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Abstract. This paper presents a new equivalent stiffness-based load transfer model for an open-ended pipe pile. The main idea of 
this model is to replace the sum of unit stiffnesses corresponding with external and internal unit skin frictions in the basic 
differential equation of load transfer by a weighted average of equivalent unit stiffnesses using a dual approach of equivalent 
replacement. The contribution of external and internal skin frictions to equivalent unit stiffnesses is evaluated by normalized 
dimensionless weighting coefficients in the form of average value with the penetration depth. Application of new load transfer 
model to a jacked open-ended pile concerning semi-empirical models of external and internal unit skin frictions leads to 
corresponding explicit expressions of weighting coefficient. A computational example of a jacked open-ended pile is carried out. 
It is shown that the proposed equivalent stiffness-based load transfer model is an effective tool for analyzing behaviors of the 
open-ended pile in considering the soil plugging effect. 

Keywords: Jacked open-ended pile; load transfer method; equivalent stiffness; dual approach of equivalent replacement. 

1. Introduction 

In recent years, open-ended pipe piles have played an increasingly important role in foundation engineering, from urban to 
coastal structures, due to their advantages of high bearing capacity, lightweight, and good performance. A particular feature of 
this pile that distinguishes it from others is the soil plugging effect which has attracted a lot of attention in research, design, and 
installation. The research trends mainly focus on the formation mechanism of the soil plug and the influence of the plugging 
effect on the open-ended pile driving as well as the bearing capacity of the pile, in both theoretical and experimental approaches. 

Regarding experimental research, there have been many pioneering studies on these issues, thereby providing insight into the 
physical properties of open-ended piles. In [1], Paik and Lee organized a series of calibration chamber tests on open-ended pipe 
piles, they found that although the pile driven into sand remains partially plugged, the plug resistance is larger than or nearly 
equal to the outside shaft resistance in all cases of model tests. Paikowsky et al. [2] investigated the effect of soil plugging on the 
axial resistance developed by open-ended piles installed in sand and clay. The load carrying capacity of the internal soil plug has 
also been explored by Randolph et al. [3], [4] who showed that the capacity increases exponentially with plug length through one-
dimensional analysis. And, authors proposed a distribution profile of lateral earth pressure coefficient along the length of the soil 
column. Interesting field observations of soil plug formation and soil arching are provided in [5]-[10], in semi-empirical methods 
to estimate the soil plug capacity and pile bearing capacity, including the incremental filling ratio IFR, and the plug length ratios 
PLR, where PLR is the ratio of the length of soil plug to pile penetration depth and IFR is the ratio of the increment of soil plug 
length to the increment of pile penetration depth. In application, different design methods for open-ended pipe piles are 
summarized in [11], [12] where a major factor for all design codes is to properly account for the formation and effects of soil plug.  

Developing theoretical models to describe the behavior of open-ended piles in association with the plugging effect during 
driving, as well as to predict bearing capacity are issues of concern. The equilibrium of soil plug with the concept of active length 
developed by Randolph et al. [3], [4] based on the silo theory has become a basic theoretical model for reference with newly 
developed numerical studies. For example in [13], Henke and Grabe considered the influence of the installation methods on the 
soil plug behavior inside open-ended piles using software ABAQUS. In [14], Henke found that Coupled Eulerian-Lagrangian 
approach is a well-suited tool to investigate boundary value problems involving large deformations in the case of soil plugging 
inside tubular piles. Following this approach, several numerical simulations of the pile driving process in various soil conditions 
were implemented to investigate the effect of plugging with regard to different installation methods for jacked piles and dynamic 
driven piles in [15]-[17] based on Coupled Eulerian-Lagrangian and Discrete element methods. On the other hand, analytical 
approaches such as the load transfer method, although a widely used analytical tool in analyzing the responses of close-ended 
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piles, have not yet been able to be conveniently applied to open-ended piles. Due to the arching effect during pile driving, namely 
in unplugged and partially plugged states, parameters of the internal soil will be changed accordingly, from elastic model to rigid 
model [1]-[4], [18]. On the contrary, the behavior of open-ended piles is similar to that of closed-ended piles when the fully 
plugged state occurs, the internal skin friction is invalid [1], [2], this means in this state the responses of open-ended piles is the 
same as that of closed-ended piles. As a consequence, a major problem with the load transfer method is the difficulty in 
describing explicit expressions of the pile shaft stiffnesses related to plugged states in the basic differential equation of load 
transfer. It appears that the analysis of open-ended piles based on the load transfer models requires appropriate approaches. 
In [18], Liu et al. proposed a pile-in-pile model for studying the effect of the pile annulus and internal soil plug separately, i.e., the 
pile annulus as the “outer pile” and the soil plug as the “inner pile”, where different models were applied to external and internal 
skin frictions. The axial force and settlement of the open-ended pile shaft were computed by superposing the corresponding ones 
caused by the “outer pile” and the “inner pile”. However, this approach cannot provide a perspective about the reciprocal influence 
between external skin friction and its counterpart internal skin friction on the pile responses.    

 Recently, a dual approach has been proposed to investigate the response of nonlinear systems by Anh [19], and some dual 
techniques in equivalent replacement have been developed by Anh et al. [20]-[23]. Remarkably, in recent times a new weighted 
averaging criterion proposed in [23] derived from this approach has been successfully applied to wide classes of nonlinear 
problems by Hieu et al. [24]-[26]. The main issue of the dual approach to a replacing problem is to always consider two different 
(dual) aspects of the problem. This allows the analysis to become more harmonious and reflects the essence of the problem [22]. 
In this paper, we study a new load transfer model for a jacked open-ended pipe pile in considering the simultaneous influences of 
external and internal skin frictions on the displacement and axial force responses. For this purpose, a weighted dual equivalent 
replacement is used to describe the relationship between external and internal skin frictions with corresponding soil stiffnesses 
in the basic differential equation of load transfer.  

The remainder of the paper is organized as follows. In Section 2, the basic differential equation of load transfer for an axially 
loaded open-ended pipe pile is considered first in concern with the load transfer for external and internal pile-soil interactions, 
as well as for the pile-soil interaction at the pile tip. Next, a weighted average of equivalent unit stiffnesses is introduced to 
replace the sum of unit stiffnesses in the basic differential equation of load transfer. The equivalent stiffness-based load transfer 
model is applied to a jacked open-ended pile in Section 3. Numerical examinations are carried out in Section 4. Section 5 contains 
the conclusions. 

2. Equivalent stiffness-based load transfer model 

2.1 Basic equation of load transfer  

Axial displacement and axial force are two basic responses of an open-ended pipe pile under axial load which can be 

determined analytically by the load transfer method. In order to obtain these responses, we first consider the mechanism of pile-

soil interaction for the open-ended pile. To simplify the analysis, it is assumed that the pile-soil interaction models are linear and 

the soil is homogenous, the body forces such as inertial and damping forces are neglected, which means that the superposition 

principle is valid. 

Normally, the soil stiffnesses beneath the pile tip, around and inside the pile could be represented by the elastic properties of 

the spring. Hence, the pile-soil interaction can be analyzed through those elastic elements. As illustrated in Fig. 1.a, the pile-soil 

interaction at the pile tip is modeled by springs at the pile tip, while external and internal skin frictions at the pile shaft, ,s ef  and 

,s if , are modeled by springs with the corresponding unit stiffness coefficients ek  and ik , respectively.  ,s ef  is related to 

properties of external pile-soil interaction, meanwhile ,s if  depends on the development of a soil plug forming inside the pile 

during driving. Adapting the linear dependence between the unit skin frictions and axial displacement of the pile ( )pu z , we then 

have the relationship: 
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Fig. 1. a) Load transfer diagram of pile-soil interaction; b) Force equilibrium of a pile segment; c) Force equilibrium of a soil plug segment;  
d) Distribution of lateral earth pressure coefficient 
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( ) ( ),s e e pf z k u z=  (1) 

( ) ( ), ps i if z k u z=  (2) 

Here the index “e”, “i” denote external and internal pile-soil interactions. 

As shown in the literature, the open-ended pile is characterized by the plugging effect including three possible states in the 

driving process [1]-[5]:  

- Unplugged state (I) involving the forming of the upper soil column with length 1h  during the initial pile driving. The effect 

of ,s if  on the inner pile wall may be considered to be the same manner as that of ,s ef  but ,,
II II

s es if f< ; 

- Partially plugged state (II) involving the forming of the lower soil column with length 2h  under the arching effect which 

restricts partially the external soil to enter inside the pile as ,,
II II

s es if f≥ ; 

- Fully plugged state (III) occurs as the pile penetration continues but the soil plug length does not change due to the soil plug 

restricts fully external soil to enter the inside of the pile. Since then the pile acts as a close-ended one, the internal unit skin 

friction is invalid, , 0, 0III III
s i if k= = .  

Clearly, ek  and ik  change with the variation of ,s ef  and ,s if  during driving. It should be noted that for state III, the external 

unit skin friction of a close-ended pile can be derived from the elastic theory [27], [28] 

( ) ( ),
III III III
s e e pf z k u z=  (3) 

where  

,s eIII
e

e e

G
k

r ζ
=  (4) 

,ln m e
e

e

r

r
ζ

  =    
 (5) 

( )2.5 1m sr L v= −  (6) 

where ,s eG  and sv  are respectively the shear modulus and Poisson’s ratio of external soil, eζ  is called the effective parameter 

of the outer pile radius er , L  is the pile length. It is seen that Eq. (3) is a particular case of Eq. (1). For states I and II, the above 

expression of the external unit skin friction may be inapplicable due to the simultaneous interaction of external and internal skin 

frictions. For convenience, the formulations of , ,, ,s e es if f k  and ik  for states I, II will be determined in the next sections. 

Consider the force balance of an open-ended pile segment dz  at a certain depth z  as illustrated in Fig. 1.b. Given 

, ,, , ,s e es i if f k k  for three plugged states, the differential equation of the skin frictions to axial force ( )P z  is defined by 

( ) ( ), ,2 e s e i s i

dP z
r f r f

dz
π=− +  (7) 

where ir  is the pile inner radius. The development of axial force ( )P z  due to axial displacement ( )pu z  is described by [27],[28] 

( )
( )p

p p

du z
P z E A

dz
=−  (8) 

where pA  is the pile section, pE  is the pile elastic modulus at the depth z . Using Eqs. (7) and (8), the basic differential equation 

of the load transfer method is governed by the following equation 

( ) ( )
( )

2
, , 2

2

2 e s e i s ip
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p p

r f r fd u z
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π
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+
= =  (9) 

where noting the relationships (1), 

( )2 2 e e i i

p p

r k rk
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π
µ

+
=  (10) 

The solution of Eq. (9) can be found in the form of 

( ) 1 2
z z

pu z C e C eµ µ−= +  (11) 

where 1 2,C C  are integral constants. According to load transfer for the pile tip, two boundary conditions supplemented to (9) are 

( ) ( )
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 (12) 
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where bu  and ( )bQ L  are soil settlement and ultimate bearing resistance at the full penetration depth z L= . In other words, the 

load-settlement relation of the pile base is used as limiting conditions for the pile at the full penetration depth, i.e. ( )p bu z u→ , 

( ) ( )bP z Q L→  as z L→ . After determining 1C  and 2C , the obtained displacement of a pile segment is 

( ) ( ) ( )1 1
2 2

ps psL z L zb b
p

K Ku u
u z e eµ µ

µ µ

− − −
      = − + +        

 (13) 

where  

( )b
ps

p pb

Q L
K

u E A
=  (14) 

Using displacement response (13) to solve Eq. (8), to give the expression of axial force ( )P z  

( )
( ) ( ) ( )1 1

2
L z L zb

ps ps

Q L
P z e e

K K
µ µµ µ− − −

         = − + +            
 (15) 

The expressions of displacement and axial force responses of an open-ended pile given by Eqs. (13) and (15) show that the 

input parameters needed for analysis are the pile geometry, the elastic constants of soil and pile, and the soil stiffness 

coefficients. The physical interpretation of 2µ  in Eq. (10) and Kps in Eq. (14) can be expressed as 

2  unit stiffnessof

s
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i

p

l

il

s
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p e t ffnes
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K
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Remarkably, 2µ  and psK  are the ratio of shaft-pile stiffness and the ratio of base-pile stiffness, respectively. The dimensions 

of µ  and psK  are both 1length− , thus the ratio of µ  to psK  is dimensionless. Clearly, the fully plugged state corresponding 

with , 0s if = , at this state 2 2 /e e p pr k E Aµ π= , and the basic equation of load transfer (9) reduces to the case of a close-ended pile 

with stiffness III
ek , with the displacement and axial force responses as result shown in [28]. In the next section, the unknown unit 

stiffness coefficients of the pile shaft, ,I II
ek  and ,I II

ik , will be determined. 

2.2 Equivalent unit stiffness coefficients in concern with the weighted dual approach 

The fact is that the formulations of external and internal unit skin frictions for states I and II, ,
,
I II
s ef  and ,

,
I II
s if , can be achieved 

from laboratory and in situ tests, normally to be considered as functions with the penetration depth or with the soil plug 

length [3], [18]. Nevertheless, it is necessary to determine formulations for corresponding stiffnesses, ,I II
ek  and ,I II

ik , to fully 

describe the load transfer model. An additional question then arises if there is a possible way to describe the influence of those 

unit skin frictions on these stiffnesses. The answers to the problems are shown below. 

Physically, state III is a continuation of states I and II during the driving process. Therefore, it can be assumed that the pile 

shaft stiffnesses in states I and II are related to the ones in states III in homogenous soil. Adopting the dual approach in 

equivalent replacement [20]-[22], here we may use equivalent unit stiffness coefficients for , ,,I II I II
e ik k , that are derived from the 

available unit stiffness coefficient III
ek  given by Eq. (4). The equivalent replacements are illustrated schematically as follows 

,
1

,
2

I II III
e e

I II III
ei

k p k

k p k

→

→
 (16) 

where 1 2,p p  are weighting coefficients. In more general, applying (16) to Eq. (20), the sum of unit stiffnesses can be replaced by

 a weighted average 

( )1III III
e e e e ei i ir k rk pr k p rk+ → + −  (17) 

where p  is a normalized dimensionless weighting coefficient, satisfying the condition 

0 1p< ≤  (18) 

It is expected that the weighting coefficient p  plays a role in adjusting the contributions of external skin friction ,
,
I II
s ef  and 

its counterpart internal skin friction ,
,
I II
s if  in order to obtain the best replacement of ,I II

ek  and ,I II
ik  by III

ek . In particular, the 

contributions of ,
,
I II
s ef  and ,

,
I II
s if  to the total unit skin friction , ,

, ,
I II I II
s e s if f+  should be represented by p . Because ,

,
I II
s ef  and ,

,
I II
s if  are 

functions that depend on z , while p  is required to be non-dimensional, we therefore consider their realization in the mean 

sense, i.e. ,
,
I II
s ef  and ,

,
I II
s if  versus , ,

, ,
I II I II
s e s if f+ , where the mean value <⋅>  is calculated by  

( )
1

1
i

i

z

z

dz
z

+

<⋅>= ⋅
∆ ∫  (19) 

with 1i iz z z+∆ = −  is the calculation interval of depth in which ,
,
I II
s ef  and ,

,
I II
s if  vary. Accordingly, the weighting coefficients can 

be formulated by  
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,
,

, ,
, ,

,
,

, ,
, ,

1
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s e

I II I II
s e s i

I II
s i

I II I II
s e s i

f
p

f f

f
p

f f

=
+

− =
+

 (20) 

The above calculation procedure is called the equivalent stiffness-based load transfer model, from which the following 

remarks are made: 

- The partially plugged state (II) starts happening as ,,
II II

s es if f= , thus the corresponding value of the weighting coefficient for 

this boundary limit when transitioning from the unplugged state (I) to the partially plugged state (II) is 1 / 2p = . 

- The fully plugged state (III) occurs as , 0s if = , it leads to 1p = . Hence 1p =  is related to the boundary limit when 

transitioning from the partially plugged state (II) to the fully plugged state (III).  

3. Application of equivalent stiffness-based load transfer model to a jacked open-ended pile 

In this section, the equivalent stiffness-based load transfer model is applied to a jacked open-ended pile in concern with the 

semi-empirical model of internal skin friction derived from tests by De Nicola and Randolph [3]. As the above assumption of 

linear pile-soil interaction, load transfer for an open-ended pile can be considered in three separate models, which are load 

transfer for the pile tip, load transfer for external and internal pile-soil interactions. To obtain explicit expressions of the 

weighting coefficient p , it is first necessary to determine formulations of external and internal unit skin frictions for states I and 

II, ,
,
I II
s ef  and ,

,
I II
s if , in association with these load transfer models.  

3.1 Load transfer for the pile tip 

Without loss of generality, the relationship between the stress under the pile tip or unit ultimate end-bearing ( )bq z  and the 

effective vertical stress ( )v zσ′  can be estimated by [11] 

( ) ( )q vbq z N zσ′=  (21) 

where qN  is a bearing capacity factor which mainly depends on the soil description [11]. Depending on the plugged states, the 

corresponding tip resistance can be calculated as   

( ) ( )
( ) ( )

( )

2 2

2

, ( )& ( )

, ( )

e bi

b btip

e b

r r q z I II
Q z A q z

r q z III

π

π

 −= = 
 (22) 

The relation between ( )bQ L  and bu  can be approximated by [27], [28] 

( ) ( )1

4
b b

b

e b

Q L
u

r G

η ν−
=  (23) 

where η  is the effective parameters of pile tip displacement, [0.5,1]η ∈ , bν  and bG  are Poisson’s ratio and shear modulus of 

the soil below the pile tip.  
Thus Eqs. (21)-(23) can be used for the boundary condition (12) of the basic equation of load transfer (9) as well as the 

displacement and axial force responses given by Eqs. (13) and (15). Furthermore, for a specific purpose, the limiting conditions 
derived from other load-settlement relationships would be also used as an alternative to avoid unrealistic estimations. 

3.2 Load transfer for external pile-soil interaction 

As expressed by Eqs. (3), (4), external unit skin friction and unit stiffness coefficient can be determined for state III. For states I 
and II, we may derive from an equivalent form as following [10], [18], [29] 

,
, , tanI II

s e e v e ef K σ δ′=  (24) 

where eδ  is the pile-soil friction angle at the external interface, eK  is the lateral earth pressure coefficient which can be 

estimated by [29] 

0, ,

0, 1 sin

e e K e

e e

K K n

K ϕ

=

= −
 (25) 

In (25), eϕ  is the angle of shearing resistance of surrounding soil, ,K en  is in situ coefficient that is summarized and classified 

in [30]. Effective vertical soil stress ,v eσ′  can be calculated by the following equation 

,v e ezσ γ′ =  (26) 

where eγ  is the effective unit weight of the external surrounding soil.  
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3.3 Load transfer for internal pile-soil interaction 

Due to the arching effect during pile driving, parameters of the internal soil will be changed accordingly, from elastic model to 

rigid model [1]-[4], [18], and internal unit skin friction tends to zero as state III occurs. Therefore, we consider here an equivalent 

internal unit skin friction for states I and II proposed by De Nicola and Randolph [3], like as the form of ,
,
I II
s ef  

,
, , tanI II

s i i v i if K σ δ′=  (27) 

where ,, ,i i iK νσ δ′  have the same definitions as ,, ,e v e eK σ δ′  but for the internal pile-soil interaction. The profiles of iK  are illustrated 

in Fig. 1.d, and an equilibrium of a soil segment involved ,iνσ ′  is shown in Fig. 1.c. In these diagrams, h  denotes the variable 

length of soil plug from the pile tip, 1h  and 2h  are respectively length of upper and lower soil columns, 2 10 ih D=  following Fig. 

1.d with iD  is the pile internal diameter. The expressions of iK  and ,iνσ ′  relative to h  are determined as below. 

3.3.1 For the upper soil column, 2 1 2plugh h h h h≤ ≤ = +  

The upper soil column act as a surcharge pressure on the lower one [3], thus the value of ,iνσ ′  at level h  is  

( )1, plugi h h
ν
σ γ′ = −  (28) 

where 1γ  is the effective soil unit weight of the upper column. iK  can be estimated by 

0, ,

0, 1 sin

i i K i

i i

K K n

K ϕ

=

= −
 (29) 

with corresponding parameters ,,i K inϕ  available in [29], [30]. 

3.3.2 For the lower soil column, 20 h h≤ ≤  

As shown in Fig. 1.d, the distribution of iK  in the lower soil column consists of three intervals, which can be estimated by a 

piecewise linear function of soil plug length h  [3] 

max

max max min

2min

, 0

( ) , 5
4

, 5 10

i i

i
i i i i i i

i

i i i

K h D

h D
K K K K D h D

D

K D h h D

 ≤ ≤ −= − − < ≤ < ≤ =

 (30) 

where max min,i iK K  are empirical values which can be chosen as [18] 

1
max

min

.45

0.3

1.3 PLR
i

i

K

K

e−

=

=
 (31) 

with PLR  is the plug length ratio. Here, an approximation of PLR  provided in [8] is used 

( )0.19
/ 1.4iPLR D=  (32) 

Based on the equilibrium of a soil plug segment in Fig. 1.c, the relation between ,
,
I II
s if  and ,iνσ ′  is described by the following 

differential equation [3] 

, ,
2 ,

4v i I II
s i

i

d
f

dh D

σ
γ

′
= − −  (33) 

where the effective unit weight of soil now is 2γ , which differs 1γ  due to the soil compaction under arching effect. From Eq. (3), 

we would find ,v iσ ′  using ,
,
I II
s if  given by Eq. (27) and relative value of iK  from Eq. (30) within each interval of h  as following.   

3.3.2.1 Within the interval 0 ih D≤ ≤  

In this interval, maxi iK K= , and the value of ,iνσ ′  at 0h =  is considered to be equal to the tip resistance ( )bq z  given by Eq. 

(21) at fullyz z= , where fullyz  is the depth at which the state III occurs. This is 

( ), ( 0) bi fullyh q z
ν
σ′ = =  (34) 

With boundary condition Eq. (34), solving Eq. (33) yields the solution 

( ) 12 2
,

1 1

 h
bv i fullyq z eα

γ γ
σ

α α

 ′ = + −   
 (35) 

where  

1 max4 tan /i i iK Dα δ=  (36) 
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3.3.2.2 Within the interval 25 10i iD h h D< ≤ =  

In this interval, mini iK K= , and the value of ,iνσ ′  at 2h h=  is considered to equal the surcharge pressure caused by the upper 

soil column 

2 1 1, ( )i h h hνσ γ′ = =  (37) 

with boundary condition Eq. (37), solving Eq. (33) yields the solution 

2 2 22 2
1 1,

2 2

h h
v i e h eα αγ γ
σ γ

α α

 ′ = + −   
 (38) 

where  

2 min4 tan /i i iK Dα δ=  (39) 

  

3.3.2.3 Within the interval 5i iD h D≤ ≤  

It is noted that the obtained expressions of ,iνσ ′  in (35) and (38) are two particular solutions of the governing differential 

equation (33) at ih D=  and 5 ih D= . Assuming that there is no stress jump at those levels of soil plug length, then the general 

solution of ,v iσ ′  for this interval can be determined by  

1 2 2 22 2 2 2
1 2 1 1,

1 1 2 2

 h h h
bv i B q e B e h eα α αγ γ γ γ

σ γ
α α α α

           ′  = + − + + −                 
 (40) 

where 1 2,B B  are constants. Using Eq. (35) with ih D=  and Eq. (38) with 5 ih D=  as two boundary conditions to (40)  

12 2
,

1 1

( )  iD
bv i ih D q eα
γ γ

σ
α α

 ′ = = + −   
 (41) 

22 2 52 2
1 1,

2 2

( 5 ) iDh
i ih D e h eαα

ν

γ γ
σ γ

α α

 ′ = = + −   
 (42) 

This will give 

22 2

1

1 22 2

1 22 2

2 2
1 1

2 2

2 2

1 1
1

52 2 2 2
1 1

1 1 2 2

52 2 2
1 1

1 1 2

1

 

i

i

i i

i i

Dh

D
b

D Dh
b

D Dh
b

e h e

q e

B

q e e h e

q e e h e

αα

α

α αα

α αα

γ γ
γ

α α

γ γ

α α

γ γ γ γ
γ

α α α α

γ γ γ
γ

α α α

  + +   
+

  − + +   
=

      + − + −        
      − + + +        

2

2

1
γ

α

+
−

 (43) 

1

22 2

2 12 2

22 2

52 2

1 1

52 2
1 1

2 2
2

52 2 2 2
1 1

2 2 1 1

52 2 2
1 1

2 2 1

 

1

 

i

i

i i

i

D
b

Dh

D Dh
b

Dh
b

q e

e h e

B

e h e q e

e h e q e

α

αα

α αα

α αα

γ γ

α α

γ γ
γ

α α

γ γ γ γ
γ

α α α α

γ γ γ
γ

α α α

  + −   
+

  − + +   
=

      + − + −        
      − + + +        

1 2

1

1
iD γ

α

+
−

 (44) 

It is noted that by using two particular solutions, the obtained result of ,v iσ ′  in Eq. (40) is a new analytical expression, while  

,v iσ ′  was proposed to numerically solve for the interval 5i iD h D≤ ≤  in [3] and [18]. After entirely determining iK  given by Eqs. 

(29), (30), and ,iνσ ′  given by Eqs. (28), (35), (38), (40), substituting their values to Eq. (44) yields four formulations of ,
,
I II
s if  relative to 

the upper and lower soil columns. 

3.4 Explicit formulations of the weighting coefficient  

Because the internal pile-soil interaction includes four formulations of ,
,
I II
s if  derived from various values of iK  and ,iνσ ′  as 

functions of h , there are four relative formulations of the weighting coefficient p  as a consequence. Clearly, the fifth 

formulation of p  is 1p =  as , 0III
s if =  corresponding with state III. Hence it is necessary to change h  to z  for calculating the 

average value of external and internal unit skin friction in Eqs. (19)-(20). The fact is that several design criteria recommend a 

relation between pile outer diameter eD  and the full penetration depth fullyz , at which state III occurs, such as [12] 
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15 ,efully forsandorgravelz D=  (45) 

Accordingly, we can make a change of variables by using the relation (45), namely fullyz z h= −  for 15 ez D≤ . The obtained 

values of , ,
, ,,I II I II

s e s if f  and the weighting coefficient p  are, respectively: 

- For 0 10, 10fully iz z z z D ∈ = = −    

( )
( )

2 2
1 0

1
1 0

,
,

tan

2

e e eI II
s e

K
f

z z

z z

γ δ−
=

−
 (46) 

( )
( )

2 2
1 0

1
1 0

1,
,

tan

2

i iI II
s i

K
f

z z

z z

γ δ−
=

−
 (47) 

1

1

tan

tan tan
e e e

e e e i i

K
p

K K

δ

γ γδ

γ

δ
=

+
 (48) 

- For 1 210 , 5fully i fully iz z z D z z D ∈ = − = −    

( )
( )

2 2
2 1

2
2 1

,
,

tan

2

e e eI II
s e

K
f

z z

z z

γ δ−
=

−
 (49) 

( )
22 2 2 2 2 1, 2 min

1 1

2

1 2 22
2 1

,
2

(
n

) ( )
ta

fullyI II zh z i
s i

z iK
f zh e e e e z

z z

αα α α γ
δγ

α
γ

α

−
 
 = − − − 

  +  
  −  

 (50) 

22 2 2 2 2 1

2 2
2 1

2 2
2 1 2 2 1

2

2

2 min
1 1

2

tan

tan
) )t

/

a

2

n

( )

( ) / 2 ( (fullyzh z z

e e e

i i
e e e

K
p

z z

z z e eh e e z z
K

K
αα α α

δ

δγ
δ γ

γ

γ γ
αα

−


 −  
 
 

=
  + + − 

− − −      

 
(51) 

- For 2 35 ,fully i fully iz z z D z z D ∈ = − = −    

( )
( )

2 2
3 2

3
3 2

,
,

tan

2

e e eI II
s e

K
f

z z

z z

γ δ−
=

−
 (52) 

( )( ) ( )( )

3121
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2 3 1 2 2 3 1

(
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2 21

3
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) ( )1 2
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i

z z z z
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
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z
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i

h
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h

K
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h e z e z K K
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e
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K

D
e
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α
α α

α
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α
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−
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 
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+ ( ) ( ) ( )( )22 32

1 1max mi an 2min m x5 + i i
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i
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K K eK K e hαα γγ
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 (53) 

( )

2 2
3 2

2 2
3 2 3 2 3

3 ,
,2

tan

tan

( ) / 2

( ) /

e e e

I II
e e e s i

K
p

z Kz f

z z

z z

δ

δ

γ

γ
=

+

 −  
− −  

 (54) 

where 1 2,B B  are given by Eqs. (43), (44).   

- For 3 4,fully i fullyz z z D z z ∈ = − =    

( )
( )

2 2
4 3

4
4 3

,
,

tan

2

e e eI II
s e

K
f

z z

z z

γ δ−
=

−
 (55) 

( )
( )

1 1 31 4, ma

1
4 3

4 3

x2
2 4,

1

tan
e ( )fullyz zI II z i i

bs i fully

K
f q z e e z

z z
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α αα δγ
γ

α α

− 





 + − − 



− 
 = −  

 (56) 
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( )1 1 31 4

4

max2

1

2 2

2 4

4 3

2 2
34

1
3

( ) / 2 tan

tan
tan e (/( 2 )) fully

e e e

z zz i i
e e e b fully

K
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K z e e z z
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δ

δγ
δ
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γ

γ γ
α

−

=
  +
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 
  − −    

+ − −    

 
(57) 

- For fullyz z> , 5 1p = . 

It is noted that the value of p  is different in the above intervals due to the various values of skin frictions. Hence the 

calculated value of p  at the intersection of two adjacent intervals is proposed to be the average of the two corresponding values 

of p  in those two intervals, as represented by 

- For 10fully iz z D= −  
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- For 5fully iz z D= −  
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- For fully iz z D= −  
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- For fullyz z=  
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 (61) 

Next, substituting obtained values of weighting coefficient p , and III
ek  given by Eq. (4) into Eq. (10), to give the displacement 

and axial force responses given by Eqs. (13)-(15).  

4. Numerical examination 

In this example, we will apply the equivalent stiffness-based load transfer model to analyze a jacked open-ended pile. 
Surrounding soil is considered to be homogeneous, and there is no bearing stratum at the pile end. The fully plugged state is 
considered to occur when 15 15efully iz D D= ≃ . The input parameters of the pile, soil are given as follow:  

Pile: 32 , 141 , 131 , 1 1, ,5 2 0 7850 /p pfullye i iL m mm mm z E GPaD D D kg mρ= = == ==  

Soil: 
2

3 0 2
18 / , 10 , 0.3, 30 1

1
,

2(1 )
s s

s s s s

s s

E v
kN m E MPa v G

v v
γ ϕ = −

 
 = 

=
+ − 

= = . 

To calculate the vertical effective stress ,v iσ′  of soil plug, Eqs. (28), (35), (38) and (40) are used corresponding with four 

profiles of iK  within four intervals of the soil columns (see Fig. 1.d). The input parameters are the pile diameters, effective unit 

weights of the soil, and iK . Fig. 2 represents the distribution of the ratio ( ), / bv i q Lσ′  versus the ratio / ih D  with the length of the 

upper soil column 1h  varies. As indicated in Eqs. (35), (38) and (40), vertical effective stress ,iνσ′  in the lower soil column are 

exponentially distributed to plug length h , while the one given by Eq. (28) in the upper soil column decreases linearly with h . In 

the upper soil column, within [ ]/ 10,15ih D = , the curve denoted by the blue line (only visible as zooming in) shows that ,v iσ′  
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decreases linearly with h, which acts as surcharge pressure on the lower soil column. In the lower soil column, within 

[ ]/ 0,10ih D = , the curve  (black line) decreases from the unit tip resistance ( )bq L  to a  smaller one at / 1ih D = , then peaks 

near / 2ih D =  very fast, after that reduces quickly to a value almost equal or greater than bq  at / 4ih D =  (red line), and 

reduces more slowly to a minimum value at the interface of the two columns, / 10ih D =  (magenta line). It is seen that surcharge 

pressure caused by the upper soil column has a great effect on ,v iσ′  in the lower one, i.e. the higher the value of 1h , the larger the 

peak value of ,v iσ′  will be. As observed in two internal diameters iD  from the pile tip, the maximal value of ,v iσ′  is near 

/ 2ih D = . The slope of the curve ,v iσ′  within [ ]/ 2;10ih D =  shows the arching formation (according to Paikowsky [31]). High 

rising of ,v iσ′  provides a suitable interpretation of the arching mechanism and gives soil plug capacity. The position of the peak 

value of ,v iσ′  coincides with the empirical result of Lüking and Kempfert [32], who found that the arching exists only at the last 

two pile diameters. Clearly, the distribution of ,s if  the soil plug is similar to that of ,v iσ′ , from which it is demonstrated that the 

shear resistance is concentrated over 1 2i iD D÷  above the pile base as remarks from tests by De Nicola and Randolph [3], Lehane 

and Gavin [8]. 

The purpose of Fig. 3 is to compare the differences of axial force ( )P z  in three states of the driving process: unplugged (state 

I), partially plugged (state II) and fully plugged (state III). As shown in this Fig, the slope of the curve is greatest for state III and 

decreases gradually for the others, state II and I, respectively. Because the soil resistance to the pile increases with the penetration 

depth of the pile into the soil, so the value of ( )P z  is minimum in state I, and increases gradually to state III. For each state, there 

is a clear difference in the correlation of ( )P z  between the two types of piles CEP and OEP. It can be seen that, in unplugged and 

partially plugged states, when the penetration depth of pile in the soil is small 10penetrated iz D< , the soil resistance acting on the 

OEP is much less than that of CEP, so the curve ( )P z  of the two types of piles has large spacing. Whereas in the fully plugged state, 

when 10penetrated iz D> , initially the two curves corresponding to the two types of piles are placed far apart, after that, gradually as 

z  increases, the soil resistance is nearly equal, making the OEP tend to resemble CEP, resulting in the two curves being nearly 

identical.  
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Fig. 4 indicates the variation of the axial force ( )P z  according to the depth z corresponding to different types of soil, 

respectively medium and loose sandy soil. With the exponential decrease, the slope of medium sand’s curve is greater than loose 

sand’s. Considering the value of ( )P z , the soil density of medium sand is higher, thus the force required to drive piles to the 

ground is higher than others. Besides, for both types of soil, when comparing CEP and OEP, the value of ( )P z will be much 

different at the started piling states, with / [0;5]iz D = , / [5;10]iz D = , or / [10;14]iz D = , but with / [14;15]iz D = , the OEP tends 

to the fully plugged state which is similar to the CEP, hence the curve ( )P z  of the two types of piles are the same. 

The variation of the axial displacement Pu  according to the penetration depth of the pile z  under the driving force at the 

pile head 0P  is shown in Fig. 5. Consider the process of piling, from / [0;5]iz D =  to / [14;15]iz D = , when increasing the pressure 

from 01 25 bP P=  to 02 50 bP P= , the curve shape changes slightly, but the slope of the curve increases. With the pressure 0 01P P= , 

the axial displacement of the OEP decreased exponentially, specifically the displacement at the pile tip (0.025 m) was 6.6 times 

greater than the displacement at the pile head (0.0038 m), corresponding to / [0;5]iz D = . Similarly, the largest displacements at 

intervals / [5;10]iz D = , / [10;14]iz D =  and / [14;15]iz D =  are 0.014 m, 0.0089 m and 0.0061 m, respectively. When compared 

with CEP, it can be seen that the displacement of OEP is always larger than that of CEP, and the largest value is at / [14;15]iz D = . 

Furthermore, as the pressure increases, the difference in displacement between OEP and CEP increases, due to the frictional state 

of the soil plug. For example, at 10. iz D= , the difference value when 0 01P P=  is 0.00086 m, while with 0 02P P= , this value is 

0.00171 m.  

Fig. 6 shows the relationship between the axial force ( )P z  and the pile displacement Pu under different driving forces at the 

pile head 0P . As we can see, when / [0;5]iz D = , / [5;10]iz D =  or / [10;14]iz D = , the bearing capacity at the pile head was not 

stimulated, and only properties of the pure friction pile are shown. As 0P  increased from 01 25. bP P=  to 02 50. bP P= , the working 

load at the pile head developed gradually, the distribution of axial force was roughly linear and then transformed into a curve 

when / [14;15]iz D = , whose slopes got steeper as the depth became deeper. The slope in the vicinity of the pile end changed 

evidently. The larger the load, the more obvious the change in slope appeared. This meant that the axial force decreased sharply, 

largely due to the contribution of soil plug skin friction. With the pressure 0 01P P= , when Pu  increases, the axial force of OEP 

increases, specifically the axial force at the pile tip in the ranges / [0;5]iz D = , / [5;10]iz D = , / [10;14]iz D =  and / [14;15]iz D =  

are 40.674 10× , 42.125 10× , 44.609 10× , and 48.714 10× N, respectively. When compared with CEP, it can be seen that with the 

same displacement Pu , the axial force of OEP is always smaller than that of CEP, and the difference in axial force value between 

these two types of piles seems to increase when 0P  increases. For instance, at 0.012Pu = m, with 0 01P P= , the difference force 

value between OEP and CEP is 40.334 10× N, while for 0 02P P=  this value is 42.111 10× N. It can be concluded that the larger the 

pile driving forces, the clearer the difference in displacement response of the two types of piles OEP and CEP. 

5. Conclusions 

The main intent of the paper is to develop an equivalent stiffness-based load transfer model of an axially loaded open-ended 

pipe pile. Based on the findings of this study, the following conclusions can be drawn: 

a)  First, a load transfer model of an axially loaded open-ended pile is established in which the external and internal skin 

frictions, as well as the pile tip resistance, are taken into account. Based on the dual approach, the replacement of the sum 

of unit stiffnesses in the basic differential equation of load transfer by a weighted average of equivalent unit stiffnesses is 

made, in which equivalent unit stiffnesses are derived from the unit stiffness determined from the elastic theory in the 

fully plugged state. A normalized dimensionless weighting coefficient p is introduced in considering the contributions of 

external and internal unit skin frictions to the total unit skin frictions in the form of average value with the penetration 

depth. Analysis of weighting coefficients related to the boundary limit of plugged states shows p = 1/2 when transitioning 

from unplugged state to partially plugged state, and p = 1 when transitioning from partially plugged state to fully plugged 

state. The analytical expressions of displacement and axial force responses then can be determined.  
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b)  Next, the equivalent stiffness-based load transfer model is applied to a jacked open-ended pile concerning semi-empirical 

models of external and internal unit skin frictions in which the internal lateral earth pressure coefficient is a piecewise 

linear function of soil plug length. The result leads to explicit expressions of weighting coefficient p corresponding with 

those semi-empirical models.  

c)  The examination of a jacked open-ended pile shows that there is a good agreement between numerical results with 

empirical ones available in the literature about the behavior of internal effective stress. Next, qualitative comparisons 

between the open-ended pile with a close-ended pile provide detailed descriptions of the plugging effect on the 

displacement and axial force responses, as well as different requirements for the driving force in various penetration 

depths and soil conditions.  

 d) It appears that this equivalent stiffness-based load transfer model has a large potential in exploring wider classes of open-

ended pile driving. 

Author Contributions 

N.N. Linh planned the scheme, initiated the project, and suggested the mathematical model; N.A. Ngoc solved the proposed 
mathematical model; N.V. Kuu examined the theory validation; N.D. Diem checked the formulation and the obtained results. The 
manuscript was written through the contribution of all authors. All authors discussed the results, reviewed, and approved the 
final version of the manuscript. 

Conflict of Interest  

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article. 

Nomenclature 

Latin symbols Greek symbols 

Ae, Ai Outer and inner surface areas of the pile [m2] e, i External and internal pile-soil friction angle [rad]  
Ap Section area of the pile [m2] 1 Effective unit weight of upper and lower soil columns  
De, Di Outer and inner diameters of the pile [m] e Effective unit weight of the external soil [N/m3] 
Ep Elastic modulus of the pile [N/m2]  Effective parameters of pile tip displacement 
Es Elastic modulus of the soil [N/m2]  Angle of shearing of soil [rad]  
fse, fsi External and internal unit skin friction 

[N/m2] 
 Ratio of shaft-pile stiffness [m-1]  

Gb Shear modulus of the base soil [N/m2] 'v,e'v,i Effective vertical stress outside and inside [N/m2] 
h Variable length of soil plug from the pile tip 

[m] 
e Effective parameter of the outer pile radius 

h1, h2 Length of upper and lower soil columns [m] e, i External and internal pile-soil friction angle [rad]  
hplug Total length of soil plug [m] 1 Effective unit weight of upper and lower soil columns [N/m3] 
K Lateral earth pressure coefficient e Effective unit weight of external soil [N/m3] 
ke, ki External and internal unit stiffness 

coefficients [N/m3] 
  

L Full penetration length [m] Subscripts 

Nq Bearing capacity factor e External 
p Normalized dimensionless weighting 

coefficient 
i Internal 

P Axial force of the pile [N] s Skin 
PLR The plug length ratio   
Qb Tip resistance [N/m2]   
re, ri Outer and inner radius of the pile [m]   
ub Base settlement [m] Superscripts 

up Axial displacement of the pile [m] I Unplugged state 
vb Poisson’s ratio of the base soil II Partially plugged state 
z Penetration depth from the ground surface 

[m] 
III Fully plugged state 
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