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Abstract. This paper proposes a finite element method (FEM) based on a nonlocal theory for analyzing the free vibration of the 
functionally graded porous (FGP) nano-plate with different shapes lying on the elastic foundation (EF). The FGP materials with 
two-parameter are the power-law index (k) and the porosity volume fraction (D) in two cases of even and uneven porosity. The EF 
includes Winkler stiffness (k1) and Pasternak stiffness (k2). Some numerical results in our work are compared with other published 
to verify accuracy and reliability. Moreover, the influence of geometric parameters, materials on the free vibration of the FGP 
nano-plates resting on the EF is comprehensively investigated. 

Keywords: Nano-plates, FG material, Nonlocal elasticity theory, Elastic foundation. 

1. Introduction 

Nowadays, with the strong development of technology and science, the research of nano-structure has always been deeply 
interested in scientists around the world. However, studies showed that classical plate theory for structures of millimeters or 
above is inaccurate for nanometer-sized structures. To solve this problem, many theories have been suggested such as the 
modified couple stress theory [1], the strain gradient theory [2], and the nonlocal theory [3], [4]. Among these theories, the 
nonlocal theory [3], [4] is preferred due to their simplicity and accuracy. For example, Li and co-workers [5] proposed a new 
nonlocal model to analyze the static bending and dynamic response for circular elastic nano-solids. Ansari and his colleagues [6] 
analyzed the free vibration of the nano-graphene plates. Arash [7] reviewed recent research studies on the application of the 
nonlocal theory in modeling carbon nanotubes and graphene. Farajpour et al. [8] examined thermomechanical vibration of nano-
plates including surface effects. Jalali and co-workers [9] employed a molecular dynamics method to calculate the effect of out-of-
plane defects on the vibration of graphene plates. Moreover, applying the nonlocal theory to investigate the various performances 
of nano-plates/shells also found in refs. [10]-[20]. Besides, Tran et al. [21] calculated mechanical behavior of FGP nanoshells by 
extend four-unknown higher-order shear deformation nonlocal theory. Tran and co-workers [22] employed the finite difference 
method to investigate static bending and free vibration of the sandwich functionally graded nanoplates. Liu et al. [23] analyzed  
dispersion characteristics of guided waves in FGM micro/nanoplates using the modified couple stress theory. In addition, Phung-
Van and his colleagues investigated static/dynamic of functionally graded carbon nanotube-reinforced composite nanoplates 
based on the nonlocal strain gradient isogeometric model [24] and the nonlocal elastic continuous isogeometric model [25]. Zheng 
et al. [26] examined the bending, buckling, and free vibration of rectangular nanoplates using an up-to-date symplectic 
superposition method. Ho and co-workers [27] investigated the effect of Negative Poisson’s ratios on the mechanical properties of 
nanoplates. 

Recently, the application of FG materials has been widely spread in nanostructures such as thin films [28], [29], fully released 
nano-electro-mechanical system (NEMS) [30] due to their excellent performance. Hence, investigating the mechanical behaviors 
of the FG material nanostructures has become the subject of attention of many researchers. Simsek [31] employed the Galerkin 
method to study the free vibration of axially FG tapered nanorods. And in [32], he examined the static bending and buckling of the 
FG nano-beam based on the Timoshenko theory. Natarajan and his colleagues [33] studied the free vibration of FG nano-plates 
based on isogeometric analysis (IGA). Applying the analytical solution, Nazemnezhad [34] computed the nonlinear free vibration 
of FG nano-beams, and Hashemi et al. [35], [36] studied the nonlinear free vibration of piezoelectric FG nano-beams. Natarajan 
and his colleagues [37] investigated the vibration of FG nano-plates relied on the Mori-Tanaka homogenization scheme. Jung et 
al. [38] employed Navier’s solution to study the mechanical behavior of the Sigmoid FGM nano-plates. Nami and co-workers [39] 
investigated the thermal buckling of FG nano-plates by using third-order shear deformation theory (TSDT). Hashemi and co-
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workers [40] calculated free vibration of circular/annular FGM nano-plates by employing the analytical method (AM). Salehipour 
and his colleagues [41], [42], presented the AM for the free vibration analysis of the FG micro/nano-plates based on the three-
dimensional elasticity theory. Ansari and his co-workers [43] proposed a new differential quadrature method (DQM) to analyze 
the bending static and free vibration of FG nano-plates. From the analysis of the above literature, most of them used analytical 
solutions to present behaviors of FG nano-plates. However, the analytical method is limited when the geometry model, boundary 
conditions, or types of the load becomes more complex. As an alternative, numerical methods can be developed to fill the gap in 
these problems. 

With the analysis of nano-structures resting on the EF, some typical works are published such as Wang et al. [44] computed 
the static bending of the nano-plates lying on the EF. Narendar et al. [45] investigated the wave dispersion of a single-layered 
graphene sheet embedded in an elastic polymer matrix. Pouresmaeeli et al. [46] studied the vibration behaviors of nano-plates 
resting on the viscoelastic medium. Zenkour et al. [47] calculated thermal buckling of nano-plates on the EF by using the 
sinusoidal shear deformation theory. Daikh et al. [48] analyzed bending of FG nano-plates placed on EF using the higher-order 
shear deformation plate theory and nonlocal strain gradient theory. Ebrahimi and his colleagues [49] employed nonlocal strain 
gradient theory to analyze the wave propagation of smart magnetostrictive sandwich nanoplates (MSNPs). Panyatong and his 
colleagues [50] based on nonlocal theory and surface stress to study the bending behavior of nano-plates on the EF and so on. 

Nowadays, the applying of artificial intelligence (AI) in science as well as in mechanical problems are being a new trend. 
Professor Rabczuk's research team presented novel ideas to solve inverse acoustics problems which based purely on artificial 
neural network (ANN) [51]; deep neural network (DNN) [52]; the machine learning (ML) [53] apply in the mechanical field and 
naturally account for uncertainties. Furthermore, the authors provide a Matlab code for the uncertainty analysis to help extract 
the material parameters needed for simulations [54]. Zhuang et al. [55] developed a deep autoencoder based on the energy 
method (DAEM) to investigated the bending, buckling, and free vibration of thin plates. The numerical results show the 
effectiveness of their proposed method. It is a new advance in analyzing the mechanical behavior of structures. 

According to the best of the authors’ knowledge, the free vibration analysis of FGP nano-plates resting on EF mainly uses the 
analytical method. As mentioned above, the exact solution is very difficult to conduct when the geometry model, boundary 
conditions, and loads are complication. Therefore, to overcome this limitation, the eight-node quadrilateral (Q8) element 
combining with the nonlocal theory to accurately describe the stress-strain and displacement field of the FG nano-plates with 
different shapes resting on the EF is investigated in this work. The proposed method is verified by comparing with those of other 
available results in the literature. Moreover, the effects of input parameters on the free vibration behavior of the FGP nano-plates 
are comprehensively investigated. 

To achieve a self-contained paper with enhanced readability, this paper is organized as follows. Section 1 is a general 
introduction. We present finite element formulations base on the nonlocal theory of free vibration analysis of FGP nano-plates 
resting on the EF in Sections 2 and 3. The numerical results of free vibration are discussed in Section 4. Section 5 gives some 
major conclusions. 

2. Theoretical formulation 

2.1 Schematic of FGP nano-plates 

In this paper, we use four schematics of nano-plates include Square nano-plate (Fig.1a), L-shaped nano-plate (Fig.1b), Annular 
nano-plate (Fig.1c), and Half-annular nano-plate (Fig.1d). These are the normally models widely used in extremely small 
electronic devices such as CPUs, transistors, and so on. 

The FGP materials with the variation of two-constituents and two different distributions of porosity through-thickness are 
determined as follows [56]: 

Case 1: ( ) ( ) ( )0.5
2

k
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with case 1 and case 2 are the modified mixture rule for the two-constituents FG plate with even porosity and uneven porosity, 

respectively. Pc and Pm are respectively the typical material properties at the top (ceramic) and the bottom surfaces (metal). k is the 

power-law index, ξ ( )1ξ ≤ represents the porosity volume fraction. Figs. 2(a)-2(b) show elastic modulus E of FGP material 

(Al/Al2O3) in two cases of even and uneven porosity with the porosity volume fraction 0.2ξ = . Distribution material properties 

through-thickness of nano-plates is also presented in Figs. 3(a)-3(d) when the power-law index gets values k=0, 1, 2, 4. 

 

Fig. 1. Modeling the FGP nano-plate with two cases of porosity distribution resting on EF in the global coordinate OXYZ. (a) Square nano-plate, (b) L-
shaped nano-plate, (c) Annular nano-plate, (d) Half-annular nano-plate, (e) Porosities distribution. 
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(a) Case 1 

 
(b) Case 2 

 
Fig. 2. Elastic modulus E of FGP material (Al/Al2O3) with different power-law index k. (a) Even porosity (case 1), (b) Uneven porosity (case 2). 

  

 

(a) k = 0 

 

(b) k = 1   

 

(c) k = 2 

 

(d) k = 4 
 

Fig. 3. Distributions material property through-thickness of FGP nano-plates. (a) k = 0, (b) k =1, (c) k = 2, (d) k = 4. 

 
The reaction–deflection relation of the EF is given by [47]: 

2
1 2eq k w k w= − ∇  (2) 

with 
2 2

2

2 2x y

∂ ∂
∇ = +

∂ ∂
and w is the displacement of the nano-plate following z-axis; 1 2,k k are respectively Winkler stiffness and 

Pasternak stiffness. 

2.2 Nonlocal elasticity theory 

Following the nonlocal theory, the relation stress-strain is determined as follows [3], [4]: 

2µ− ∇ =Qσ σ ; ( )20e lµ =  (3) 

in which: µ  is nonlocal factor (the small scale effect), l  is an internal characteristic length and 0e const= . When 0,l= the 

nonlocal theory degenerates into the classical elasticity theory. Q is the stress tensor at a point which is calculated via the local 

theory as: 
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The displacement field of the nano-plates is expressed as 

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , )

x

y

u x y z u x y z x y

v x y z v x y z x y

w x y z w x y

ϕ

ϕ

 = + = + =

 (9) 

where: , ,u v w are the displacements at point ( , , )x y z ; 0 0 0, ,u v w are the displacements at the mid-plane and ,x yϕ ϕ are the rotation 

angles of the cross-section around the y-axis, x-axis, respectively. 
The deformation field of the FG nano-plate is defined as 
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Eq. (10) may be written by 
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From Eqs. (11) and (12) the nonlocal force and moment resultants are determined as 
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Eqs. (13), (14) can be rewritten as 
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Using Hamilton’s principle, the equation system of the FGP nano-plate are written as follows [57]: 

, ,y 0 0 1xx x xy xN N J u J ϕ+ = +ɺɺ ɺɺ  (22) 

, ,y 0 0 1xy x yy yN N J v J ϕ+ = +ɺɺ ɺɺ  (23) 

, ,y 0 0xz x yzQ Q R J w+ − = ɺɺ  (24) 

, ,y 1 0 2xx x xy xz xM M Q J u J ϕ+ − = +ɺɺ ɺɺ  (25) 

, ,y 1 0 2xy x yy yz yM M Q J v J ϕ+ − = +ɺɺ ɺɺ  (26) 

in which R is the active force which combines between the external force in the z-axis and the reaction force of the EF as 
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The mass inertia moment components are determined by the following formulation: 
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3. Finite Element Formulation 

In this study, the eight-node plate element, each node has 5 degrees of freedoms (dofs) are used. The nodal displacement 
vector can be determined as follows: 
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The displacement field in the plate element is interpolated through the displacement node as 
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The matrices (j) ( 1 5)iN j= − in Eq. (33) are given by 
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(1)

(2)

(3)

(4)

(5)

[ 0 0 0 0];

[0 0 0 0];

[0 0 0 0];

[0 0 0 0];

[0 0 0 0 ].

i i

i i

i i

i i

i i

ψ

ψ

ψ

ψ

ψ

 = = = = =

N

N

N

N

N

 (34) 

where iψ  are the Lagrange interpolation function which is shown in the Appendix. 

Substituting Eq. (32) into Eq. (29), the finite element formulation of a typical element can be expressed: 

e e e e e+ =M d K d Fɺɺ  (35) 

For the free vibration problem: 

e e e e+ =M d K d 0ɺɺ  (36) 

with element stiffness matrix is defined as follows: 

fb s
e e e e= + +K K K K  (37) 

with , , fb s
e e eK K K are the bending, shear element stiffness matrices, and the foundation stiffness matrix, respectively. In which 

1
1 2

2
e

b T T
e

S

dxdy
         =           
∫

A B B
K B B

B X B
 (38) 

2 3(( ) )
e

s T s
e

S

B A B dxdy= ∫K  (39) 

1 , , , ,

, , , ,

2

, , , , , , , ,

( ( ))

( )e

T T T
w w w x w x w y w y

f T T
w x w x w y w ye

S T T T T
w xx w xx w yy w yy w xx w yy w yy w xx

k

dxdy
k

µ

µ

 + + +       + +=       + + +    

∫
N N N N N N

N N N NK

N N N N N N N N

 (40) 

, , ,y ,( ( ))
e

T T T
e m x m x m y

S

dxdyµ= + +∫M N D N N D N N D N  (41) 

where 

,

1 ,

, ,

u x

v y

u x v y

 
 
 =  
 +  

N

B N

N N

; 
x,

2 ,

, ,

x

y y

x x y y

ϕ

ϕ

ϕ ϕ

 
 
 =  
 +  

N

B N

N N

; 
,

3
,

w x x

w y y

ϕ

ϕ

 +
 =  + 

N N
B

N N
; 

T T T T T
u v w x yϕ ϕ

 =   N N N N N N ; 

(42) 

0 1

0 1

0

2

2

0 0 0

0 0

0 0

0
m

J J

J J

J

J

J

 
 
 
 
 =  
 
 
 
  

D  (43) 

4. Numerical Results 

From the FEM model based on the nonlocal theory, the authors coded a computer program in MATLAB software to check the 
reliability of the proposed method. The material properties in numerical analyses are presented in Table 1. For convenience, the 
dimensionless frequencies of the FGP nano-plates are introduced by the following formulations: 

10 m

m

h
E

ρ
ωΩ= ;

2
1

1

m

k a
K

D
= ; 

4
2

2

m

k a
K

D
= ; 

3

212(1 )
m

m

E h
D

v
=

−
; (44) 

Table 1. Material properties of the individual materials. 

Materials E (GPa) υ  ρ (kg/m3) 

Al2O3 (ceramic) 380 0.3 3800 

Al (metal) 70 0.3 2707 
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Table 2. The convergence of the natural frequency 
1
Ω of the completely simple supported FGM nano-plate (a/h = 10). 

k Mesh 4 4×  6 6×  8 8×  10 10×  12 12×  [58] 

0 
Q4 0.0727 0.0617 0.0603 0.0591 0.0588 

0.0577 MITC4 0.0617 0.0587 0.0584 0.058 0.0580 
Q8 0.0580 0.0578 0.0578 0.0578 0.0577 

1 
Q4 0.0572 0.0477 0.0465 0.0454 0.0451 

0.0442 MITC4 0.0473 0.0449 0.0447 0.0444 0.0444 
Q8 0.0444 0.0443 0.0442 0.0442 0.0442 

4 
Q4 0.0484 0.0409 0.04 0.0391 0.0389 

0.0381 MITC4 0.0409 0.0389 0.0387 0.0384 0.0384 
Q8 0.0384 0.0383 0.0383 0.0383 0.0383 

10 
Q4 0.0451 0.0388 0.038 0.0373 0.0372 

0.0364 MITC4 0.0391 0.0372 0.037 0.0368 0.0368 
Q8 0.0367 0.0366 0.0366 0.0366 0.0366 

Table 3. Natural frequencies ω of the completely clamped isotropic L-shaped plate. 

Method 1
ω  

2
ω  3

ω  
4
ω  

[59] 1.8832 2.3450 2.7698 3.5714 
[60] 1.8395 2.3735 2.7507 3.6030 

Present 1.8524 2.3537 2.6918 3.4288 

4.1 Convergence and accuracy study 

In order to check the accuracy and convergence of the proposed method, the numerical results of the free vibration of the 
nano-plate are compared with the other published results. 

Example 1: we consider a completely simple supported FGM square nano-plate without including nonlocal factor 0µ = . The 

numerical results with various mesh sizes compared with the AM in [58] are listed in Table 2 and presented in Fig. 4. It can be 
seen that using the Q8 element converges faster and more accurately than using the mixed interpolation of tensorial components 
(MITC) for the four-node quadrilateral element (MITC4) and the 4-node quadrilateral (Q4) element. Specifically, using Q8 element 
with mesh 4×4 is exactly as MITC4 element with mesh 12×12 and more exactly Q4 element with mesh 12×12. For the free 
vibration problem, with mesh 8×8, numerical results are obtained as accurately as those in the published work of Thai et al. [58]. 
Therefore, we use mesh 8×8 to investigate the free vibration of FGP nano-plates. 

Example 2: The completely clamped L-shaped isotropic plate with / 10a h =  (a is fixed), Poisson’s ratio 0.3ν =  is considered. 

The dimensionless frequency is defined /a Gω ω ρ= with / [2(1 )]G E ν= + . The first four dimensionless frequency of the 

completely clamped L-shaped plate is listed in Table 3. The present results are compared with the finite-difference technique [59] 

and isogeometric analysis (IGA) based on the HSDT [60]. It can be concluded that the results of the proposed method are in good 

agreement with other published works. 

4.2 Free vibration problem 

For this problem, we consider an FGP nano-plate resting on the EF. Figs. 5, 6 show the first four-mode shapes of FGP square 

nano-plate has geometric dimensions a = b =10 nm, h = a/10 with 1 2100, 10, 1, 2, 0.2K K k µ ξ= = = = = . It can be observed that the 

second and third mode shapes are similar to each other (the second dimensionless frequency is equal to the third dimensionless 

frequency). This is suitable for the symmetrical nano-plates under the same supported conditions. With the L-shaped nano-plates, 

the first four-mode shapes are shown in Figs. 7, 8. It can be seen that the L-shaped nano-plate has higher dimensionless 

frequencies due to limited boundary conditions. Figs. 9, 10 show the first four-mode shapes of the annular and half-annular FGP 

nano-plates with geometric dimensions R = 5 nm, r = 2.5 nm, h = a/10. For asymmetric and complex structures (L-shaped, annular, 

half-annular, and so on) with different boundary conditions, the numerical method proves its great efficiency compared to the 

analytical method. 

 
(a) k = 0 

 
(b) k = 1   

 
(c) k = 4 

 
(d) k = 10 

 
Fig. 4. The convergence of element mesh to the dimensionless frequency of the FGM nano-plate. (a) k = 0, (b) k =1, (c) k = 4, (d) k = 10. 

 
(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 
Fig. 5. The first four-mode shapes of the completely simple supported FGP (case 1) square nano-plate. 

(a) 1st mode, 1Ω = 0.8442; (b) 2nd mode, 2Ω = 1.5156; (c) 3rd mode, 3Ω = 1.5156; (d) 4th mode, 4Ω = 1.9983. 
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(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 
Fig. 6. The first four-mode shapes of the completely simple supported FGP (case 2) square nano-plate. 

(a) 1st mode, 1Ω = 0.8682; (b) 2nd mode, 2Ω = 1.5853; (c) 3rd mode, 3Ω = 1.5853; (d) 4th mode, 4Ω = 2.091. 

 
(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 
Fig. 7. The first four-mode shapes of the completely simple supported FGP (case 1) L-shaped nano-plate. 

(a) 1st mode, 1Ω = 1.5102; (b) 2nd mode, 2Ω = 1.7367; (c) 3rd mode, 3Ω = 1.9983; (d) 4th mode, 4Ω = 2.4818. 

 
(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 
Fig. 8. The first four-mode shapes of the completely clamped FGP (case 1) L-shaped nano-plate. 

(a) 1st mode, 1Ω = 2.1559; (b) 2nd mode, 2Ω = 2.4591; (c) 3rd mode, 3Ω = 2.6306; (d) 4th mode, 4Ω = 2.9559. 

 
(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 

 
(d) Mode 4 

 
Fig. 9. The first four-mode shapes of the completely clamped FGP (case 1) annular nano-plate. 

(a) 1st mode, 1Ω = 1.7710; (b) 2nd mode, 2Ω = 1.9901; (c) 3rd mode, 3Ω = 1.9901; (d) 4th mode, 4Ω = 2.4671. 

 

(a) Mode 1 

 

(b) Mode 2 

 

(c) Mode 3 

 

(d) Mode 4 
 

Fig. 10. The first four-mode shapes of the completely clamped FGP (case 1) half-annular nano-plate. 

(a) 1st mode, 1Ω = 0.6367; (b) 2nd mode, 2Ω = 1.0892; (c) 3rd mode, 3Ω = 1.3944; (d) 4th mode, 4Ω = 1.6566. 

 

4.2.1. Influence of the parameters of the EF 

Firstly, in order to consider the influences of dimensionless parameters of elastic foundation stiffness on free vibration of the 

FGP square nano-plate, we change 1K  from 100 to 1000, and 2K  from 10 to 100 with respect to 1, 0.2k ξ= = , and nonlocal 

factor gets values 0, 1, 2, 4µ = . The first natural frequencies of the FGP nano-plate with two cases of porosity distribution are 

presented in Tables 4-5 and shown in Fig. 11. It can be found that when increasing 1K and 2K lead to the natural frequency of 

nano-plates also increase. Furthermore, the effects of the Pasternak foundation ( 2K ) are stronger than the Winkler foundation 

( 1K ) for all cases of porosity distributions. Specifically, with the same geometry parameters and material properties (see Table 4 

with nonlocal factor 1µ = ), when 2 100K = and 1K increases from 100 to 1000, the first non-dimensional natural frequency 

increases from 1.4841 to 1.7447 (about 17.6 %), but when 1 100K = and 2K only need increase from 10 to 100, the first non-
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dimensional natural frequency fast increases from 0.9026 to 1.4841 (about 64,4 %). In addition, the frequencies of the completely 

clamped (CCCC) FGP nano-plate are greater than the completely simple supported (SSSS) FGP nano-plate. The results are quite 

reasonable because the simply supported boundary condition is more flexible than the clamped boundary condition. 

4.2.2. Influence of the parameters-FGP 

Secondly, let us consider the effect of material properties on the free vibration of the FGP square nano-plate. The power-law 
index k ξgets values from 0 to 10 and porosity volume fraction  changes from 0 to 0.3. We examine the FGP nano-plate resting on 
EF with the parameters 1 2100, 10K K= = and nonlocal factor 0, 1, 2, 4µ = . Authors only choose the power-law index k in the 

range (0-10) for investigation because many published works show that when k is greater than 10, the natural frequency of FGP 
structures does not change much and the recommended value of porosity volume fraction ξ is in the range (0-0.3). The natural 

frequencies of FGP nano-plate with different boundary conditions are listed in Tables 6-7 and are shown in Figs. 12-13. It can be 
seen that when k increases, the stiffness of the FGP nano-plate decreases (nano-plate is metal-rich), and hence natural 
frequencies decreases. We also found that when the increase of nonlocal factor μ leads to natural frequencies of FGP nano-plates 
decrease. The results are quite reasonable because the increase of the nonlocal factor makes reduce the stiffness of structures in 
the nonlocal elastic theory. Specifically, with nonlocal factor 0µ = (classical elastic theory), the natural frequencies of FGP nano-

plates are maximum. From Figs. 13(a)-13(g), we can see that with the power-law index k = 0 when porosity volume fraction ξ  

increases, the natural frequencies of FGP nano-plates increase for both cases of porosity distribution. This is because the porosity 
affects both the stiffness and the mass of nanoshells, this simultaneous interaction causes the natural frequency increase. 
Besides, the natural frequencies of the FGP nano-plate with porosity distribution of case 1 are larger than the FGP nano-plate with 
porosity distribution of case 2. With k > 2 when ξ increases from 0 to 0.3, the natural frequencies of FGP (case 1) nano-plates 

decrease, however, the natural frequencies of FGP (case 2) nano-plates are less change and larger than the natural frequencies of 
FGP (case 1) nano-plates. Basically, the pore appearance in the material reduces the stiffness of the structure. It can be also 
concluded that the rule of the porosity distribution effects large on the free vibration of FGP nano-plates. 

 

Table 4. Natural frequencies of the SSSS and CCCC FGP (case 1) square nano-plate versus K1 and K2. 

Nonlocal 
factor 

( )µ  

 K1 
K2 

SSSS CCCC 

100 250 500 750 1000 100 250 500 750 1000 

0 

10 0.9783 1.0476 1.1538 1.2510 1.3412 1.5338 1.5788 1.6512 1.7205 1.7872 
25 1.1109 1.1723 1.2681 1.3572 1.4408 1.6350 1.6774 1.7457 1.8114 1.8748 
50 1.3022 1.3550 1.4387 1.5177 1.5929 1.7894 1.8282 1.8911 1.9519 2.0109 
75 1.4687 1.5157 1.5910 1.6628 1.7317 1.9299 1.9659 2.0245 2.0815 2.1369 
100 1.6182 1.6610 1.7300 1.7963 1.8602 2.0595 2.0933 2.1484 2.2022 2.2547 

1 

10 0.9026 0.9773 1.0904 1.1928 1.2871 1.3857 1.4352 1.5141 1.5891 1.6607 
25 1.0228 1.0892 1.1917 1.2861 1.3740 1.4775 1.5241 1.5986 1.6698 1.7381 
50 1.1965 1.2537 1.3437 1.4281 1.5077 1.6179 1.6605 1.7291 1.7952 1.8589 
75 1.3479 1.3990 1.4802 1.5572 1.6305 1.7457 1.7853 1.8494 1.9113 1.9712 
100 1.4841 1.5306 1.6051 1.6764 1.7447 1.8639 1.9010 1.9613 2.0198 2.0766 

2 

10 0.8442 0.9236 1.0425 1.1492 1.2468 1.2744 1.3279 1.4126 1.4925 1.5683 
25 0.9546 1.0254 1.1337 1.2325 1.3240 1.3588 1.4092 1.4892 1.5652 1.6376 
50 1.1145 1.1758 1.2713 1.3602 1.4436 1.4881 1.5341 1.6080 1.6786 1.7464 
75 1.2542 1.3089 1.3954 1.4768 1.5539 1.6060 1.6488 1.7177 1.7840 1.8479 
100 1.3798 1.4298 1.5093 1.5849 1.6570 1.7151 1.7552 1.8202 1.8828 1.9435 

4 

10 0.7590 0.8464 0.9748 1.0881 1.1907 1.1167 1.1772 1.2716 1.3594 1.4419 
25 0.8549 0.9333 1.0512 1.1571 1.2540 1.1901 1.2470 1.3365 1.4203 1.4995 
50 0.9944 1.0626 1.1674 1.2636 1.3529 1.3027 1.3549 1.4376 1.5159 1.5903 
75 1.1165 1.1777 1.2731 1.3618 1.4451 1.4057 1.4542 1.5317 1.6053 1.6758 
100 1.2266 1.2825 1.3706 1.4534 1.5317 1.5013 1.5468 1.6198 1.6896 1.7567 

Table 5. Natural frequencies of the SSSS and CCCC FGP (case 2) square nano-plate versus K1 and K2. 

Nonlocal 
factor 

( )µ  

 K1 
K2 

SSSS CCCC 

100 250 500 750 1000 100 250 500 750 1000 

0 

10 1.0092 1.0692 1.1623 1.2485 1.3291 1.6016 1.6400 1.7022 1.7622 1.8202 
25 1.1245 1.1787 1.2637 1.3434 1.4187 1.6880 1.7245 1.7838 1.8411 1.8967 
50 1.2941 1.3414 1.4167 1.4883 1.5565 1.8218 1.8557 1.9109 1.9645 2.0167 
75 1.4439 1.4865 1.5548 1.6202 1.6831 1.9451 1.9769 2.0288 2.0794 2.1288 
100 1.5796 1.6185 1.6815 1.7422 1.8008 2.0601 2.0901 2.1393 2.1874 2.2344 

1 

10 0.9297 0.9945 1.0940 1.1851 1.2698 1.4462 1.4885 1.5564 1.6215 1.6841 
25 1.0343 1.0929 1.1842 1.2689 1.3483 1.5247 1.5649 1.6296 1.6919 1.7520 
50 1.1884 1.2398 1.3209 1.3973 1.4698 1.6464 1.6837 1.7440 1.8024 1.8589 
75 1.3247 1.3710 1.4447 1.5149 1.5820 1.7587 1.7937 1.8505 1.9056 1.9591 
100 1.4482 1.4907 1.5588 1.6241 1.6868 1.8636 1.8966 1.9504 2.0028 2.0538 

2 

10 0.8682 0.9372 1.0422 1.1375 1.2255 1.3293 1.3750 1.4481 1.5176 1.5841 
25 0.9645 1.0271 1.1237 1.2126 1.2954 1.4015 1.4450 1.5147 1.5813 1.6452 
50 1.1064 1.1614 1.2477 1.3283 1.4043 1.5136 1.5540 1.6190 1.6815 1.7417 
75 1.2322 1.2818 1.3604 1.4347 1.5054 1.6173 1.6551 1.7163 1.7754 1.8326 
100 1.3462 1.3918 1.4645 1.5338 1.6001 1.7141 1.7499 1.8079 1.8640 1.9186 

4 

10 0.7783 0.8547 0.9686 1.0705 1.1635 1.1631 1.2149 1.2967 1.3737 1.4465 
25 0.8621 0.9316 1.0372 1.1329 1.2212 1.2260 1.2753 1.3534 1.4273 1.4976 
50 0.9861 1.0475 1.1423 1.2299 1.3117 1.3238 1.3696 1.4427 1.5122 1.5787 
75 1.0962 1.1517 1.2386 1.3198 1.3963 1.4145 1.4574 1.5263 1.5922 1.6555 
100 1.1962 1.2472 1.3279 1.4039 1.4760 1.4993 1.5399 1.6052 1.6680 1.7285 
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Table 6. Natural frequencies of the SSSS and CCCC FGP (case 1) square nano-plate versus k and ξ . 

Nonlocal factor 

( )µ  

k  

ξ  

SSSS CCCC 

0 2 4 6 8 10 0 2 4 6 8 10 

0 

0 1.2171 0.9272 0.9018 0.8944 0.8878 0.8811 1.9954 1.4548 1.3900 1.3658 1.3473 1.3310 

0.06 1.2301 0.9166 0.8873 0.8804 0.8747 0.8688 2.0139 1.4273 1.3534 1.3286 1.3107 1.2949 

0.12 1.2445 0.9025 0.8669 0.8602 0.8558 0.8511 2.0344 1.3915 1.3038 1.2781 1.2611 1.2465 

0.18 1.2604 0.8830 0.8370 0.8297 0.8268 0.8238 2.0572 1.3434 1.2329 1.2046 1.1892 1.1765 

0.24 1.2781 0.8552 0.7904 0.7793 0.7772 0.7764 2.0825 1.2758 1.1229 1.0856 1.0709 1.0615 

0.30 1.2980 0.8140 0.7101 0.6829 0.6747 0.6723 2.1110 1.1746 0.9226 0.8422 0.8123 0.7996 

1 

0 1.1170 0.8550 0.8324 0.8259 0.8200 0.8141 1.7996 1.3144 1.2574 1.2363 1.2202 1.2060 

0.06 1.1291 0.8460 0.8199 0.8138 0.8088 0.8036 1.8165 1.2900 1.2247 1.2034 1.1879 1.1741 

0.12 1.1425 0.8337 0.8021 0.7964 0.7925 0.7884 1.8351 1.2581 1.1805 1.1584 1.1439 1.1313 

0.18 1.1573 0.8168 0.7760 0.7697 0.7673 0.7647 1.8558 1.2152 1.1173 1.0929 1.0799 1.0692 

0.24 1.1737 0.7926 0.7350 0.7254 0.7238 0.7232 1.8788 1.1550 1.0192 0.9867 0.9744 0.9667 

0.30 1.1922 0.7566 0.6644 0.6405 0.6335 0.6316 1.9047 1.0650 0.8414 0.7708 0.7448 0.7339 

2 

0 1.0393 0.7992 0.7788 0.7730 0.7678 0.7624 1.6518 1.2088 1.1574 1.1388 1.1244 1.1116 

0.06 1.0507 0.7914 0.7679 0.7625 0.7581 0.7533 1.6673 1.1867 1.1280 1.1090 1.0953 1.0830 

0.12 1.0633 0.7808 0.7522 0.7472 0.7438 0.7402 1.6846 1.1579 1.0880 1.0684 1.0557 1.0445 

0.18 1.0773 0.7659 0.7291 0.7236 0.7216 0.7194 1.7037 1.1192 1.0308 1.0092 0.9978 0.9885 

0.24 1.0928 0.7445 0.6926 0.6842 0.6829 0.6825 1.7250 1.0647 0.9419 0.9130 0.9024 0.8958 

0.30 1.1102 0.7126 0.6296 0.6084 0.6022 0.6006 1.7489 0.9834 0.7815 0.7184 0.6953 0.6858 

4 

0 0.9252 0.7179 0.7008 0.6961 0.6917 0.6871 1.4407 1.0589 1.0155 1.0000 0.9880 0.9772 

0.06 0.9357 0.7119 0.6922 0.6879 0.6843 0.6804 1.4545 1.0403 0.9907 0.9751 0.9637 0.9535 

0.12 0.9471 0.7036 0.6798 0.6759 0.6732 0.6702 1.4697 1.0161 0.9569 0.9409 0.9305 0.9212 

0.18 0.9598 0.6919 0.6611 0.6569 0.6554 0.6538 1.4866 0.9834 0.9086 0.8909 0.8818 0.8742 

0.24 0.9739 0.6748 0.6314 0.6248 0.6240 0.6239 1.5054 0.9375 0.8334 0.8096 0.8012 0.7961 

0.30 0.9898 0.6490 0.5797 0.5624 0.5577 0.5566 1.5266 0.8689 0.6985 0.6460 0.6271 0.6194 

Table 7. Natural frequencies of the SSSS and CCCC FGP (case 2) square nano-plate versus k and ξ . 

Nonlocal 
factor 

( )µ  

k  

ξ  

SSSS CCCC 

0 2 4 6 8 10 0 2 4 6 8 10 

0 

0 1.2171 0.9272 0.9018 0.8944 0.8878 0.8811 1.9954 1.4548 1.3900 1.3658 1.3473 1.3310 

0.06 1.2279 0.9298 0.9032 0.8962 0.8901 0.8839 2.0114 1.4546 1.3865 1.3621 1.3439 1.3280 

0.12 1.2392 0.9322 0.9040 0.8974 0.8919 0.8862 2.0280 1.4538 1.3816 1.3570 1.3392 1.3236 

0.18 1.2509 0.9343 0.9041 0.8979 0.8931 0.8880 2.0455 1.4522 1.3751 1.3502 1.3327 1.3176 

0.24 1.2632 0.9361 0.9033 0.8974 0.8933 0.8890 2.0637 1.4496 1.3665 1.3410 1.3240 1.3094 

0.30 1.2761 0.9374 0.9013 0.8955 0.8922 0.8887 2.0828 1.4458 1.3553 1.3288 1.3121 1.2981 

1 

0 1.1170 0.8550 0.8324 0.8259 0.8200 0.8141 1.7996 1.3144 1.2574 1.2363 1.2202 1.2060 

0.06 1.1270 0.8576 0.8339 0.8278 0.8224 0.8168 1.8141 1.3144 1.2543 1.2333 1.2175 1.2036 

0.12 1.1373 0.8600 0.8349 0.8292 0.8244 0.8193 1.8292 1.3138 1.2502 1.2290 1.2136 1.2001 

0.18 1.1482 0.8622 0.8354 0.8300 0.8258 0.8213 1.8450 1.3125 1.2446 1.2232 1.2082 1.1951 

0.24 1.1595 0.8641 0.8350 0.8299 0.8264 0.8225 1.8615 1.3104 1.2371 1.2152 1.2007 1.1881 

0.30 1.1714 0.8656 0.8336 0.8286 0.8258 0.8227 1.8788 1.3071 1.2272 1.2045 1.1904 1.1784 

2 

0 1.0393 0.7992 0.7788 0.7730 0.7678 0.7624 1.6518 1.2088 1.1574 1.1388 1.1244 1.1116 

0.06 1.0486 0.8018 0.7805 0.7750 0.7702 0.7652 1.6651 1.2090 1.1549 1.1362 1.1221 1.1097 

0.12 1.0583 0.8043 0.7817 0.7766 0.7723 0.7677 1.6790 1.2086 1.1513 1.1325 1.1189 1.1068 

0.18 1.0684 0.8066 0.7824 0.7776 0.7739 0.7699 1.6935 1.2075 1.1463 1.1274 1.1142 1.1025 

0.24 1.0790 0.8086 0.7824 0.7779 0.7748 0.7714 1.7087 1.2057 1.1397 1.1204 1.1076 1.0965 

0.30 1.0901 0.8103 0.7814 0.7770 0.7746 0.7719 1.7247 1.2029 1.1308 1.1109 1.0986 1.0880 

4 

0 0.9252 0.7179 0.7008 0.6961 0.6917 0.6871 1.4407 1.0589 1.0155 1.0000 0.9880 0.9772 

0.06 0.9336 0.7205 0.7026 0.6982 0.6943 0.6900 1.4524 1.0592 1.0136 0.9981 0.9865 0.9760 

0.12 0.9423 0.7231 0.7042 0.7001 0.6966 0.6928 1.4646 1.0592 1.0108 0.9954 0.9841 0.9740 

0.18 0.9514 0.7255 0.7053 0.7015 0.6985 0.6952 1.4773 1.0586 1.0069 0.9914 0.9805 0.9709 

0.24 0.9609 0.7277 0.7058 0.7023 0.6999 0.6971 1.4906 1.0573 1.0015 0.9858 0.9754 0.9662 

0.30 0.9708 0.7297 0.7055 0.7022 0.7003 0.6981 1.5046 1.0552 0.9943 0.9780 0.9681 0.9595 

 

 

(a)  

 

(b) 

 

(c) 

 

(d) 

Fig. 11. Natural frequencies of FGP square nano-plate versus K1 and K2. (a) The SSSS FGP (case 1) nano-plate. (b) The CCCC FGP (case 1) nano-plate. (c) 
The SSSS FGP (case 2) nano-plate. (d) The CCCC FGP (case 2) nano-plate. 
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(a)  

 
(b) 

 
(c) 

 
(d) 

 

Fig. 12. Natural frequencies of FGP square nano-plate versus k and ξ . (a) The SSSS FGP (case 1) nano-plate. (b) The CCCC FGP (case 1) nano-plate. (c) 

The SSSS FGP (case 2) nano-plate. (d) The CCCC FGP (case 2) nano-plate. 

 

 
(a)  

 
(b) 

 
(c) 

 
(d)  

 
(e) 

 
(f) 

 

Fig. 13. Natural frequencies vibration of the FGP square nano-plate versus ξ . (a) The SSSS FGP nano-plate (k = 0). (b) The CCCC FGP nano-plate (k = 0). 

(c) The SSSS FGP nano-plate (k = 2). (d) The CCCC FGP nano-plate (k = 2). (e) The SSSS FGP nano-plate (k = 4). (f) The CCCC FGP nano-plate (k = 4). 

5. Conclusion 

In this paper, some new numerical results of the free vibration analysis of FGP nano-plates with different shapes on the EF are 
considered. The authors employed the Q8 element based on the FSDT to establish the fundamental equations. Our numerical 
results are in excellent agreement with other published articles. This work has the following advantages: 

- Numerical methods are employed to compute the free vibration of FGP nano-plates with different shapes on the EF. 
- Using the FEM easily mesh for complicated geometry domains, applying for analysis of structures with different boundary 

conditions, and other loads. 
- The Q8 element converges faster than using the MITC4 element and the Q4 element in the free vibration problem of nano-

plates. 
- Employing the FSDT is simple in formulations and computational efficiency. 
- The increase of elastic foundation stiffness k1, k2 leads to the increase in the stiffness of the FGP nano-plates. 
- The material parameters k, D, and the porosity distribution affect significantly the free vibration of nano-plates. Basically, 

these two-parameters increases result in reducing the stiffness of nano-structures. 
- The law of porosity distribution significantly effects the material property distribution through-thickness of the FGP nano-

plate. Therefore, it effects the mechanical behavior of the nano-plate. 
- These numerical results are useful for the calculation, design, and manufacturing technology. 
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Appendix 

The Lagrange interpolation in Eq. (34): 

2 2
1 2 3 4

2 2
5 6 7 8

1 1 1
(1 )(1 )( 1); (1 )(1 ); (1 )(1 )( 1); (1 )(1 );

4 2 2
1 1 1 1

(1 )(1 )( 1); (1 )(1 ); (1 )(1 )( 1); (1 )(1 )
4 2 4 2

ψ ζ η ζ η ψ ζ η ψ ζ η ζ η ψ ζ η

ψ ζ η ζ η ψ ζ η ψ ζ η ζ η ψ ζ η

= − − − − − = − − = + − − − − = + −

= + + + − = − + = − + − + − = − −
 

where ,ζ η  are natural coordinates. 
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