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Abstract. Linear and nonlinear feedback control of vortex-induced vibrations are assessed using a single degree-of-freedom 
phenomenological model of the uncontrolled response. The model is based on the role of linear and nonlinear damping forces in 
inducing and limiting the amplitude of these vibrations. First, the model prediction is validated using data from previously 
published high-fidelity direct numerical simulations. Then, linear and nonlinear control are applied to the validated model over a 
broad range of gain values. The predicted controlled responses are also validated against previously published results from high-
fidelity numerical simulations. Based on this validation, it is shown that the single degree-of-freedom model is an effective 
alternative, in terms of computational cost, to high fidelity simulations in assessing control strategies over broad regions of control 
gains. 
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1. Introduction 

The periodic shedding of positive and negative vorticity from a cylinder when placed in a uniform flow subjects it to oscillatory 
lift and drag forces. If the cylinder is allowed to move under the action of these forces, the motion influences the flow, which impacts 
the magnitude and direction of the oscillatory forces. Based on the structure’s stiffness, damping, and mass and for specific fluid 
density and viscosity, the extent of the coupling between the flow and the cylinder’s motion depends on the flow velocity, which 
determines the frequency of the vortex shedding. Of particular interest is the flow regime where the motion of the cylinder 
synchronizes the vortex shedding frequency, which results in large-amplitude oscillations or vortex-induced-vibrations (VIV). This 
regime is referred to as lock-in or synchronization regime. The synchronization phenomenon has been documented in many 
experimental and numerical studies. Sarpkaya [1] discussed parameters that influence VIV, the unsteady forces acting on the 
cylinder, and the linearized equations of the self-excited motion and their limitations, especially when the oscillations exhibit 
amplitude and phase modulations. Gabbai and Benaroya [2] discussed an approach based on variational principles to derive a 
governing equation for VIV [3] and reviewed other semi-empirical models that predict the response of the cylinder to the forces 
from the flow. Williamson and Govardhan [4] reviewed important aspects impacting the VIV including the vortex dynamics and 
energy transfer that cause the vibrations, and the significance of mass ratio, damping and effective elasticity. 

Because large-amplitude oscillations cause structural fatigue and can ultimately lead to failure, there has been significant 
interest in characterizing the VIV as a phenomenon and in reducing its impact through different control strategies. Passive control 
can be achieved by varying the flow through geometrical changes or the addition of appendages to the surface of the cylinder, e.g. 
streamline fairing, tripping wire, or helical strake to reduce the impact of the vortex shedding pattern [5], or by increasing the 
structural damping [6] or the addition of a secondary device, e.g. an energy sink [7, 8] to absorb the energy that is transferred from 
the flow to the cylinder. In contrast to passive control approaches, active control suppresses the vibrations by balancing the 
cylinder’s motion with external energy that is supplied to the flow, e.g. blowing and suction [9,10] or acoustic feedback [11-13], or to 
the cylinder, e.g. feedback control [14,15].   

Evaluation of different control strategies is usually performed or assessed through experiments or numerical simulations. Yet, 
when performing optimization under different constraints over a large design space, the experiments may not be effective, and the 
computational cost of high-fidelity simulations may be prohibitive. In contrast, simplified or reduced-order models can be used for 
effective evaluation of control strategies. Different VIV-reduced order models have been suggested. The simplest of these models is 
the single degree-of-freedom model with sinusoidal representation of the fluid forces on the right-hand side of the cylinder’s 
governing equation of motion. In other models, the cylinder’s equation of motion is coupled with a wake oscillator model that 
predicts the fluid force on the cylinder. A third set of models relies on determining the force components from measurements or 
simulations. Each of the above representations has its shortcomings. For instance, algebraic representation of the fluid forces is not 
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accurate because it does not account for memory effects associated with the vortex shedding and wake. Although representing the 
force by a nonlinear oscillator is advantageous over the algebraic representation because it accounts for nonlinearities associated 
with flow separation and wake effects, determining its form and parameters and representing its coupling with the cylinder's 
equation of motion are challenging.   

Towards overcoming these challenges, we use a single degree-of-freedom model that directly represents vortex-induced 
vibrations of a freely oscillating cylinder with the displacement as the only variable [16]. The basis of the proposed model is that 
positive excitation in the form of negative fluid damping, represented by a force proportional to the cylinder’s velocity, is required 
to induce the self-excited oscillations [17] and that nonlinear damping is required to limit the amplitude of these oscillations. We 
demonstrate the effectiveness of the proposed model in implementing linear and nonlinear feedback control by comparing its 
predictions with previously reported data from high-fidelity simulations [15]. The rest of the paper is structured as follows: the 
phenomenological model and approach to identify its parameters are presented in section 2. Details of the direct numerical 
simulation used to generate the time series for identification of the parameters of the phenomenological model are presented in 
in section 3. The control results including required gains and power for implementing linear and nonlinear velocity feedback control 
are validated and discussed in section 4. The conclusions are drawn in section 5. 

2. Phenomenological Model 

2.1 Governing equation 

The governing equation of an elastically mounted rigid cylinder having a mass mcyl, structural damping c, and stiffness k that is 
allowed to freely vibrate in the transverse direction when placed in a uniform flow is written as: 

( )ycylm y cy ky F t+ + =ɺɺ ɺ  (1) 

where y is the transverse displacement of the cylinder, the overdot is used to represent time derivative, and Fy(t) is the flow-induced 
transverse force acting on the cylinder as shown in fig. 1. In the case of a stationary cylinder, this force coincides with the lift force 
and is determined by the vortex shedding. It has one dominant frequency component, which is the frequency of the vortex shedding. 
In the lock-in region, the natural frequency of the cylinder matches that of the vortex shedding, which results in finite-amplitude 
oscillations or VIV. Because the relative velocity of the cylinder to that of the incident flow is time-varying, the lift and drag forces 
continuously change directions depending on the instantaneous angle of attack, (t), between the x-axis and the direction of the 
instantaneous velocity vector, V. Consequently, both lift and drag forces contribute to the transverse force such that Fy(t) = FD(t)sin 
+ FL(t)cos as shown in the schematic presented in Fig. 1.  

At the onset of the vibrations, the angle  is small because the transverse velocity of the cylinder is much smaller than the 
incident velocity. As such, we write: 

sin tan
y

U∞
≅ =

ɺ
   (2) 

Subsequently, the instantaneous drag force is proportional to the transverse velocity of the cylinder. The instantaneous lift is 
out of phase with the drag and is proportional to the acceleration of the cylinder. This latter component is represented by the added 
mass, madd. As for the component that is proportional to the velocity, it must be positive to initiate energy transfer from the flow to 
the cylinder and result in the self-excited oscillations. Because of its dependence on the velocity, this positive excitation is 
effectively a negative linear damping force. In addition to this linear force, flow nonlinearities, which have their source in the flow 
separation and wake, result in limiting the amplitude of the oscillations. As such, we represent the flow-induced hydrodynamic 
force by two components that are respectively proportional to the velocity of the cylinder and to its cube value. Using this 
representation, it is postulated that the vortex-induced vibration of an elastically mounted cylinder when placed in a uniform flow 
can be represented by a phenomenological model having the form of the Rayleigh oscillator and written as [16]: 

3my cy ky ay by+ + = +ɺɺ ɺ ɺ ɺ  (3) 

where m = mcyl + madd. The coefficients a and b are used to represent the dependence of the transverse force on the velocity and its 
cubic value, respectively.  

 

Fig. 1. Schematic of transverse vortex-induced vibrations of a circular cylinder. 
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Using the incident speed, U∞ , and the cylinder diameter, D , we nondimensionalize eq. (4), which yields 

( ) ( )
2

32 2
2 0

2
r

df f
r r

U

U U

  − − + + =   
ɺɺ ɺ ɺ

π π
ζ ζ β

π
Y Y Y Y  (4) 

where /y D=Y  and the time derivative is performed using the nondimensional time /t tU D∗
∞= . The reduced velocity is defined 

as /rU U fD∞=  where f  is the frequency of the cylinder’s oscillations, which is set by its natural frequency in the lock-in region. 

Using the cylinder’s natural frequency given by /k m=ω , the damping ratios associated with the negative damping ratios 

proportional to the velocity of the cylinder and structural damping are respectively defined as / 2f a m=ζ ω  and / 2d c m=ζ ω . The 

parameter 2 / 2f bD m=β ω  defines the nondimensional nonlinear damping force by the flow. It is important to note that this model 

is valid only in cases where VIV results from lock-in. It may not be applicable in VIV that does not involve or require lock-in as in 

the case of low values of the mass ratio defined as the ratio of the cylinder density to fluid density.    

2.2 Identification of Model Parameters 

Identification of the fluid damping coefficients is performed using data from direct numerical simulation of vortex-induced 
vibrations. The identification procedure, as detailed in [16], involves combining an approximate solution of eq. (4) with spectral 
analysis of data from the numerical simulations. Using the method of multiple scales [18-20], the approximate solution of eq. (4) is 
written as: 

1

3
1

2 2
cos cos 3 3

32 2
f

r r

A t A t
U U

∗ ∗
      = + + + −        

βπ π π
ϕ ϕY  (5) 

where ϕ  is a constant phase and 1A ,which represents the amplitude of the first harmonic response, is determined from the 

modulation equation 

( )
1

3
1 1

3

8df fA A A= − −ɺ ζ ζ β  (6) 

Under steady-state conditions 1 0A =ɺ . The ratio of the linear and nonlinear damping is then given by 

1

23

8
df

f

A
−

=
ζ ζ

β
 (7) 

The amplitude of the third harmonic of the response 3A , as noted from eq. (5), is given by  

3
3 132

fA A=
β

 (8) 

In the identification procedure, we will use 1A and 3A as determined from the spectral analysis of the time series as obtained 

from a high-fidelity simulation to determine the nonlinear fluid damping coefficient fβ . Then, we use eq. (7) to identify the linear 

fluid damping coefficient fζ . 

3. Numerical Simulation of Uncontrolled Vortex-Induced-Vibrations 

3.1 Governing Equations and Simulation Approach  

Details of the numerical simulation used to generate time series for the identification of the model parameters, as proposed 
above, are provided in [10, 21-24]. The accelerating reference frame (ARF) computational approach whereby the computational mesh 
of the flow field is fixed to the cylinder and allowed to move in space is used to solve the governing equations. This requires 
adjusting the momentum equations and boundary conditions as appropriate. As such, the cylinder’s motion in response to the 
force exerted on it by the flow is governed in an inertial reference frame by the nondimensional equation: 

2
2 2 2

2 Yd

r r

C
U U m∗

  + + =   
ɺɺ ɺ

π π
ζ

π
Y Y Y  (9) 

wherem∗ is the ratio of the cylinder’s mass to that of the fluid it replaced, and YC is the force coefficient in the transverse direction. 

The nondimensionalized equations governing this field in the reference frame attached to the cylinder are given by: 

0i

i

u

x

∂
=

∂
 (10) 

and 
 

( )
21i i

j i i

i j j

u up
u u

t x Re x x

∂ ∂∂ ∂
+ = + −

∂ ∂ ∂ ∂ ∂
ɺɺ

j
x

Y  (11) 

where , 1,2,3i j= , iu represents the Cartesian velocity components, p is the pressure and /Re U D∞= ν  is the Reynolds number. We 

note that the equations governing the fluid flow are coupled with those governing the cylinder’s motion through the cylinder’s (or 

frame) acceleration i
ɺɺY . Implementing the ARF requires adjusting the domain boundary conditions to include the effects of the 

moving cylinder. The force coefficient, YC , is obtained by integrating the surface and viscous stresses over the surface of the 

cylinder. A second-order central-difference scheme is used for all spatial derivatives except for convective terms. Time advancement 
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is performed using a fractional step approach where a predictor step calculates an intermediate velocity field, and a corrector step 

updates the velocity by satisfying the pressure-Poisson equation at the new time step. The diagonal viscous terms are advanced 

implicitly using the second-order accurate Crank-Nicolson method, whereas all of the other terms are advanced using the second-

order accurate Adams-Bashforth method. A predictor-corrector scheme is used to solve the coupled problem defined by eq. (9), (10) 

and (11). In this scheme, the fluid force, from eq. (11) is used in the governing equation of the motion of the cylinder. The predicted 

position of the cylinder is then used in the flow simulation to compute an updated fluid load. This load is then used to compute a 

new position for the cylinder, using the corrector scheme. These steps are repeated until a match, based on a specified conditional 

error at each time step, between the fluid force and the cylinder motion is achieved. As reported by [10, 21-24], the fluid flow solver 

and coupling scheme were validated with previous experimental and numerical results.  

3.2 Identification of Fluid Damping Coefficients 

To identify the coefficients of the reduced-order model, the numerical simulation in the lock-in region was performed over a 

computational domain of 25D  using an “O” type grid with a resolution of 192x252 grid points in the radial and tangential directions, 

respectively. Time integration was carried out with a time step 0.002t∆ = . The simulation was performed for a cylinder having a 

mass ratio 149.1m∗ =  and a damping ratio 0.0012d =ζ  at 106Re= , which falls in the lock-in regime [10,21-24]. Simulated time 

series and spectra of the transverse force coefficient, YC , and cylinder displacement, Y  are presented in fig. 2. The force coefficient 

has an amplitude of 1.31 and its spectrum shows peaks at a fundamental frequency and its odd harmonics. The first peak is at the 

oscillation (or vortex shedding) nondimensional frequency 1 / 0.168rf U= = , where rU  is the reduced velocity. It has a spectral 

amplitude of 1.27. The second is at the third harmonic of 0.505 with a spectral amplitude of 0.032. The third peak at the fifth 

harmonic has a much smaller magnitude. The time series of the nondimensional displacement shows an amplitude of 0.418. Its 

respective spectrum shows a peak also at 0.168 that has an amplitude 1 0.418A = . Although no clear peak is present at the third 

harmonic in the displacement spectrum, the spectral amplitude at the third harmonic is 3 0.00037A = .  

Given the values from the spectral analysis, we estimate the nonlinear damping coefficient as 

3
3
1

32
0.1574f

A

A
= =β  (12) 

and the linear damping coefficient as  

2 3
1

1

3
12 0.0115

8 d df f

A
A

A
= + = + =ζ β ζ ζ  (13) 

or, for 0.0012d =ζ , the fluid damping 9.58 df =ζ ζ .  

 

Fig. 2. Top: Direct numerical simulation of the lift coefficient and uncontrolled nondimensional transverse displacement of the cylinder undergoing 
vortex-induced vibrations. Bottom: respective spectral density functions of the time series. 
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Fig. 3. Validation of predicted nondimensional displacement using the reduced-order model through comparison with displacement from high-
fidelity numerical simulations. 

Validation of the model is demonstrated by comparing the time series of the nondimensional displacement as obtained from 
the numerical simulation with those obtained by numerically integrating eq. (4) using the identified coefficients. Figure 3 shows 
perfect agreement, in terms of steady-state amplitude and frequency of the time series predicted from the model with the time 
series obtained from the high-fidelity numerical simulation.  

4. Control of Vortex Induced Vibrations 

4.1 Implementation using the Phenomenological Model  

Introducing linear and nonlinear cubic velocity feedback control into the governing equation yields 

2
2 2

2 1 0
21

df kc r
f

kl r r f

d

U

U U

      −    − + + + =            +  

ɺɺ ɺ ɺ
ζ ζ βπ π

β
ζ β π
ζ

3
Y Y Y Y  (14) 

where klζ  and kcβ  are used to represent the nondimensional respective gains of the linear and cubic velocity feedback controllers. 

The linear velocity feedback control should reduce the impact of the negative flow damping force that initiates the energy transfer 

from the flow to the cylinder. As for the nonlinear velocity feedback control, we note that limiting the oscillations in VIV is due to 

nonlinear damping flow forces generated by the flow separation, vortex shedding and the cylinder’s wake. As such, the nonlinear 

velocity feedback control should be very effective in controlling or reducing the oscillations amplitude. Figure 4 shows time series 

of the nondimensional displacement for different gain values of the linear controller. Percentage reductions of 38%, 52%, and 98% 

from the uncontrolled response amplitude of 0.418 are respectively realized for gain values of 0.05 kg/s (or 1.58kl d=ζ ζ ), 0.1 kg/s (or 

3.15kl d=ζ ζ ), and 1 kg/s (or 31.5kl d=ζ ζ ). Clearly, reducing the oscillations amplitude from about 40% to total suppression requires 

increasing the gain of linear controller by two orders of magnitude. Figure 5 shows time series of the nondimensional displacement 

for different gain values of the nonlinear controller. Percentage reductions of 28%, 47%, and 99% from the uncontrolled response 

amplitude of 0.418 are respectively realized for gain values of 100 Ns3/m3 (or 0.12kc =β ), 1000 Ns3/m3 (or 1.18kc =β ), and 1x 106 

Ns3/m3 (or 1183kc =β ). In contrast to the case of linear controller, reducing the oscillation amplitudes from about 50% to total 

suppression requires an increase in the gain of the nonlinear control by three orders of magnitude. This difference will be further 

considered by comparing the power required for different levels of magnitude reductions using both control strategies.  

  

Fig. 4. Time series of nondimensional cylinder displacement for 
increased gain values of linear controller. 

Fig. 5. Time series of nondimensional cylinder displacement for 
increased gain values of nonlinear controller. 
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Fig. 6. Reduction in RMS amplitude of oscillations as linear gain is 
increased. 

Fig. 7. Validation of percent reduction for different values of linear 
gain with high fidelity simulations [15]. 

 

  

Fig. 8. Reduction in RMS amplitude of oscillations as nonlinear gain is 
increased. 

Fig. 9. Validation of percent reduction for different values of nonlinear 
gain with high fidelity simulations [15]. 

  

Fig. 10. Variation of the required nondimensional power (in mW) as a 
function of the nondimensional controlled displacement. Circles and 

squares correspond to required power by linear and nonlinear 
controllers, respectively. Data shows agreement with simulated results 

(figure 10 of [15]). 

Fig. 11. Variation of the required nondimensional power (in mW) as a 
function of the nondimensional controlled displacement. Circles and 

squares correspond to required power by linear and nonlinear 
controllers, respectively. 

More details about the gain required to achieve specific levels of amplitude reduction can be obtained from the variations of the 

normalized rms amplitude of the cylinder oscillations over a broader range of gain values. The plot in fig. 6 shows that the rate at 

which the oscillations amplitude is reduced increases as the gain of the linear controller is increased up to the point where the 

normalized amplitude is 0.05. Below this value, amplitude reduction towards total suppression will require significant increase in 

the linear gain. The validity of the results is noted on the basis of the data presented in fig. 7, which shows the percent reduction 

of the oscillation amplitudes as a function of the combined mass-damping parameter. Predicted reductions from high fidelity 

simulations [15] at four values of the mass-damping parameter are within 3% of predicted values using the phenomenological 

model.  

Figures 8 and 9 show the drop in the nondimensional response for different gain values kcβ  of the nonlinear controller. The 

data in both plots show that the highest rate of reduction takes place in an intermediate range of gain values and that total 

suppression will require an increase of this value by three order of magnitudes beyond this range. The data in fig. 9 show agreement 

between predicted reductions from the phenomenological model and those obtained from high-fidelity simulations as reported in 

[15].   
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One measure of the efficiency of both controllers is the required power, which is given by [15]: 

2 2 2
1

1

2
Lavg L nlP K A D= ω  (15) 

for the linear controller, and 

4 4 4
1

3

8
NLavg c NL nP K A D= ω  (16) 

for the nonlinear controller. Figures 10 and 11 show a comparison of these values. The plot in figure 10 is quantitatively in agreement 
with the results reported from the high-fidelity simulations [15]. More details can be noted from figure 10, which shows that linear 
control is more effective in reducing the high amplitude oscillations (Ymax/D > 0.25) while nonlinear control is more effective in 
reducing the lower amplitude oscillations (Ymax/D < 0.25). For instance, reducing the amplitude by 20 % using nonlinear control 
requires almost 50% more power than using linear control. On the other hand, reducing it by 80% using nonlinear control requires 
only half the power that is required by the linear controller. The reason is that limiting the lower amplitude oscillations requires 
significantly less power than limiting the higher amplitude oscillations.  

5. Conclusions 

We demonstrated the effectiveness of using a recently proposed single degree-of-freedom model that directly predicts the 
displacement in vortex-induced vibrations in assessing capabilities of linear and nonlinear control strategies. Both model and 
controlled amplitude levels for specific gains were validated using previously published data from higher fidelity simulations. The 
results show that the linear control requires less external power to reduce the amplitude of the oscillations by up to 50%. Reducing 
the amplitude to lower levels can be achieved more effectively using a nonlinear controller. Still, the required gain for the nonlinear 
controller is very large and may not be practical. Of particular interest is that the validated control results were obtained in few 
hours, which constitute a small fraction of the weeks required to perform the equivalent high fidelity numerical simulations.  
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