ≤ |ωr

ℓ+1 − ωr−1
ℓ+1 |

2, where r is the iteration index and ωr+1
ℓ+1 , ω

r
ℓ+1 and ωr−1

ℓ+1 are the approximated solutions at (r + 1)th, (r)th

and (r − 1)th steps, respectively. Implementing the quasilinearisation process, we get

(ωr+1
ℓ+1 )

p(ωr+1
ℓ+1 )x =

[
(ωr

ℓ+1)
p(ωr

ℓ+1)x + p(ωr
ℓ+1)

p−1
(
ωr+1
ℓ+1 − ωr

ℓ+1

)
(ωr

ℓ+1)x + (ωr
ℓ+1)

p
(
(ωr+1

ℓ+1 )x − (ωr
ℓ+1)x

)]
. (24)

Using Eq.(24) into the Eq.(21) and simplifying, we get

−
µ(x)

2
(ωr+1

ℓ+1 )xx +
1

2

(
(ωr

ℓ+1)
p −

µ′(x)

2

)
(ωr+1

ℓ+1 )x +
(p
2
(ωr

ℓ+1)
p−1(ωr

ℓ+1)x +G
)
ωr+1
ℓ+1 =

µ(x)

2
(ωr+1

ℓ )xx

+
(µ′(x)

2
−

1

2
(ωr+1

ℓ )p
)
(ωr+1

ℓ )x +
p

2
(ωr

ℓ+1)
p(ωr

ℓ+1)x −G
ℓ∑

q=1

Θσ
q

[
ωr+1
ℓ−q+1 − ωr+1

ℓ−q

]
+Gωr+1

ℓ +
1

2

(
g
(
x, tℓ+1, ω

r+1(x, tℓ+1 − τ)
)
+ g

(
x, tℓ, ω

r+1(x, tℓ − τ)
))
, (25)

with the BCs

ωr+1
ℓ+1 (0) = β0(tℓ+1), ωr+1

ℓ+1 (1) = β1(tℓ+1), 0 ≤ ℓ ≤ N − 1, (26)

and IC
ωr+1
ℓ+1 (x) = φℓ+1(x), − n ≤ ℓ < 0. (27)

3.2 Space Discretization by Haar Wavelets

Let us approximate higher order derivative (ωr+1
ℓ+1 )xx(x) by HWs finite series as

(ωr+1
ℓ+1 )xx(x) =

2M∑
ı=1

cıℏı(x). (28)

Now, integrating Eq.(28) twice and using BCs, we get

(ωr+1
ℓ+1 )x(x) =

2M∑
ı=1

cı
[
Iı,1(x)− Iı,2(1)

]
+

(
β1(tℓ+1)− β0(tℓ+1)

)
, (29)

(ωr+1
ℓ+1 )(x) =

2M∑
ı=1

cı
[
Iı,2(x)− xIı,2(1)

]
+ x

(
β1(tℓ+1)− β0(tℓ+1)

)
+ β0(tℓ+1). (30)
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Using Eqs.(28)-(30) in Eq.(25), we get

2M∑
ı=1

cı
[
−
µ(x)

2
ℏı(x) +

(1

2
(ωr

ℓ+1)
p −

µ′(x)

2

)(
Iı,1(x)− Iı,2(1)

)
+

(p
2
(ωr

ℓ+1)
p−1(ωr

ℓ+1)x +G
)(

Iı,2(x)− xIı,2(1)
)]

= −
(1

2
(ωr

ℓ+1)
p −

µ′(x)

2

)(
β1(tℓ+1)− β0(tℓ+1)

)
−

(p
2
(ωr

ℓ+1)
p−1(ωr

ℓ+1)x +G
)
+

(µ′(x)
2

−
1

2
(ωr+1

ℓ )p
)
(ωr+1

ℓ )x

(
x
(
β1(tℓ+1)− β0(tℓ+1)

)
+ β0(tℓ+1)

)
+
p

2
(ωr

ℓ+1)
p(ωr

ℓ+1)x +
µ(x)

2
(ωr+1

ℓ )xx −G

ℓ−1∑
q=1

Θγ
q

[
ωr+1
ℓ−q+1 − ωr+1

ℓ−q

]
+Gωr+1

ℓ +
1

2

(
g
(
x, tℓ+1, ω

r+1(x, tℓ+1 − τ)
)
+ g

(
x, tℓ, ω

r+1(x, tℓ − τ)
))
. (31)

Now, discretizing the Eq.(31) by taking collocation points xc = c−0.5
2M

, c = 1(1)2M , we obtain the following linear system which can
be written in matrix form as

AC = b, (32)

where C = [c1, c2, c3, · · · , c2M ]T , b = [b1, b2, b3, · · · , b2M ]T and A = [aȷ,ı]2M×2M . The elements of the matrix A and column vector b
are

aȷ,ı = −
µ(xȷ)

2
ℏı(xȷ) +

(1

2
(ωr

ℓ+1)
p −

µ′(xȷ)

2

)(
Iı,1(xȷ)− Iı,2(1)

)
+

(p
2
(ωr

ℓ+1)
p−1(ωr

ℓ+1)x +G
)(

Iı,2(xȷ)− xȷIı,2(1)
)
,

bȷ = −
(1

2
(ωr

ℓ+1)
p −

µ′(xȷ)

2

)(
β1(tℓ+1)− β0(tℓ+1)

)
−

(p
2
(ωr

ℓ+1)
p−1(ωr

ℓ+1)x +G
)
+

(µ′(xȷ)
2

−
1

2
(ωr+1

ℓ )p
)
(ωr+1

ℓ )x

(
xȷ

(
β1(tℓ+1)− β0(tℓ+1)

)
+ β0(tℓ+1)

)
+
p

2
(ωr

ℓ+1)
p(ωr

ℓ+1)x +
µ(xȷ)

2
(ωr+1

ℓ )xx −G

ℓ−1∑
q=1

Θγ
q

[
ωr+1
ℓ−q+1 − ωr+1

ℓ−q

]
+Gωr+1

ℓ +
1

2

(
g
(
xȷ, tℓ+1, ω

r+1(xȷ, tℓ+1 − τ)
)
+ g

(
xȷ, tℓ, ω

r+1(xȷ, tℓ − τ)
))
, 1 ≤ ȷ ≤ 2M,

respectively. Wavelet coefficients cȷ (1 ≤ ȷ ≤ 2M) can be calculated successively by solving the linear system (32). To start the
iteration, we choose the initial condition as the initial guess. Then, at each time level, we can obtain approximate solutions using
the wavelet coefficients into the Eqs.(28),(29), and (30).

4. Convergence analysis

We consider the asymptotic expression of the Eq.(30) for the investigation of convergence of the proposed scheme as follows

ω(x) =
∞∑
ı=1

cı
[
Iı,2(x)− xIı,2(1)

]
+ x

(
β1(tℓ+1)− β0(tℓ+1)

)
+ β0(tℓ+1). (33)

Theorem 4..1. Let us suppose that F(x) =
d2ω(x)

dx2 ∈ L2(R) be continuous on [0, 1] and its first order derivative is bounded, i.e.,

∀x ∈ [0, 1] ∃K :
∣∣∣dF(x)

dx

∣∣∣ < K. (34)

Then ||EJ ||2 = ||ω(x)− ω2M (x)||2, where ω2M (x) is the approximated solution, converges with the second order convergence rate.

Proof. Consider ||EJ ||2. Hence we have,

||EJ ||22 =

∫ 1

0

[ ∞∑
ȷ=J+1

2ȷ−1∑
κ=0

c2ȷ+κ+1

(
I2ȷ+κ+1,2(x)− xI2ȷ+κ+1,2(1)

)]2
dx

=

∞∑
ȷ=J+1

2ȷ−1∑
κ=0

∞∑
l=J+1

2l−1∑
s=0

c2ȷ+κ+1c2l+s+1

∫ 1

0

[(
I2ȷ+κ+1,2(x)− xI2ȷ+κ+1,2(1)

)
(
I2l+s+1,2(x)− xI2l+s+1,2(1)

)]
dx. (35)

Firstly, we show that the function Iı,2(x) is bounded over each subinterval of [0, 1]. It is clear that Iı,2(x) = 0 for x ∈ [0, ζ1]. Also the
function Iı,2(x) is increasing monotonically over the interval [ζ1, ζ2] and therefore at the end point x = ζ2, its maximum value can
be obtained. Thus

Iı,2(x) = I2ȷ+κ+1,2(x) ≤
(ζ2 − ζ1)2

2
=

1

2

( 1

2(ȷ+1)

)2
, ∀x ∈ [ζ1, ζ2]. (36)

In the interval [ζ2, ζ3], the function Iı,2(x) can be simply shown to be monotonically increasing with the help of Eqs. (9), (10), and
∂Iı,2(x)

∂x
> 0 if x < ζ3. Thus at the end point x = ζ3, the function Iı,2(x) attains its maximum value and we have

Iı,2(x) = I2ȷ+κ+1,2(x) ≤
( 1

2(ȷ+1)

)2
, ∀x ∈ [ζ2, ζ3]. (37)
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For the subinterval [ζ3, 1], Iı,2(x) can be expressed as ( [59, Equation (22)])

Iı,2(x) = I2ȷ+κ+1,2(x) =
( 1

2(ȷ+1)

)2
, ∀x ∈ [ζ3, 1]. (38)

Thus the function Iı,2(x) is bounded and its upper bound is given by

Iı,2(x) = I2ȷ+κ+1,2(x) ≤
( 1

2(ȷ+1)

)2
, ∀x ∈ [0, 1]. (39)

Now, we have (
Iı,2(x)− xIı,2(1)

)
≤ |Iı,2(x)|+ |x||Iı,2(1)|,

≤ |Iı,2(x)|+ |Iı,2(1)|,

≤ 2
( 1

2(ȷ+1)

)2
. (40)

Similarly, we have (
Il,2(x)− xIl,2(1)

)
≤ 2

( 1

2(l+1)

)2
. (41)

Also cı (ı = 2ȷ + κ+ 1) can be evaluated as

cı = 2ȷ
∫ 1

0
F(x)hı(x) = 2ȷ

[ ∫ ζ2

ζ1

F(x)dx−
∫ ζ3

ζ2

F(x)dx
]
,

= 2ȷ
[
(ζ2 − ζ1)F(η1)− (ζ3 − ζ2)F(η2)

]
, (42)

where η1 ∈ (ζ1, ζ2) and η2 ∈ (ζ2, ζ3). It follows from Eq. (9) that ζ2 − ζ1 = ζ3 − ζ2 = 1
2m

= 1
2ȷ+1 . Equation (42) becomes

cı =
1

2

[
F(η1)−F(η2)

]
=

1

2
(η1 − η2)

dF(ξ)

dξ
, ξ ∈ (η1, η2). (43)

From assumption (34) and (43), it follows that

cı ≤ K
1

2ȷ+1
. (44)

Using (36) to (44) in Eq.(35), we get

||EJ ||22 ≤
∞∑

ȷ=J+1

2ȷ−1∑
κ=0

∞∑
l=J+1

2l−1∑
s=0

K2

2ȷ+l+2

( 1

2(ȷ+1)

)2( 1

2(l+1)

)2
,

≤ K2
∞∑

ȷ=J+1

∞∑
l=J+1

1

2ȷ+l+2
2ȷ
( 1

2(ȷ+1)

)2
2l
( 1

2(l+1)

)2
,

≤ 3K2
( 1

2J+1

)4
.

Hence

||EJ ||2 ≤
√
3K

( 1

2J+1

)2
. (45)

From Eq.(45), it can be seen that the error bound directly depends on J-th level of resolution of HW and also ||EJ ||2 → 0 as J
moves towards infinity. Thus, if J tends to infinity our scheme approaches to the exact solution.

5. Algorithm

In this part, we describe the algorithm of the proposed methodology. Following are the key steps:

Step 1: In Eq.(13), the time derivative of fractional order is replaced by NSFD L1 formula and an average of other terms taken to
arrive at second order nonlinear ODE in (21).

Step 2: The non-linear term in (21) is linearised by quasilinearisation (24) to arrive at second order linear ODE (25).

Step 3: Haar wavelet collocation method is applied on (25) to get system of linear equations (32).

Step 4: The linear system (32) gives wavelet coefficients for each iteration at each time level.

Step 5: To get the solution of each iteration at each time level, computed wavelet coefficients are used in Eq. (30).

Step 6: We repeat steps 4, 5 to achieve better accuracy by quasilinearisation.
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6. Computational Experiment

In order to assess the competency and accuracy of the proposed scheme, we implement the scheme over some benchmark
problems and report errors by using
(i) Mean root square error norm (L2)

L2-error =

√√√√∆x
2M∑
j=0

| ωexact
j − (ω2M )j |2, (46)

(ii) Maximum error norm (L∞)

L∞-error = ∥ωexact − ω2M∥∞ = max
j

| ωexact
j − (ω2M )j |, (47)

where w2M is the approximated solution by the present scheme. Additionally, we calculate ROC (rate of convergence) which is
defined as [56]

ROC =
log[Eω(2M)/Eω(4M)]

log 2
, (48)

where Eω is any of the error norm with different J . All the computations are performed for number of iterations (for quasilineariza-
tion) r = 5 by using the Mathematica software on a computer with processor Intel (R) Core(TM) i5-7200U CPU @ 2.50GHz 2.70GHz
and RAM 4.00GB. Throughout the computations, we have taken the denominator function ϕ(∆t) = e∆t − 1.

6.1 Example 1

Here we investigate the following nonlinear fractional differential equation with time delay given by

∂σω

∂tσ
− (µ(x)ωx)x + ω5wx = ω2(x, t− 0.1) +H(x, t), (x, t) ∈ (0, 1)× (0, 1], (49)

with homogenous BCs

ω(0, t) = 0 = ω(1, t), t ∈ (0, 1], (50)

and IC

ω(x, t) = t2+σ sin(2πx), x ∈ [0, 1]× [−0.1, 0], (51)

where µ(x) = x2 + 1 and

H(x, t) =
Γ(3 + σ)

Γ(3)
t2 sin(2πx)− 2πt2+σ [2x cos(2πx)− 2π(x2 + 1) sin(2πx)]

+ 2π cos(2πx) sin5(2πx)t12+6σ − sin2(2πx)(t− 0.1)4+2σ . (52)

It is observed that the function [57]

ω(x, t) = t2+σ sin(2πx), (53)

is exact solution of the problem 6.1.
In Table 1, for the comparison purpose, we take σ = 0.25, 0.50, 0.75, T = 1, number of collocation points 2M = 64 and compute

L2-error andL∞-error norms for different time steps∆t. FromTable 1, we can see that the present scheme provides better numerical
results as compared to the method in [57]. Also, we see that the accuracy improves on decreasing the time step. In Table 2, we take
σ = 0.25, 0.50, 0.75, T = 1, ∆t = 0.001 and compute L2-error and L∞-error norms for different J . We can see that our results are
better than the results presented in [57]. Also, we can see that both L∞-error and L2-error norms decrease with an increase of
J . It is well known that HW method converges quadratically. In Table 3, we list the ROC of the present scheme and see that it is
very close to its theoretical value. From Table 3, we can also see that the present scheme provides acceptable results for σ = 1 and
the ROC approaches its theoretical value. Moreover, Fig. 1 represents the absolute error of the problem 6.1 for σ = 0.25 (left) and
σ = 0.75 (right) at T = 1with time step∆t = 0.01 for J = 2, 3, 4, 5. We can see that the solutions provided by our scheme are bounded
throughout the domain and the absolute error becomes smaller and smaller on increasing J . Figure 2 shows the analytical solutions
surface (left) and approximated solutions surface (right) for σ = 0.60, 2M = 32 and step size of time ∆t = 0.001. From the Fig. 2, we
can see that the analytical solutions surface and the approximated solutions surface by our method look nearly the same.

Table 1. Comparison of results with existing results for J = 5, σ = 0.25, 0.50, 0.75 at T = 1 for different time step ∆t of the problem 6.1.

[57] Present method Present method
L∞-error L∞-error L2-error

∆t σ = 0.25 σ = 0.50 σ = 0.75 σ = 0.25 σ = 0.50 σ = 0.75 σ = 0.25 σ = 0.50 σ = 0.75

0.05 2.908E-03 3.257E-03 4.035E-03 1.70349E-03 1.65777E-03 1.03992E-03 1.02973E-03 1.00502E-03 6.60411E-04
0.025 1.638E-03 1.826E-03 2.206E-03 1.00799E-03 1.01348E-03 7.51685E-04 6.45837E-04 6.48957E-04 5.06063E-04
0.0125 8.709E-04 9.679E-04 1.149E-03 6.52747E-04 6.65386E-04 5.94737E-04 4.57053E-04 4.63107E-04 4.04856E-04
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Table 2. Comparison with existing results at T = 1 for σ = 0.25, 0.50, 0.75 and ∆t = 0.001 of the problem 6.1.

[57] (∆t = 0.001) Present method (∆t = 0.001) Present method (∆t = 0.001)
L∞-error L∞-error L2-error

N σ = 0.25 σ = 0.50 σ = 0.75 J σ = 0.25 σ = 0.50 σ = 0.75 σ = 0.25 σ = 0.50 σ = 0.75

10 3.554E-02 3.413E-02 3.494E-02 2 2.90154E-02 2.87638E-02 2.83680E-02 1.71543E-02 1.70207E-02 1.68181E-02
20 8.997E-03 8.621E-03 8.832E-03 3 7.47062E-03 7.41068E-03 7.31401E-03 4.48617E-03 4.45259E-03 4.39958E-03
40 2.259E-03 2.182E-03 2.224E-03 4 1.90919E-03 1.89472E-03 1.86838E-03 1.14277E-03 1.13523E-03 1.12079E-03

Table 3. L2 and L∞-error norms and convergence rate for T = 0.5, ∆t = 0.001

σ = 0.5 σ = 1

J L∞-error ROC L2-error ROC L∞-error ROC L2-error ROC
1 1.50845E-2 9.50961E-3 9.55952E-3 6.16729E-3
2 4.95726E-3 1.60545 2.98425E-3 1.67201 3.18107E-3 1.58743 1.94040E-3 1.66828
3 1.30375E-3 1.92689 7.86108E-3 1.92457 8.31188E-4 1.93626 5.04348E-4 1.94386
4 3.36283E-4 1.95491 2.04648E-4 1.94158 2.05780E-4 2.01407 1.24324E-4 2.02032
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Fig. 1. Absolute error for σ = 0.25 (left) and σ = 0.75 (right) with ∆t = 0.01, for different J at time T = 1 for the problem 6.1.
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Fig. 2. 3D surface of analytical solutions (left) and numerical solutions (right) with σ = 0.60, ∆t = 0.001 and J = 4 for the problem 6.1.

6.2 Example 2

Here we investigate the following nonlinear fractional differential equation with time delay given by

∂σω

∂tσ
− (µ(x)ωx)x + ω2ωx = ω2(x, t− 0.1) +H(x, t), (x, t) ∈ (0, 1)× (0, 1], (54)

with homogenous BCs
ω(0, t) = 0 = ω(1, t), t ∈ (0, 1], (55)

and IC
ω(x, t) = t2+σ sin(2πx), x ∈ [0, 1]× [−0.1, 0], (56)

Journal of Applied and Computational Mechanics, Vol. 7, No. 3, (2021), 1550-1564



1558 Amit Kumar Verma et. al., Vol. 7, No. 3, 2021

where µ(x) = cosx and

H(x, t) =
Γ(3 + σ)

Γ(3)
t2 sin(2πx)− 2πt2+σ [cos(2πx) cos(x)− 2π sin(2πx) sin(x)]

+ 2π cos(2πx) sin2(2πx)t6+3σ − sin2(2πx)(t− 0.1)4+2σ . (57)

We can simply verify that the function

ω(x, t) = t2+σ sin(2πx), (58)

is satisfying the problem 6.2.

In this test problem, we take p = 2 and the delay τ = 0.1 with the trigonometric function as a variable coefficient. In Table 4, we
list L2-error and L∞-error norms for σ = 0.30, 0.60, 0.90, ∆t = 0.001 at T = 1 for different J . From the Table 4, we can see that both
L2-error and L∞-error norms decrease with an increase of J . In Table 6, we list the ROC of the present scheme and see that it is
very close to its theoretical value. From Table 6, we can also see that the present scheme provides acceptable results for σ = 1 and
the ROC approaches its theoretical value. In Table 5, we take σ = 0.25, 0.50, 0.75, T = 0.5 and compute L2-error and L∞-error norms
for different step size of time ∆t and we observe that on refining temporal step, accuracy improves. Moreover, Fig. 3 represents the
absolute error of the problem 6.2 for σ = 0.25 (left) and σ = 0.75 (right) at T = 1 for J = 2, 3, 4, 5 and ∆t = 0.01. It is clear that the
solutions provided by our scheme are bounded throughout the domain and the errors become smaller and smaller on increasing J .
Figure 4 shows the analytical solutions surface (left) and approximated solutions surface (right) for σ = 0.40, 2M = 32 and step size
of time ∆t = 0.001. From the Fig. 4, we can see that the analytical solutions surface and the approximated solutions surface by our
method look nearly the same.

Table 4. L∞-error and L2-error norms of the example 6.2 for σ = 0.30, 0.60, 0.90 with time step size ∆t = 0.001 at time T = 1.

L∞-error L2-error

J σ = 0.30 σ = 0.60 σ = 0.90 σ = 0.30 σ = 0.60 σ = 0.90

2 3.38918E-02 3.23104E-02 3.00905E-02 1.97125E-02 1.89886E-02 1.80144E-02
3 8.73449E-03 8.35108E-03 7.79198E-03 5.13766E-03 4.95101E-03 4.68521E-03
4 2.25167E-03 2.15218E-03 1.98516E-03 1.31252E-03 1.26681E-03 1.18616E-03

Table 5. L∞-error and L2-error norms of the problem 6.2 for J = 5 at T = 0.5, σ = 0.25, 0.50, 0.75 for different time step ∆t.

L∞-error L2-error

∆t σ = 0.25 σ = 0.50 σ = 0.75 σ = 0.25 σ = 0.50 σ = 0.75

0.05 1.08496E-03 1.10371E-03 7.79740E-04 6.71480E-04 6.80235E-04 4.81670E-04
0.025 5.86196E-04 6.15676E-04 4.82923E-04 3.69085E-04 3.84127E-04 3.01464E-04
0.0125 3.30623E-04 3.48835E-04 2.93638E-04 2.14695E-04 2.22647E-04 1.86777E-04

Table 6. L∞-error and L2-error norms and rate of convergence for problem 6.2 at T = 0.5 and ∆t = 0.001.

σ = 0.5 σ = 1

J L∞-error ROC L2-error ROC L∞-error ROC L2-error ROC
1 1.33402E-2 9.86484E-3 8.06318E-3 6.20404E-3
2 4.68023E-3 1.51113 3.02875E-3 1.70357 2.86148E-3 1.49458 1.89454E-3 1.71135
3 1.26213E-3 1.89071 7.99162E-4 1.92216 7.60675E-4 1.91141 4.87908E-4 1.95717
4 3.31431E-4 1.92908 2.12018E-4 1.91389 1.86088E-4 2.03129 1.18024E-4 2.04753

Journal of Applied and Computational Mechanics, Vol. 7, No. 3, (2021), 1550-1564



A novel approach to compute the numerical solution of variable coefficient fractional Burgers’ equation with delay 1559

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
- 0 . 0 0 5

0 . 0 0 0

0 . 0 0 5

0 . 0 1 0

0 . 0 1 5

0 . 0 2 0

0 . 0 2 5

0 . 0 3 0

0 . 0 3 5

 

 

Ab
so

lut
e E

rro
r

X - A x i s

 J = 2
 J = 3
 J = 4
 J = 5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
- 0 . 0 0 5

0 . 0 0 0

0 . 0 0 5

0 . 0 1 0

0 . 0 1 5

0 . 0 2 0

0 . 0 2 5

0 . 0 3 0

0 . 0 3 5
 

 

Ab
so

lut
e E

rro
r

X - A x i s

 J = 2
 J = 3
 J = 4
 J = 5

Fig. 3. Absolute errors for σ = 0.25 (left) and σ = 0.75 (right) with ∆t = 0.01, for different J at time T = 1 for the problem 6.2.
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Fig. 4. 3D surface of analytical solutions (left) and numerical solutions (right) with σ = 0.40, ∆t = 0.001 and J = 4 for the problem 6.2.

6.3 Example 3

Here we implement our scheme to the following fractional differential equation with time delay, given as

∂σω

∂tσ
− (µ(x)ωx)x + ω3wx = ω2(x, t− 0.2) +H(x, t), (x, t) ∈ (0, 1)× (0, 1], (59)

with the non-homogenous BCs

ω(0, t) = t2+σ = ω(1, t), t ∈ (0, 1], (60)

and IC

ω(x, t) = t2+σ cos(2πx), x ∈ [0, 1]× [−0.2, 0], (61)

where µ(x) = ex + cos(x). We can simply verify that the function

ω(x, t) = t2+σ cos(2πx), (62)

is the exact solution. From Eq. (59), the forcing term H(x, t) can be easily obtained. In this test problem, we take p = 3 and
the delay τ = 0.2 with the non-homogeneous BCs and variable coefficient as the function of a sum of the exponential function
and trigonometric function. In Table 7, we list L∞-error and L2-error norms for σ = 0.30, 0.50, 0.70, ∆t = 0.001 at T = 1 for
different J . From the table 7, we can see that both L2-error and L∞-error norms decrease with an increase of J . In Table 8, we take
σ = 0.25, 0.50, 0.75, T = 0.5 and compute L2-error and L∞-error norms for different time steps ∆t and we observe that on refining
the size of time step, errors become smaller and smaller. In Table 9, we list the ROC of the present scheme and see that it is very
close to its theoretical value. From Table 9, we can also see that the present scheme provides acceptable results for σ = 1 and the
ROC approaches its theoretical value. Moreover, Fig 5 shows the absolute error of the problem 6.3 for σ = 0.25 (left) and σ = 0.75
(right) at T = 1 with the time step ∆t = 0.01 for J = 2, 3, 4, 5. We can see that the solutions provided by our scheme are bounded
throughout the domain and the absolute error becomes smaller and smaller on increasing number of collocation points. Figure 6
represents the analytical solutions surface (left) and approximated solutions surface (right) for σ = 0.60, 2M = 32 and step size of
time ∆t = 0.001. From the Fig. 6, we can see that the analytical solutions surface and the approximated solutions surface by our
method look nearly the same.
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Table 7. L2-error and L∞-error norms with σ = 0.30, 0.50, 0.70 with time step size ∆t = 0.001 for the problem 6.3 at T = 1.

L∞-error L2-error

J σ = 0.30 σ = 0.50 σ = 0.70 σ = 0.30 σ = 0.50 σ = 0.70

2 4.80040E-02 4.75432E-02 4.69048E-02 2.97316E-02 2.94184E-02 2.89867E-02
3 1.20974E-02 1.19872E-02 1.18320E-02 7.33877E-03 7.26364E-03 7.15842E-03
4 3.04304E-03 3.01658E-03 2.97696E-03 1.83869E-03 1.82078E-03 1.79430E-03

Table 8. L2-error and L∞-error norms with J = 5, σ = 0.25, 0.50, 0.75 having different step size ∆t at T = 0.5 for the problem 6.3.

L∞-error L2-error

∆t σ = 0.25 σ = 0.50 σ = 0.75 σ = 0.25 σ = 0.50 σ = 0.75

0.05 6.97678E-04 6.85794E-04 4.93929E-04 4.23641E-04 4.15639E-04 2.99024E-04
0.025 4.32752E-04 4.25740E-04 3.35597E-04 2.62849E-04 2.58228E-04 2.03169E-04
0.0125 2.97120E-04 2.84200E-04 2.35135E-04 1.80394E-04 1.72265E-04 1.42163E-04

Table 9. L2-error and L∞-error norms and rate of convergence at T = 0.5, ∆t = 0.001, for the problem 6.3.

σ = 0.5 σ = 1

J L∞-error ROC L2-error ROC L∞-error ROC L2-error ROC
1 3.04307E-2 2.20260E-2 1.88139E-2 1.36016E-2
2 8.14624E-3 1.90132 5.10164E-3 2.11017 5.09046E-3 1.88593 3.14986E-3 2.11041
3 2.08078E-3 1.96900 1.26481E-3 2.01204 1.29339E-3 1.97664 7.75356E-4 2.02236
4 5.30599E-4 1.97143 3.21354E-4 1.97669 3.18945E-4 2.01978 1.90421E-4 2.02567
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Fig. 5. Absolute error for σ = 0.25 (left) and σ = 0.75 (right) with ∆t = 0.01, at time T = 1 with different J for the problem 6.3.
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Fig. 6. 3D surface of analytical solutions (left) and numerical solutions (right) with J = 4, ∆t = 0.001 and σ = 0.60 for the problem 6.3.

6.4 Example 4

Here we implement our scheme to the following time delay differential equation, given by

∂ω

∂t
− (µ(x)ωx)x + ω5wx = ω2(x, t− 0.1) +H(x, t), (x, t) ∈ (0, 1)× (0, 1], (63)

with the homogenous BCs

ω(0, t) = 0 = ω(1, t), t ∈ (0, 1], (64)

and IC

ω(x, t) = t sin(x), x ∈ [0, 1]× [−0.1, 0], (65)

where µ(x) = ex + x2 + 1. We can simply verify that the function

ω(x, t) = t sin(x), (66)

is the exact solution. From Eq.(63), the forcing term H(x, t) can be easily obtained. In this test problem, we take p = 5 and the
delay τ = 0.1 with the homogeneous BCs and variable coefficient as the function of a sum of the exponential function and algebraic
function. In Table 10, we list L∞ and L2-error norms and the ROC of the present scheme. From the Table 10, we can see both L2-error
and L∞-error norms decrease with an increase of J and the ROC of the scheme is very close to its theoretical value. Moreover, Fig. 7
shows the absolute error of the problem 6.4 for T = 0.5 with the time step ∆t = 0.001 for J = 2, 3, 4, 5. We can see that the solutions
provided by our scheme are bounded throughout the domain and the absolute error becomes smaller and smaller on increasing
number of collocation points. Figure 8 represents the analytical solutions surface (left) and approximated solutions surface (right)
for J = 4 and step size of time ∆t = 0.001. From the Fig. 8, we can see that the analytical solutions surface and the approximated
solutions surface by our method look nearly the same.

Table 10. L2-error and L∞-error norms and rate of convergence at T = 1, ∆t = 0.001, for the problem 6.4

.

J L∞-error ROC L2-error ROC
1 2.16869E-2 1.57635E-2
2 5.91776E-3 1.87370 4.15136E-3 1.92494
3 1.48787E-3 1.99180 1.04129E-3 1.99521
4 3.59759E-4 2.04814 2.51806E-4 2.04799
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Fig. 7. Absolute error with ∆t = 0.001, at time T = 0.5 with different J for the problem 6.4.
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Fig. 8. 3D surface of analytical solutions (left) and numerical solutions (right) with ∆t = 0.001, J = 4 for the problem 6.4.

7. Conclusion

In this article, a novel scheme based on HWs coupled with NSFD scheme for the numerical solution of fractional order time
derivative Burgers’ equation with variable coefficient and time delay is proposed. The boundedness and convergence of the method
are discussed. The proposed scheme is tested over several examples and the accuracy of the numerical scheme is assessed by
computing errors and comparing with existing results. Also, theoretical rate of convergence of the proposed method is verified with
the discrete data. We have recognized that the proposed scheme requires lower computational cost and easy to implement compare
to others method. The computed results are quite reasonable and comparable with the results existing in the literature. The key
concept used in this method is to look ahead to be implemented over the similar types of PDEs having variable coefficient with time
delay which model different kinds of real-life problems.
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