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Abstract. Internal solitary waves are very common physical phenomena in the ocean, which play an important role in the 
transport of marine matter, momentum and energy. Because the generalized nonlinear Schrödinger equation can well explain the 
effects of nonlinearity and dispersion in the ocean, it is more suitable for describing the deep-sea internal wave propagation and 
evolution than other mathematical models. At first, by designing skillfully the trial-Lagrange functional, different kinds of 
variational principles are successfully established for a generalized nonlinear Schrödinger equation by the semi-inverse method. 
Then, the constructed variational principles are proved correct by minimizing the functionals with the calculus of variations. 
Furthermore, some kinds of internal solitary wave solutions are obtained and demonstrated by semi-inverse variational principle 
for the generalized nonlinear Schrödinger equation. 
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1. Introduction 

Internal solitary waves [1-3] are a kind of physical motions that occur frequently in the interior of fluid, and they happen 
almost everywhere in the world ocean. The study of internal waves in the ocean is of great significance to the theoretical research 
of ocean science, utilization of marine resources, avoiding marine disasters, as well as marine military and engineering. Internal 
solitary waves play an important role in ocean dynamics, which affect the transport of marine matter, momentum, and energy. At 
present, the well-known KdV equation is only suitable for describing the propagation of small amplitude internal waves in 
shallow water, [4-8] but there will be intolerable errors when it is used to model large-amplitude internal waves in the deep sea. 
For deep-sea internal waves, the Benjamin-Ono equation is constructed by Benjamin [9] and Ono [10], while the intermediate long 
wave (ILW) equation is obtained by Kubota [11] et al. Chio and Camass [12] obtained the fully nonlinear evolution equation of the 
internal wave at the two-layer interface. The derived equation can be reduced to the ILW equation when it is weakly nonlinear 
and propagates along one direction, and can be reduced to the Benjamin-Ono equation in infinite water depth. Song et al. [13] 
established the nonlinear Schrödinger (NLS) equation under two-layer stratification, trying to develop a more accurate equation of 
the ocean internal wave characteristics in a specific environment. Solving the nonlinear partial differential equations (PDEs) with 
integer or fractional orders is always an attractive and hot topic for many researchers in different scientific fields, because of their 
excellent ability for modeling nonlinear phenomena [14-18]. Numerous mathematical techniques have been developed to explore 
the approximate and exact solutions, of which variational-based methods have been very effective and successful, such as the 
Ritz technique [19-20], variational iteration method [21-24], and variational approximation method [25-28] et al. When contrasted 
with other methods, variational ones show some outstanding advantages. In this paper, a generalized nonlinear Schrödinger 
(GNLS) equation for modelling ocean internal waves is studied by the semi-inverse method, which was first proposed in 1997 by 
Dr. Ji-Huan He[29], who is a famous Chinese mathematician. At first, by designing skillfully the trial-Lagrange functional, different 
forms of variational principles are successfully established for the generalized nonlinear Schrödinger equation based on the 
semi-inverse method and variational theory. Then, different kinds of internal solitary wave solutions are obtained by semi-inverse 
variational principle for the GNLS equation. Furthermore, some different solutions of the solitary wave with the same trial-
Lagrange functional form for the GNLS equation are demonstrated. 

2. Variational principles for a GNLS equation 

For inviscid fluids, ignoring the influence of Coriolis force，if the fluid is selected as a two-layer structure, a generalized 
nonlinear Schrödinger equation for deep-sea internal waves can be derived from the continuity equation and Bernoulli equation. 
It can be used to describe the propagation of internal solitary waves in the ocean: 
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1 0t xx xxxiA A iA A Aα α β− + + + =
 

(1) 

where x and t represents the spatial and temporal variables respectively. In eq.(1), A represents complex amplitude fields of the 
internal solitary wave and 1i= − . α  and 1α  is the dispersion and the high-order dispersion coefficient, respectively, and β  

is the nonlinear coefficient. All these coefficients are related to the local ocean depth, layer structure and the density of the 
seawater et al, which are physical parameters impacting the amplitude of the internal solitary waves. In eq.(1), the first term is 

the evolution term, and the second one is the group velocity dispersion term. The third term is the high-order dispersion term, 
and the fourth one is the nonlinear term in the equation. After substituting A(x,t) = q1(x,t) + iq2(x,t) and 2 2 2

1 2| |A q q= +  into eq. (1), 

where q1 and q2 are the real-valued functions of t and x, we obtain the following coupled partial differential equations for q1 and q2 
in real space 

2 3
2 21 2 1

1 1 2 22 3
( ) 0

q q q
q q q

t x x
α α β

∂ ∂ ∂
− + + + + =
∂ ∂ ∂  
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( ) 0

q q q
q q q

t x x
α α β

∂ ∂ ∂
+ − + + =

∂ ∂ ∂  
(3) 

The target is searching for variational formulations whose stationary conditions satisfy eq. (2) and eq. (3) simultaneously. With 
the help of He’s semi-inverse method [30-31], a trial-functional is constructed in the following form 

2 2 2 2

1 1 1 1

3
2 22 1 2 2

1 2 1 1 1 1 23
( , ) { [( ) ( ) ] ( , )}

2

t x t x

t x t x

q q q q
J q q dt Ldx dt q q F q q dx

t x x x

α
α

∂ ∂ ∂ ∂
= = − + − +

∂ ∂ ∂ ∂∫ ∫ ∫ ∫
 

(4) 

where F is an unknown function of q1, q2 and their derivatives. There are various alternative approaches to the construction of 
trial-functional, illustrating examples can be found in Refs. [38-40], and detailed discussion about how to construct a suitable 
trial-functional is given in Ref. [32]. The main merit of the above trial-functional lies on the fact that the stationary condition with 
respect to q1, q2 results in eq. (2) and eq. (3), respectively. 

Now calculating the variational derivative of the functional, in eq. (4), with respect to q1, q2, we obtain the following Euler 
equations: 
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(6) 

where F/qi is called He’s variational derivative with respect to qi, defined as [32] 
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We search for such an F so that eq. (5) turns into eq. (2), and eq. (6) becomes eq. (3) separately. Accordingly, we set 

2 2
1 2 1

1

( )
F

q q q
q

δ
β

δ
= +
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2

( )
F

q q q
q

δ
β

δ
= +
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from which the unknown F can be determined as follows 

2 2 2
1 2( )

4
F q q

β
= +

 
(9) 

After embedding eq. (9) into eq. (4), the variational principle in real space is established for the generalized nonlinear 
Schrödinger equations (1), as following 
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(10) 

Similarly, another variational principle can be obtained as 
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(11) 

If the trial-Lagrange functional is preset to be in the following form 
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(12) 

using the variational theories, two diverse variational principles in different formulations can be constructed as 
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and 
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Proof. Making any one of the above functionals of variational principles eq. (10), eq. (11), eq. (13), and eq. (14) stationary with 
respect to all independent functions q1 and q2 severally, the following Euler-Lagrange equations can be obtained: 



2 3
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( ) 0

q q q
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
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(16) 

in which q1 and q2 are the first-order variations for q1 and q2. Obviously, the equations (15)-(16) are totally equivalent to the field 
equations eq. (3), eq. (2) in turn. So, we successfully proved the obtained four different variational principles eq. (10)-(11), eq. (13)-
(14) correct. 

3. Solitary wave solutions for the GNLS equation 

There are various techniques of integration that have been recently developed to integrate the nonlinear PDEs. They are the 
Lie symmetry approach, variational iteration method, homotopy analysis method, ansatz method, exponential function method 
and many others. These are besides the well-known and powerful technique of integration that was known for a fairly long time. 
In this article, one such modern method of integrability will be employed to integrate the GNLS equation (1) in the ocean. This is 
the He’s semi-inverse variational principle (HVP) that has become very popular since its first appearance in 1997 [25]. In this 
method, the given PDEs are transformed into ODEs based on the traveling wave function transformation, and the variational 
formulas corresponding to ordinary differential equations are established in the framework of the variational method with the 
help of semi-inverse technique[33-36]. The solitary wave solution of the given equation is constructed by substituting the 
assumed solution into the variational formula and finding its stationary point. The fractal variational principle is the last 
development of the semi-inverse method[36-40],which can greatly widen our sight and richen our knowledge on solitary wave 
theory and nonlinear vibration theory. 

The solitary wave solution of the given equation is constructed by substituting the assumed solution into the variational 
formula and finding its stationary point. Subsequently, it will be applied to carry out the integration of the generalized nonlinear 
Schrödinger equation eq. (1).  

The starting point is the solitary wave ansatz that is given by 

( )( , ) ( ) i mx ntA x t f eξ −=
 

(17) 

where the travelling wave transform is: 

x Etξ = −  (18) 

and both m and n are constants. f is an undetermined real function, and E is the wave velocity. Substituting the solitary wave 
ansatz eq. (17) into eq. (1) and decomposing into real and imaginary parts yields the following pair of relations, respectively 

( )21 1''' 2 3 ' 0f E m m fα α α+ + − =
 

(19) 

( ) ( )2 3 3
1 13 '' + 0m f n m m f fα α α α β− − + − =

 
(20) 

In the above two equations, ' / ,f df d= ξ
2 2'' /f d f d= ξ  and 3 3''' / .f d f d= ξ  By using semi-inverse method [41-62], the variational 

formulation of eq. (20) can be obtained: 

( )( ) ( )2 2 3 2 4
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0
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3 '

2 2 4
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∫
 

(21) 

Now, f is assumed to have the following form 

sech( ),f p q x Et= = −ξ ξ  (22) 

where p and q are unknown parameters to be determined. 
In order to obtain the two parameters function f, eq. (22) is inserted into eq. (21), and after some manipulations, we get: 
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(23) 

In order to get the stagnation point of J on p and q, we minimizing the above functional with respect to two unknown 
parameters. And the following equations can be obtained: 
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The above two equations can be transformed into: 
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After solving the above algebraic equations, we can get: 
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provided 

( )2 3
1 0n m mα α β+ − ⋅ >
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Finally, the solitary wave solutions to eq. (1) are obtained: 
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Fig. 1. The shape of the solitary wave solution given by eq. (27) 

 

  

Fig. 2. The shape of the solitary wave solution given by eq. (27) at different time 
(when t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, t = 1) 
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Fig. 2. Continued. 

From the exact solution formula eq. (27), it can be concluded that high-order dispersion term 1α  and nonlinear term β  both 

have a great influence on internal waves, which cannot be ignored. Obviously, by giving different values to the parameters for α , 

β , 1α , m, n and E, we will get different solitary wave solutions. If the parameters are set as 0.2=α , 1 0.2=α , 0.2=β , m = 2, n = 2, 

and E = 2. The value of x is between -3 and 3, and the value of t is between 0 and 1. We can plot the solitary wave solution as figure 
1. From figure 1 and figure 2, it is easy to show that the amplitude of wave solution is very local in space and has characteristics of 
soliton. 

Similarly, in order to get new solutions, we can choose a different form of solution functional as  

2sech ( ),f p q x Et= = −ξ ξ  (28) 

The calculation procedure is similar to above, and the letters p, q are undetermined parameters. In order to obtain the 
following two-parameter function, we insert eq.(28) into eq.(21): 
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(29) 

In order to get the stagnation point of J on p and q, we set up the following equations: 
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Or simplify to get: 

( ) ( )
( ) ( )

2 2 3 2
1 1

2 2 3 2
1 1

28 3 35 12 0

28 3 35 24 0

m q n m m p

m q n m m p

α α α α β

α α α α β

− − + − + =

− + + − − =
 

(31) 

After solving the above algebraic equations, we can get: 
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and the result is: 
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Fig. 3. The shape of the solitary wave solution given by eq. (33) 

 

 
 

 

Fig. 4. The shape of the solitary wave solution given by eq. (33) at different time 
(when t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, t = 1) 
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Fig. 4. Continued. 

From the exact solution formula eq. (31), it can be concluded that high-order dispersion term 1α  and nonlinear term β  both 

have a great influence on internal waves, which cannot be ignored. Obviously, by giving different values to the parameters for α , 

β , 1α , m, n and E, we will get different solitary wave solutions. If the parameters are set as 0.2=α , 1 0.2=α , 0.2=β , m = 2, n = 

2, and E = 2. The value of x is between -3 and 3, and the value of t is between 0 and 1. We can plot the solitary wave solution as 
figure 1. From figure 3 and figure 4, it is easy to show that the amplitude of wave solution is very local in space and has 
characteristics of soliton. 

And we can also choose  

sech( ),f p q x Et= = −ξ ξ  (34) 

( ) ( )1
' tanh sech

2
f pq q qξ ξ=

 
(35) 

Inserting eq. (34) and eq. (35) into eq. (19), eq. (19) is: 
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In order to get the stagnation point of J on p and q, we set up the following equations: 
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Or simplify to get: 
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After solving the above algebraic equations, we can get: 
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After solving the above algebraic equations, we can get: 
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(40) 
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Fig. 5. The shape of the solitary wave solution given by eq. (40) 

 

 

 

Fig. 6. The shape of the solitary wave solution given by eq.(40) at different time 
(when t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, t = 1) 
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From the exact solution formula eq. (40), it can be concluded that high-order dispersion term 1α  and nonlinear term β  both 
have a great influence on internal waves, which cannot be ignored. Obviously, by giving different values to the parameters for α , 
β , 1α , m, n and E, we will get different solitary wave solutions. If the parameters are set as 0.2=α , 1 0.2=α , 0.2=β , m = 2, n = 
2, and E = 2. The value of x is between -3 and 3, and the value of t is between 0 and 1. We can plot the solitary wave solution as 
figure 1. From figure 5 and figure 6, it is easy to show that the amplitude of wave solution is very local in space and has 
characteristics of soliton. 

4. Conclusion 

The generalized nonlinear Schrödinger equation is widely applied in mathematics and physics. It is closely related to many 
nonlinear problems in theoretical physics such as nonlinear optics, ion acoustic waves in plasma, etc. Especially, it is very suitable 
for describing the deep-sea internal wave propagation. In this paper, different kinds of variational principles have been 
successfully constructed for a generalized nonlinear Schrödinger equation, by the semi-inverse method and designing skillfully 
trial-Lagrange functionals. Then, the constructed variational principles are proved correct by minimizing the functionals with the 
calculus of variations. Subsequently, different solution structures for solitary waves are obtained by semi-inverse variational 
principle for the GNLS equation. From the figures of solutions, it is observed that on one hand the amplitude of solitary wave 
solution is very local in space, which displays the characteristics of soliton, on the other hand the shape of the solitary wave 
solution varies greatly over time. From the exact solution formulas, it can be concluded that high-order dispersion term and 
nonlinear term both have a great influence on internal wave solutions in the GNLS equation, and they cannot be ignored. 
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