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Abstract. The flow and heat transfer of a novel type of functional phase change nanofluids, nano-encapsulated phase change 
suspensions, is investigated in the present study using a deep neural networks framework. A deep neural network was used to 
learn the natural convection flow and heat transfer of the phase change nanofluid in an enclosure. A dataset of flow and heat 
transfer samples containing 3290 samples of the flow field and temperature distributions was used to train the deep neural 
network. The design variables were fusion temperature of nanoparticles, Stefan number, and Rayleigh number. The results 
showed that the proposed combination of a feed-forward neural network and a convolutional neural network as a deep neural 
network could robustly learn the complex physics of flow and heat transfer of phase change nanofluids. The trained neural 
network could estimate the flow and heat transfer without iterative and costly numerical computations. The present neural 
network framework is a promising tool for the design and prediction of complex physical systems. 

Keywords: Nanoencapsulated phase-change suspension; deep convolutional neural networks; Natural convection heat transfer; 
deep learning. 

1. Introduction 

The natural convection heat transfer of nanofluids has been the subject of many recent studies due to its crucial applications 
in industrial cooling systems. Natural convection cooling does not need moving parts such as fans or pumps and external power. 
Hence, it benefits from low maintenance costs, safety, and low noise. Thus, natural convection cooling is an excellent cooling 
choice. However, the cooling power of natural convection is low compared to forced convection flow. The main reason for the low 
cooling power of natural convections is the poor thermal conductivity of the working fluid. Thus, any approach, which could 
improve the thermal conductivity of the heat transfer fluid is of great interest.  

The nanofluids are a new type of engineered fluid, which is a stable suspension of nanoparticles. The nanofluids show 
enhanced thermophysical properties and could be are employed in various industrial thermal systems. Izadi et al. [1] and Sajid 
and Ali [2] have reviewed the recent application of nanofluids and their engineering aspects. Various aspects of heat transfer are 
explored in some of the recent publications [3-5].  

The nanofluids are promising candidates for improving the heat transfer power of natural convection cooling systems. In this 
regard, many researchers tried to investigate and understand the natural convection behavior of nanofluids in enclosures. Various 
types of nanofluids, such as Al2O3-water [6-8], Cu-water [8, 9], CuO-water [10], Fe3O4-water [11, 12], and Ag-MgO-water [13] have 
been investigated in recent studies. The Nano-Encapsulated-Phase Change Material (NEPCM) suspensions are an advanced type of 
nanofluids, in which the core of nanoparticles is made of a Phase Change Material (PCM). The PCM core is enclosed in a nanoshell. 
Thus, NEPCM particles are composite particles that are stably suspended in a host fluid such as water. The NEPCM particles 
circulate in an enclosure with the host fluid and could reach hot or cold regions. When the temperature is higher than their 
fusion temperature, they melt and absorb the phase change's latent heat. Then, when they reach a cold area, they solidify and 
release the latent heat. Hence, the nanoparticles contribute to heat transfer by their latent heat [14]. The natural convection flows 
are inherently complex phenome as the fluid flow is coupled with the heat transfer. The presence of phase change heat transfer 
increases the complexity of the phoneme, and hence, advanced numerical techniques are demanded to handle the simulation of 
NEPCM flows.  
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The governing equations, representing the flow, heat transfer, and phase change of the particles, are non-linear Partial 
Differential Equations (PDEs). These PDEs are mainly originated from the physical laws of conservation of mass, momentum, and 
energy. The numerical methods discrete the domain of the solution into small partitions (mesh) and employ numerical 
approximations to the original governing equations. This process leads to a system of algebraic equations, which should be solved 
iteratively. The iterative solution is a computationally costly and time-consuming procedure. Moreover, the computer codes 
generally start with an initial condition or an initial guess for the variable fields and commence the iterations toward the final 
solution.  

Recently, Deep Neural Networks (DNNs) demonstrated promising capability to extract features. DNNs benefit from many 
hidden layers and show extraordinary potential in generating images. Until 2006, the neural networks could not adequately 
benefit from many hidden layers because of inadequate training techniques. However, Hastad and Goldmann [15] provided 
approaches to overcome this shortcoming and highlighted the enormous advantages of using many hidden layers. Since many 
hidden layers could be used in DNNs, they are excellent candidates for data-driven approaches [16]. For instance, neural networks 
have been used for modeling of human ureter [17], rotating machines faults classification [18], and prediction of entrance length 
for magnetohydrodynamics channels flow [19].  

Some of NNs are used to estimate some characteristics parameters such as Nusselt number or skin friction. However, some 
NNs could also be used to estimate a variable field in the domain, such as temperature distribution. For example, Ermis  [20] 
employed a NN to estimate the toral stored energy in latent heat thermal energy storage units. Their NN was made of one hidden 
layer. The NN receives the time, inlet heat transfer fluid temperature, Reynolds number, and heat transfer area and estimates the 
total thermal energy storage. The NN could estimate the total thermal energy storage with an absolute mean relative error of 
5.58%.  

Azwadi et al. [21] utilized an adaptive network-based fuzzy inference system (ANFIS) to estimate the temperature and flow 
field in a lid-driven cavity. They solved the governing equation for heat and fluid flow by using Lattice Boltzman method and 
produced a dataset of simulations to be used for taring of their ANFIS neural network. The NN input parameters were x and y 
coordinates, Rayleigh, and Reynolds numbers.  

Moreover, very recently, Selimefendigil et al. [22] applied NNs to estimate the magnetohydrodynamic free convection behavior 
of a fluid in a porous cavity. Some of the input parameters were the coordinate system, Rayleigh number (Ra), Hartmann number, 
Darcy Number, the porosity of the medium, and the target parameters were velocity and temperature. These authors created a 
comprehensive dataset of samples to be used to train a Long Short-Term Memory (LSTM) neural network. The results showed that 
the utilized LSTM could estimate temperature better than velocity. Zhou et al. [23] employed a NN with a hidden layer to predict 
the temperature of a monitor point through time in natural convection flow in a cavity. Authors numerically solved the flow and 
temperature distributions in the cavity and built a dataset. Later, the dataset was used to train the NN The NN receives the initial 
temperature and coordinate of a point in the cavity and estimates the temperature of a point after 9000s. Akbari et al. [24] used an 
ANFIS to model the natural convection in a cavity. They utilized an optimization algorithm, Jaya optimization algorithm, to train 
their neural network. The ANFIS neural network receives the Rayleigh number and a geometrical parameter and estimates the 
Nusselt number. 

There are various engineering applications in which the input parameters are a group of controlling parameters, while the 
output is a 2D or 3D field distribution [21-23]. Generally, in such problems, the coordinates of the field variables are considered as 
the input parameters, and the NN computes the outputs for each set of the group controlling parameters and the individual input 
coordinates independently. Thus, each output pixel will be predicted individually based on the provided input pixel (provided 
input coordinate). Predicting the pixels of an image one by one is a tedious and time-consuming procedure. More importantly, in a 
physical image, the pixels of an image is related to the neighboring pixels, and predicting the pixels of the output image 
individually ignores such physical relationships. Thus, we believe that predicting all pixels at once could improve the accuracy of 
the solution and maintain the physical integrity of the predictions.  The purpose of this study is to teach the complex physics of 
natural convection heat transfer of a NEPCM-suspension to a DNN.  The trained DNN will be used to predict the velocity and 
temperature fields with no iterations directly. 

2. Mathematical model & systematic analysis 

The purpose of this study is to teach the physics of phase change natural convection heat transfer in an enclosure to a DNN. 
The present approach consists of two main steps. The first one is creating a dataset of pictures describing the flow field and heat 
distribution in an enclosure model. The mathematical model and its validation for natural convection heat transfer of Nano-
Encapsulated Phase Change Material (NEPCM) suspensions in a rectangular enclosure have been addressed in the previous 
publication [14]. The same model and data have been used here to produce a dataset. The dataset contains images of temperature 
distribution, and velocity components in x and y directions, and pressure distribution. The images are produced by numerical 
computation of governing equations for various combinations of design parameters, which are the volume fraction of 
nanoparticles φ, non-dimensional phase change temperature f, Stefan number (Ste), and Rayleigh number (Ra). The data set 
contains 3,290 sets of images for a combination of design parameters. 

The second step is developing a DNN to get the design parameters as input and produce the output images. The DNN should 
be trained to learn the physics of phase change natural convection. During the training process, the coefficient of the DNN will be 
adjusted in a way that the trained DNN will be able to estimate the flow and temperature fields adequately. Preparing a dataset, 
definition of DNNs, and designation of estimator error are the primary actions for design a DNN that are considered in the 
following sections. 

2.1 Dataset 

A dataset containing 3,290 samples was produced in a uniform mesh of 128 × 128. As mentioned, the inputs of samples are 
the volume fraction of nanoparticles φ, non-dimensional phase change temperature f, Stefan number (Ste), and Rayleigh number 
(Ra), and the outputs are velocity in the x-direction (U), velocity in the y-direction (V), pressure filed (P), and temperature 
distribution () which are all in a general non-dimensional form. The input parameters and their range of variations have been 
summarized in Table 1. Here, Fig. 1 depicts a set of output images, which are the velocity components (U and V), pressure 
distribution (P), and temperature distribution (θ), corresponding to a set of input parameters (design parameters). Indeed, Fig. 1 
shows a sample of dataset images. Each color map is made of 15 levels, and the color legend is depicted below each image. It 
should be noted that input data have been normalized between -1 and 1 as well as output data between 0 to 1. The normalization 
between -1 and 1 was done with the following formula: 
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Table 1. The range of variables in the dataset. 

Type Data Name Minimum Maximum 

Input 

Ra 1,000 100,000 

θf 0.05 0.95 

φ 0 0.05 

Ste 1 5 

Output 

U -40.35 40.35 

V -74.39 74.39 

P -366527.83 336.08 

θ 0 1 

 

 
                                                                                            (a)                 (b)                   (c)                   (d) 

Fig. 1. Some samples of each output image. (a): U image, (b): V image, (c): P image, (d): θ image. 
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−
=

−
0

0

min( )
max( ) min( )

x X
x

X X
 (2) 

in which 0x  is the normal value of a feature, x0 and X is the array value of a feature that must be normalized. The values of 
minimum and maximum of all input and output features are also reported in Table 1. From now on, the normalized values of 
parameters are depicted for convenience. These normalized values could be transformed back to actual values using the above 
formula and data in Table 1. 

The produced dataset is published as a part of the present manuscript and could be accessed using the following address: 
https://data.mendeley.com/datasets/j5f6r56jnb/draft?preview=1 

For the training part, 70% of the dataset is randomly selected as training data, 15% as testing data, and 15% as validation data. 
Determining the best epoch of the training is the main usage of validation data. They never apply to train DNN and only are used 
to calculate loss function at the end of each epoch. Thus, they were used for validation loss function. Among all epochs, an epoch 
with less validation loss error is the best point to save as the ultimate DNN. 

2.2 Deep Neural Network (DNN) structure  

In the present study, the input parameters are design parameters which are numbers, and the output parameters are U, V, P, 
and θ distribution, which are images. In the literature works, for a similar situation where the input parameters are numbers and 
the output parameters are images, a set of x and y is given to the network as separate inputs. Then, the NN should predict each 
pixel separately. Then again, a new set of x and y coordinates will be feed as input to NN, and the predicted value will be 
generated in the output, and the process will be repeated. Finally, the generated data will be arranged, and the final image will be 
created. As a result, the prediction process should be repeated for each pixel (point) separately. In such an approach, the 
correlation between pixels could be ignored, and repeating the process, could be a tedious and time-consuming process.  

The other alternative is to produce the image at once, which could improve the prediction capacity of a NN. However, 
estimating an image at once by using a typical NN requires a full-connection between layers of the NN. Thus, the parameters of 
NN will be increased drastically, which will not be practical. As a result, the training time, computational cost, and demanded 
memory could be increases hugely. In the present investigation, a special type of DNN is proposed to estimate an output image at 
once with a reasonable and practical number of parameters. This proposed DNN benefit an advanced design of DNN. Figure (2) 
shows the structure of the proposed DNN. This DNN is made of 387,415 parameters. For the sake of comparison, the same DNN 
with fully connected layers and a hidden layer with 128 neurons could be made of 8,454,784 parameters. Thus, the proposed DNN, 
depicted in Fig. (2), has 2182% fewer parameters than a typical fully-connected DNN. It should be noted that the fewer parameters, 
the less required memory, computational cons, training time, and estimation time.  

As depicted in Fig. 2, the proposed DNN consists of three parts. The first part is a simple shallow NN with a hidden layer in 
which the layer is fully-connected (dense). In dense layers, each layer's neuron is connected to all of the previous neurons 
through weights. Thus, all of the input values could affect the input value of a neuron in the hidden layer. For instance, the output 
of kth neuron in the layer l could be computed using the following relation: 
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where m is the number of neurons in layer l-1, and Wl,i,k is the weight of ith output neuron in the layer l-1 to kth neuron in layer l. 
Here, yl-1,i denotes the ith output of l-1 layer, and bl,k indicates the bias for kth neuron in layer l. The bias is typically a constant 
number that should be adjusted during the training process. Moreover, f represents the neuron's activation function, which is 
typically a non-linear function. The total output of neurons of a layer can be computed by using matrix computations for 
convenience. For example, the output of layer l can be computed by the following relation: 

−= +1( . )l l l lY f W Y B  (4) 

where Wl represents the weight coefficients matrix between layers l and l-1. In the above relation, Yl-1 is the output vector of layer 
l-1, and Bl denotes the bias coefficients of layer l. The hidden layer of Fig. 2 is made of 128 neurons. The output layer of this part of 
DNN is consists of 1024 neurons. The hidden layer of this part of the proposed DNN is made of rectified linear unit (Relu) 
activation functions [25], but the output layer is made of a sigmoid activation function.  

The second part of the proposed DNN acts as a transformer. As described, the output of the first part was a vector of size 1024. 
The second part takes this vector as input and transforms it into a 32×32 matrix. The third part is a convolutional neural network 
with convolutional layers. In contrast with a dense NN, a neuron in a convolutional layer does not essentially connect to all of the 
neurons in a previous layer. A convolutional layer has some regular matrixes, so-called filters whose elements must be adjusted 
by the training process and typically have the size of 3×3 or 5×5. The output of a convolutional layer is calculated by convolving 
the filters and the inputs of it, while the inputs are input data of the DNN or output of the previous layer.  

As illustrated in Fig. 2, before each convolutional layer, two more layers were added, Relu and BN. Relu is an active function 
that can be replaced with sigmoid, tanh, etc. however, Relu has less computational complexity and more rate of convergence[26]. 
BN is a symbol for the batch normalization method [27], which enhances the speed, performance, and stability of a DNN. Two 
sigmoid active-functions are added at the end of part 1 and part 2 of the DNN for the non-linearity aspect.  Moreover, range of 
output data are between zero and one and sigmoid is one of best active function that maps data to this range.    

Attention to Fig. 2 shows that the dimension of the input section of part three in the proposed DNN is a 32×32 matrix. 
However, since the output images are of size 128×128, the output of some layers should be extended to meet the output 
resolution. Whenever needed, the upsampling was applied before the Batch normalization layer to increase inputs two-fold. The 
increase of input size was carried out by repeating the input columns and rows.  

According to the dataset, the input parameters of the DNN are , f, Ste, and Ra, which pass through the first and second parts 
of DNN and create a 2D of 32×32 data. The created data flows through the convolutional layers of the third part and are produced 
U, V, P, and  images. 

3. Loss function and evaluation parameters 

To design a DNN, in addition to its structure, its parameters must be tuned. These parameters are called trainable parameters. 
The tuning of trainable parameters occurs during a process training process, using an iterable mathematical function so-call 
optimizer. The optimizer frequently calculates the error of estimation by using a loss function and then changes the trainable 
parameters in a way to reduce estimation error. Hence, the loss function is an important element of the training process that 
must be defined correctly. Mean Square Error (MSE) is the most common loss function is used to train neural networks that 
generate data, as well as to evaluate a trained neural network. Besides MSE, there are some parameters, for instance, MAE, RMSE, 
etc., to evaluate the results of estimation, which in the continue they are introduced. 

 

 

 

Fig. 2.  Structure, details, and characteristics of the DNN used in this paper. 
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3.1 MSE 

Suppose T is an actual target that the neural network must estimate it and P is the predicted value with the neural network. T 
and P could be only a number or a multi-dimension matrix, for instance, 2D matrix. However, Square Error (SE) calculates as: 

= − −ε( ) ( )SE T P T P  (5) 

That ε demonstrates element-wise product, and SE is a matrix with dimensions equal to T and P. If neural network estimate 
only a number, T and P are a number, and eq. 5 could simplify as: 

= − 2( )SE T P  (6) 

MSE is the mean of SE's elements. Hence it calculated as: 

1

1
mean( )

N

i

MSE SE SE
N =

= = ∑  (7) 

That N is the number of SE's elements. According to Fig. 2, our DNN predicts 4 images of 128×128 pixels. Hence, to predict a 
batch of the images with the size of B, N is equal to 4×128×128×B. 

3.2 Maximum of Square Errors (MaSE) 

MaSE is defined as the maximum of the SE elements. Hence, it determines the worst prediction square error. MaSE is 
calculated as below: 

=max( )MaSE SE  (8) 

3.3 Mean Absolute Error (MAE) 

Square is a non-linear operator, and it changes the scale of errors non-linearly. Therefore, judging and comparing errors is 
difficult by MSE. MAE is one of those evaluation parameters that does not change the scale of errors. To calculate MAE, first should 
be produced Absolute Error (AE) matrix as follow: 

= −AE T P  (9) 

Then, MAE is calculated with average over all AE elements: 

1

1
mean( )

N

i

MAE AE AE
N =

= = ∑  (10) 

Comparing eq. 7 and eq. 9 reveal that SE and AE are similar except for square and absolute operation. 

3.4 Maximum Absolute Error (MaAE) 

MaAE defined as maximum absolute error that exist in AE and calculated as: 

=max( )MaAE AE  (11) 

Other evaluation parameters 

The results of this paper, in addition to MSE and MAE are investigated with some more evaluation parameters include Root 
Mean Square Error (RMSE), Coefficient of determination (R2), and Pearson correlation coefficient (r). They are defined as below 
formulations: 

=RMSE MSE  (12) 
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3.5 Numerical method 

NumPy [28], scikit-image[29], and Matplotlib [30] are three main libraries of Python which had been utilized to generate the 
dataset. NumPy is a powerful python library for mathematical operation on big and multi-dimensional array and matrices. Scikit-
image contain main image processing algorithms for python, and Matplotlib is a plotting library. The DNN of this study (Fig. 2) 
was built in Keras [31] with Google TensorFlow[32] backend. The Adam optimizer [33] was utilized with a fixed learning rate of 
0.001, β1 of 0.9, and β2 of 0.999. The β1 and β2 are the two main parameters of Adam, which for more information, refer to [33]. 
Before starting the optimization process, all DNN parameters had been initialized with the Glorot uniform technique [51]. Training 
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a DNN with one sample in a step is time-consuming and it some case cause overfitting, so in this study, the DNN trained with a 
batch of data consists of 32 samples instead of one sample. To investigate the training process, a history of variation of validation 
parameters during the training process is needed. Thus, they were calculated for training and validation data at the end of each 
epoch and saved as the history of training.  

The variation of loss error throughout the training is one of the main points that must be considered. The loss error may 
increase or decrease during the training process. Hence, after each epoch loss error was calculated for validation data, loss 
validation error, and at the end of the training, DNN was saved as the ultimate trained DNN at an epoch that has minimal loss 
validation error. 

4. Results and discussion 

In this paper, the DNN illustrated in Fig. 2 is used to estimate U, V, P, and θ, which for simplifying refer to it as Net_DNN. A 
feed-forward neural network with one hidden layer, shown in Fig. 3, and called Net_NN, is designed as well to compare their 
result with Net_DNN. All layers of Net_NN are full-connection, and it has 8,454,784 trainable parameters. These numbers of 
parameters are a huge value in comparison to Net_DNN that has only 387,415 trainable parameters. Both of them in a similar 
condition were trained with MSE loss function for 2,000 epochs. To preventing overfitting, each network was saved in an epoch 
with the lowest MSE of validation data. 

The evaluation parameters for estimated data with Net_NN and Net_DNN are presented in Table 2. This table shows that 
Net_DNN had better performance and predicted data with lower error than Net_NN, it is while Net_NN has a huge number of 
training parameters about 2182% more than Net_DNN. Hence, Net_DNN, with their filters, could extract features of neighbor 
pixels and estimated data with acceptable accuracy better than Net_NN.  

In Table 2, the evaluation parameters were calculated for U, V, P, and θ images together. However, in order to investigate more 
details of estimations, in the continue of the paper, the evaluation parameters will calculate for U, V, θ, and P separately. Tables 3 
to 5 show evaluation parameters of U, V, P, and θ when estimated with Net_DNN and Net_NN. To produce these tables first, the 
networks estimated U, V, P, and θ together, then for each of them, the values of tables were calculated. The values of these tables 
revealed that Net_DNN was more successful than Net_NN to estimate U, V, and specially θ. Only, P has been estimated with 
Net_NN a bit small better than Net_DNN. This small difference can be ignored because of the small number of Net_DNN's 
trainable parameters and its accuracy to estimate U, V, and θ.   

 

 
Fig. 3. Structure and characteristics of the simple feed-forward neural network with one hidden layer. 

Table 2. The evaluation parameters for estimated data with Net_NN and Net_DNN. These parameters are calculated for U, V, P, and θ together. 

Data type DDN type MSE RMSE MAE MaAE R2 r 

Train 
Net_DNN 2.8538e-6 0.00169 0.00132 0.0768 0.9999332 0.999967 
Net_NN 1.1621e-5 0.00341 0.00174 0.0824 0.999798 0.999899 

Validation 
Net_DNN 4.1962e-6 0.00205 0.00136 0.0713 0.9999280 0.999964 
Net_NN 1.3444e-5 0.003667 0.00185 0.0827 0.999769 0.999885 

Test 
Net_DNN 4.492e-6 0.00212 0.00142 0.0802 0.9999218 0.999961 
Net_NN 1.2780e-5 0.00357 0.00186 0.0856 0.999777 0.99989 

 

Table 3. The evaluation parameters when are calculated only for U images. 

Data type DDN type MSE RMSE MAE MaAE R2 r 

Train 
Net_CNN 3.0988e-6 0.00176 0.00127 0.0293 0.999826 0.9999132 
Net_NN 9.726e-6 0.00312 0.00174 0.0803 0.999455 0.999728 

Validation 
Net_DNN 3.4696e-6 0.00186 0.00131 0.0346 0.999809 0.9999042 
Net_NN 1.1856e-5 0.00344 0.001889 0.0902 0.999346 0.999673 

Test 
Net_DNN 3.666e-6 0.00191 0.001364 0.025 0.999826 0.9999130 
Net_NN 1.077e-5 0.00328 0.00191 0.0407 0.999489 0.99974 

 
Table 4. The evaluation parameters when are calculated only for V images. 

Data type DDN type MSE RMSE MAE MaAE R2 r 

Train 
Net_DNN 2.351e-6 0.00176 0.00102 0.0424 0.999609 0.999805 
Net_NN 3.1757e-6 0.00311 0.000934 0.0599 0.999472 0.999736 

Validation 
Net_DNN 2.439e-6 0.00156 0.00103 0.0424 0.999605 0.999802 

Net_NN 3.838e-6 0.00196 0.000998 0.0661 0.999378 0.999689 

Test 
Net_DNN 2.88e-6 0.0017 0.00109 0.0424 0.999602 0.99980 
Net_NN 3.448e-6 0.00186 0.00102 0.0401 0.999523 0.999761 

 



 Mohammad Edalatifar et. al., Vol. 8, No. 4, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 4, (2022), 1270-1278   

1276

Table 5. The evaluation parameters when are calculated only for P images. 

Data type DDN type MSE RMSE MAE MaAE R2 r 

Train 
Net_DNN 4.0933e-6 0.00202 0.00134 0.08643 0.999883 0.9999419 
Net_NN 1.5908e-6 0.00126 0.000979 0.0177 0.9999549 0.9999774 

Validation 
Net_DNN 4.189e-6 0.00205 0.00136 0.08564 0.999894 0.999947 
Net_NN 1.802e-6 0.00134 0.00105 0.0152 0.9999544 0.9999772 

Test 
Net_DNN 4.725e-6 0.00217 0.00144 0.0866 0.9999893 0.9999467 
Net_NN 1.746e-6 0.00132 0.00101 0.0268 0.9999606 0.9999803 

 
Table 6. The evaluation parameters when are calculated only for θ images. 

Data type DDN type MSE RMSE MAE MaAE R2 r 

Train 
Net_DNN 5.8715e-6 0.00242 0.001675 0.0941 0.9999183 0.9999592 
Net_NN 3.199e-5 0.00566 0.0033 0.1650 0.999555 0.999777 

Validation 
Net_DNN 6.687e-6 0.00259 0.00175 0.0521 0.9999074 0.9999537 
Net_NN 3.628e-5 0.00602 0.00348 0.1154 0.999498 0.999749 

Test 
Net_DNN 6.6976e-6 0.00259 0.00177 0.0491 0.9999056 0.9999528 
Net_NN 3.5156e-5 0.00593 0.00351 0.1095 0.999505 0.999752 

 
  

 
Fig. 4. The variation of MSE during epoch 500 to 2000. 

 
 

 
Fig. 5. The variation of MaSE during epoch 500 to 2000 

 

 

The speed of reducing errors during the training process is one of the valuable parameters to compare multi neural networks. 
Figure 4 and 5 illustrate the variation of MSE and MaSE during the training process from epoch 500 to 2000, in which the first 500 
epochs were removed to allow a better plot and representation of results. Figure 4 shows although MSE of Net_DNN has more 
variation during the process, in most epochs, it achieves a value lower value than Net_NN. The distance between charts that show 
higher accuracy of Net_DNN is considerable, too. The slop of charts on Fig. 4 is another attractive point that reveals a probability 
of achieving lower error and increasing the difference between charts with Net_DNN if continuing the training process.  
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Fig. 6. One sample of test images estimated with Net_DNN and Net_NN. 

The trends of charts in Fig. (5) are somewhat different than Fig. 4. Figure (5) show that Net_NN had lower MaSE before epoch 
1000. However, after this epoch, the chart of Net_DNN has been reduced rapidly, and this reduction has continued until the last 
epoch. Similar to Fig. 4, the slope of Net_DNN's chart on Fig. 5 is more than Net_NN, so there is a probability of achieving lower 
MaSE with more difference between charts the training continues; however, the computational cost could be not feasible. 

Figure 6 illustrates some samples of estimated images with Net_DNN and Net_NN. The first row belongs to actual images that 
exist in the dataset. The second and third rows correspond to images of row one that estimated with Net_DNN and Net_NN, 
respectively.  

5. Conclusion 

In this paper, a deep neural network was utilized to learn the complex physics of natural convection heat transfer of a NEPCM-
suspension. The trained DNN was used to estimate the velocity and temperature fields with no iterations directly. In the first step, 
a dataset was produced with 3,290 samples includes the volume fraction of nanoparticles , non-dimensional phase change 
temperature f, Stefan number (Ste), and Rayleigh number (Ra) as input images and velocity in the x-direction (U), velocity in the 
y-direction (V), pressure filed (P), and temperature distribution () as output images. Next, a new DNN model (Net_DNN) was 
designed and trained with the dataset. A feed-forward neural network with one hidden layer (Net_NN) was also trained with the 
dataset was used to learn the convective heat transfer behavior of nano-encapsulated phase change material. The results showed 
that while Net_DNN has far fewer parameters than Net_NN, it estimates the images more accurately. The speed of decrease error 
during the training process with Net_DNN was also significant in comparison to Net_NN. The outcome of this research could be 
summarized as follow: 

1. A hybrid DNN consisting of a feed-forward neural network and a convolutional neural network could reduce training 
parameters in comparison to a feed-forward neural network tremendously without losing the accuracy. 

2. In most literature, pixels of the physical images are estimated one by one. It is a tedious process and causes the 
relationship between neighbor pixels was gone. The results showed Net_DNN could estimate images at once with more 
accuracy than Net_NN. 

3. The Net_DNN, compared to Net_NN, could reduce errors faster. Moreover, Net_DNN could fairly and robustly learn the 
complex physics of natural convection heat transfer of a NEPCM-suspension.  

This study demonstrated the capability of DNNs to learn the physics of phenomena and increase accuracy compared to 
traditional feed-forward neural networks. Hence, utilizing new DNNs to simulate new physical phenomena can be the subject of 
future studies. 
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