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Abstract. In the last decade, many new algorithms have been proposed to solve optimization problems. Most of them
are meta-heuristic algorithms. The issue of accurate performance measure of algorithms is still under discussion in
the scientific community. Therefore, a new scoring strategy via a new benchmark is proposed. The idea of this new
tool is to determine a score, ameasure of efficiency taking into account both the end value of the optimization and the
convergence speed. This measure is based on an aggregate of statistical results of different optimization problems.
These problems are judiciously chosen to cover as broad a spectrum of resolution configurations as possible. They
are defined by combinations of several parameters: dimensions, objective functions and evaluation limit on dimen-
sion ratios. Aggregation methods are chosen and set in order to make the problem weight relevant according to the
computed score. This scoring strategy is compared to the CEC one thanks to the results of different algorithms: PSO,
CMAES, Genetic Algorithm, Cuttlefish and simulated annealing.

Keywords: Optimization algorithm, Performance Measure, Benchmark.

1. Introduction

An optimization problem consists of finding a set of valued decision variables which gives the best solution for a given problem.
From a mathematical point of view, an unconstrained optimization problem can be formulated as a D-dimensional minimization
problem (Equation (1)).

min
X∈S

F (X) with X = (x1, · · · ,xD) (1)

In Equation (1), D, the dimension of the problem, is equal to the number of design variables. F is the objective-function to
minimize and S is the space of possible values for X, the variables. S is commonly known as the search space. Some constraints
can be added but they are not considered in this work context. In the last few years, lots of new algorithms have been developed to
solve the problem defined by Equation (1). Most of them are meta-heuristic ones [1, 2, 3].

From a theoretical point of view, it is accepted that no meta-heuristic can be considered as better than another one: this is the
no free lunch theorem [4]. However, in practice, important differences in performance can be observed depending on the quality of
the algorithm’s mechanisms and the structure of the problem.

When a new algorithm is developed, most of the time, it is compared to a few others based on the means and standard devia-
tions of the final results of a few test functions [5]. Furthermore, the selected test functions are often part of well-known function
test suites, such as the one proposed by De Jong [6]. This a priori knowledge may lead to an erroneous assessment of the algo-
rithm’s efficiency. To avoid erroneous conclusions, algorithms should be tested on benchmarks [5, 7]. Since 2005, some reference
benchmarks have been proposed in the literature [5]. Two of them are widely used: the CEC [8] and the Black-Box Optimization
Benchmarking (BBOB)[9]. More recently, a platform designed to compare continuous optimizers in a black box has been developed:
Comparing Continuous Optimizers (COCO) [10]. More details on this approach can be found in [11, 12]. CEC is composed of functions
with higher dimensionality than BBOB but without noise [13]. The landscapes of CEC functions are very different from each other.

CEC is a fixed-budget scenario: the problem solving ’time’ is fixed (It consists of stopping the algorithm after a certain number
of evaluations of the objective function). Usually, it is expressed in function evaluation. It can also be expressed in CPU time or in
clock time [14]. This approach might not be relevant for a real problem. Indeed, calls can be high CPU-time consuming and should
therefore be reduced to a minimum. BBOB is a fixed-target scenario [9]. This approach raises an important issue: how to deal with
an algorithm that does not reach the target or in too long a time ? Moreover, a fixed-target scenario (Strategy which consists in
stopping the algorithm when a value of the objective function is reached) can be an inappropriate choice when associated with a
meta-heuristic [15]. Indeed they can modify the number of function calls during the search.
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The proposed benchmark works according to the same pattern as CEC or BBOB. An algorithm is run on a set of test functions
from which data are extracted to provide a performance measure. The performance measure, which is the main score, is a general
efficiency measure [16]. It may be exploited by researchers who wish to compare, tune or improve their algorithms. This score
emphasizes the ability to fairly evaluate algorithms with criteria matching industry issues. This is made possible by the techniques
used for computation. To summarize the raw results into a simple indicator, aggregation techniques [17] are used. To do this, the
data must be comparable and it is therefore necessary to convert them into a same metric. This metric is a level of desirability
[18, 19] obtained by using the Harrington desirability function [20]. Using a global level of satisfaction based on different metrics
has already been done by [21] to optimize the tuning parameters of evolutionary algorithms. One of the originalities of this article
is to introduce this concept to evaluate the main score of an algorithm. On this basis, this article defines a new benchmarking
technology evaluating the performance of optimization algorithms and applies it to a representative set of optimization processes.
The objective is to provide an efficiency measure in order to compare and rank algorithms. The idea is to propose a generic tool
that allows standard comparisons in a real industrial context. The following sections of this article are organized as follows: An
overview of the control parameters of our benchmark is made in Section 2.. Section 3. presents the performance measure and the
tool for benchmarking. Finally, the scores of the selected algorithms are reviewed in Section 4..

2. Development of the proposed benchmark

2.1 Problem statement

The principle of benchmarks is quite simple: run optimization algorithms on reference examples, retrieve and analyze the
results by computing a score. Two entities are therefore necessary to build a benchmark:

1. A set of test cases. In the majority of cases, the algorithms to be studied are tested on a set of well-known mathematical
functions called ”test functions”. Note that for most of these functions, the global optimum is known. This makes it possible
to simply compute the number of evaluations (i.e. the number of calls to the objective functions). This also allows to discuss
the best value obtained for the objective function, thus allowing the introduction of a stopping criterion.

2. A score. After running the various tests on the reference functions, a score is calculated.

In an industrial context, a benchmark has to be able to evaluate the optimization algorithms in order to select the most efficient
algorithm. An efficient algorithm must find a good objective function value in a short time. Therefore, a suitable compromise
between those two wills has to be found [3]. Actually, the main score of an industrial benchmark can be considered as a measure
of return on investment. An algorighm will be efficent if it is able to find a global optimum quickly, without loosing time in the
determination of local optimum.

2.2 Control parameters

Before evaluating an optimization algorithm, a set of reference data must be defined. The main idea is to run the algorithm
tested with a set of parameters fixed on optimization cases in order to measure its performance. An optimization case will be
entirely defined by three control parameters:

1. an objective function, F .

2. a dimension, D.

3. a coefficient, MaxFEs, to regulate the maximum number of evaluations of the objective function (FEs) as given in Equation (2).

FEs = 10000×D ×MaxFEs (2)

In this equation, 10000 is a reference value issued from classsical benchmark especially CEC [22] as the possible values of MaxFEs.

2.2.1 Objective function

The benchmark functions are used by the algorithm as black boxes and are explicitly known by the scientific community. In
order to test the algorithm efficiency in a large context, various categories of functions must be considered to represent a wide range
of difficulties. The choice of functions is of great importance in the design of a benchmark [16]. As advised by [16], a standard test set
will be chosen, even if it is not perfect [13]. In this paper, our focus is on the 15 functions selected according to their characteristics
in the CEC 2015 competition [23]. The details and expressions of this set of functions can be found in Appendix A.

2.2.2 Dimension

For example, in the building design industry, most optimization problems have between 8 and 24 variables, with an average of 15
[2]. In other fields the average number of variables may be higher. Still, considering our context, it seems wise to choose dimensions
inferior to 50. Four different dimensions of the search space are tested for all functions: 10, 20, 30 and 50.

2.2.3 Maximum number of evaluations

Seven different values of MaxFEs are defined in the benchmark: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 and 1.

2.3 Run and draw

Due to the usual stochastic nature of the tested algorithms, several independent runs are needed. So, it is obvious that the
significance of the results should be tested with an appropriate statistical measure. In this way, several evaluations are conducted
on the same optimization case. It has been proved that NT = 51 evaluations are enough to make relevant performance differences
with a statistical significance [24]. This set of runs of the same optimization case is called a draw.
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2.4 Stopping criteria

Fixed-cost

Fixed-budget

Objective Function

Number of evaluations

Fig. 1. Stopping conditions

The optimisation process for a case i ends when a stopping criterion is reached. Before talking about the result, the following
problematic must be mentioned: which are the conditions that make the resolution of this case i stop and will allow to recover the
data required to set up our indicators ? Considering the most classical convergence graphs which plot the evolution of the ojective
function ( o be minimized) against the number of this function evaluations, two ways to measure the performance can be used [25].

• The ”Fixed target” strategy consists in stopping the algorithm when a value of the objective function is reached.

• The ”fixed budget” strategy consists of stopping the algorithm after a certain number of evaluations of the objective function,
noted FES

As explained by [26], both of these approaches, while of merit and justified by practical needs, have limits making them inap-
propriate for real-world if used individually. For instance, designers are not always able to define a target or a budget that makes
sense. Some of these approaches’ drawbacks might be solved. For instance, in fixed-target scenario, if the target value can not be
reached, a success rate can be calculated as in [27]. Still as not all drawbacks cannot be tackled at one time, an interesting approach
is to combine both scenario as suggested by [14]. In this case, target and costs are no longer defined as goals but as limits, which is
an easier task to achieve for the designer. This is why, in an industrial context, the best method is to use several stopping criteria.
[2] presents several stopping criteria and mentions the possibility of using several of them together. Based on this, three stopping
criteria have been chosen for the benchmark proposed (Figure 1):

• The maximum number of evaluations of the objective function (FEs) defined in Equation (2) is reached.

• The target (Fmin) is reached.

• One of the algorithm’s potential stopping criterion is reached.

Finally, a run is stopped if at least one of these three criteria is reached. This stopping multi-criteria is another originality of the
developed benchmark.

2.5 Global architecture of the proposed benchmark

To clarify our approach, the global architecture of the proposed benchmark is given in Figure 2. All the elements of the proposed
benchmark are listed in Table 1. Finally, this benchmark is composed of NC = 420 optimization cases. For statistical purposes,
NR = 21420 problems are performed to establish the score of the tested optimization algorithm.

Table 1. Control parameters of the benchmark

Element Number Value

Objective functions NF = 15


Nuni = 2

Nmulti = 7

Nhybrid = 3

Ncomp = 3

Dimension ND = 4 D ∈ {10, 20, 30, 50}

MaxFEs NM = 7

MaxFEs ∈
{0.01, 0.02, 0.05,
0.1, 0.2, 0.5, 1}

Optimizations cases NC = 420 NC = ND ×NM ×NF
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Fig. 2. Global architecture of the proposed benchmark

3. Performance measure and tool for benchmarking

As previously specified, the objective of the proposed benchmark is to provide a score that constitutes a representative overview
of the performance of an optimization algorithm. The influences of all dimensions, functions and MaxFEs are taken into account
when evaluating this score.

3.1 Result of a run

The result of a run represents the performance of an optimization algorithm on a particular run. Obviously, this result should
be based on the value of the objective function at the end of the optimization (VG). However, it should also consider the number
of calls made by the algorithm (EG). Indeed, the aim of this metric is to mimic a return on investment by measuring the quality of
the value obtained for the invested solving time. Figure 3 explains how VG and EG are used to make the result of a run. The final
expression, RR, is given by Equation (3).

RR = AR (ΥE(EG); ΥV (VG)) (3)

In this expression, several mathematical operators are introduced: the aggregation operator, AR, and the normalization operators,
�, which are explained in the following subsections.

NormalizationRun
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Fig. 3. Computation workflow of the result of a run
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3.1.1 Normalization of the value of the objective function

The gross value of the objective function of an optimization case cannot be used as is in the determination of a performance
indicator. In order to be able to implement a quantity that is as universal as possible, it is fundamental to be able to compare what
is comparable. The gross value from the calculation run VG is therefore normalized to obtain VN .

To translate the performance of the algorithm, the idea is to introduce a level of desirability, as in [21]. When approaching zero,
it reflects a value very far from the minimum of the function and has a higher risk not to lead to a correct solution. On the opposite,
a level of desirability close to one reflects a minimum considered as acceptable. This aspect is accurately modeled by the Harrington
function [20], called here ΥV . This function is drawn on Figure 4. The Harrington function was selected in the case ”the lower, the
better” and a logarithmic scale was chosen, which corresponds to Equation (4).

ΥV (VG)



VN = exp(−exp(η + β · γ))

with



β =
ln(ln(0.95)/ln(0.05))

0.1− 0.9
η = ln(−ln(0.95))− β · 0.1

γ =
Log10((VG − Fmin)/Fem)

Log10((Fmax − Fmin)/Fem)

(4)
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Fig. 4. Harrington Function

In Equation (4), Fmin (resp Fmax) is the minimum (resp. maximum) value of the objective function. In our case of the selected
mathematical functions, Fmin is well-known. Fmax has been numerically estimated for each test function. Finally, the permitted
error margin, Fem, is the threshold under which the minimum, Fmin, is considered as reached. As in CEC 2014 [24], Fem has been set
to 1e−8. More details concerning this point can be found in [28].

3.1.2 Normalization of the number of evaluations

The variation ’The lower, the better’ was selected because the lower the number of evaluations, the higher the satisfaction. A
linear scale was chosen here as it works adequately where there are not many orders of magnitude between the minimum and
maximum. Besides, using a steady method leads to a steadily satisfaction increase with the reduction of number of evaluations. Its
normalization is presented in Equation (5).

ΥE(EG) = EN = 1−
EG

FEs
(5)

3.2 Aggregation

An aggregation summarizes a set of data into a single indicator. When an optimization is performed in an industrial context,
finding the best result in the shortest time is essential. An aggregation method with specific properties has been used: a non-
annihilating version of the weighted product [17] has been chosen. Themathematical expression of thismethod is given in Equation
(6).

AR :


RR = 2

((
1 + VN

2

)w1
)

+

((
1 + EN

2

)w2
)

− 1

and w = {0.75; 0.25}

(6)

In Equation (6), w1 and w2 are used to weigh the quality of the value and the amount of time. The user can tune w according to
the investigated optimization context. The more the gross value matters, the more the quality of value matters and the higher the
w1 value should be set. On the opposite, the higher the computer resources are, the less convergence speed matters and the lower
the w2 value should be set. Furthermore, if only the value quality (resp. convergence speed) is important, the value of w1 (resp. w2)
should be set to 1. If w1 = 1 (resp. w2 = 1), only the value (resp. convergence) quality is taken into account for the computation of
the result of a run. In this case, the result of a run is a measure of value (resp. convergence) quality, instead of efficiency measure.
Furthermore, if the result of a run measures quality then the overall score also measures a quality instead of an efficiency. If the
benchmark is used to guide the designer in the choice of an optimization algorithm, by comparing them in a competition, the w
values have to be fixed. In this case, w should be tuned in a general context so that main score remains the general measure of
efficiency as it is meant to be. The weights used in this paper have been chosen according to three main considerations: the weights
should be balanced [3], the value should be weighted more than convergence [29] and the convergence speed is important [3].
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3.3 Result of an optimization case

These results must take into account the stochastic nature of the tested algorithm. This is done by using reliability measures,
by statistically evaluating the results of a random draw. Two reliability measures are introduced: the α result and the Ω result. The
α score is the best result achieved in a draw. It represents the best possible outcome of an algorithm. On the opposite, the Ω score is
the score achieved by a large majority of draw’s runs. It represents what, at least, can be expected by the algorithm. For both scores,
the scores of the runs are efficiency scores, meaning that they take into account the end value and the convergence speed.

3.3.1 α result

This result corresponds to the one that can be achieved if the optimization case can be solvedmany times. In this configuration,
the best result, or the α result, will be kept. To this end, the best value of all runs is retained. The best sub-result, Rα, is defined as
the maximum value obtained during all runs and is obtained with Equation (7)). In this expression, RR is the set of results of NT

runs of an optimization case.

Aα

{
Rα = max {RR}
RR = (R1

R, · · · , RNT
R )

(7)

3.4 Ω result

In the situation of optimization and co-simulation, a run can be very CPU time-consuming. A last minute change in design
specification puts a lot of strain on human resources [3]. In this situation, it is hardly possible to perform several runs to find a better
solution than the previous one: only one run is done. The Ω result is the 95% confidence limit of the distribution of the draw results.
The Ω sub-result, RΩ, is defined in Equation (8). In this expression, µRR

(resp. σRR
) is the arithmetic mean (resp. the standard

deviation) of the sample RR.

AΩ

{
RΩ = µRR

− y σRR

with y such as
[
µRR

− y σRR
,+∞

]
= 95%

(8)

3.5 Result of an optimization case

The best and worst cases are aggregated by using the arithmetic mean of Rα and RΩ as proposed in Equation (9). The proposed
approach is summarized in Figure 6.

AC

{
RC = µ(Rα, RΩ) (9)

3.6 Global score computation

Step 1

Aggregation of M
axFes

 Weighted su
m 
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Step 3 
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n of d
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Fig. 5. Flowchart to compute a global score

In order to provide a global score, the results of the optimization cases must be summarized. The global score computation
process is composed of three steps of aggregation as specified by Equation (10). A symbolic summary of this process is presented in
Figure 5.
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Fig. 6. Workflow to obtain the result of an optimization case

S = AD (AF (AM (RC))) (10)

• Step 1 - Aggregation of MaxFEs (AM ): All results of the optimization cases (RC ) are aggregated over MaxFES, giving ND ×NF

MaxFEs results (RM );

• Step 2 - Aggregation of test functions (AF ): AllMaxFEs results are aggregated over functions, givingND functions results (RF );

• Step 3 - Aggregation of dimensions (AD): To finish, all functions results are aggregated over dimensions, giving the main
score (S).

3.6.1 Aggregation of MaxFEs

In an industrial context, if gains of the optimized solution are not sufficient to justify the investment of time, it is not worth
computing. Thus, the higher the MaxFEs the higher the chance to have a useful result. Therefore, the higher the MaxFEs, the higher
its weight in the aggregation method should be. The aggregation method retained is the weighted sum as given in Equation (11). In
this equation, the superscript f refers to the fixed function (see Table 2) and the superscript d refers to the fixed dimension.

AM :



Rdf
M =

m=NM∑
m=1

wm Rdfm
C

wm = Wm/

m=NM∑
m=1

Wm

with Wm = {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}

(11)

In Equation 11, the Wm values have been chosen taking into account the recommendations from [26]. Piotrowski et al. men-
tion that meta-heuristic optimization algorithms cannot successfully compete with mathematical programming methods when
the computational budget is lower than a few hundred times the problem dimensions. From this remark, it can be deduced that
FEs = 100 × D is the lower budget limit, i.e the limit number of evaluations of the objective function, for the relevant use of meta-
heuristic optimization algorithms. Since the MaxFEs from 0.01 to 0.05 define this lower limit, they should have very low weights in
the aggregation process. Piotrowski et al. [26] uses six computational budgets varying by two orders of magnitude. A similar choice
was made here by using seven MaxFEs over two orders of magnitude. From this, it can be considered that the MaxFEs 0.5 and 1
are relevant choices for the use of meta-heuristic optimization algorithms, as confirmed by [30] which only uses those budgets to
compute scores. Therefore, the MaxFEs 0.5 and 1 should be heavily weighted. The higher MaxFEs represent a little more than 50%
and 25% of the final result and the lower ones only a few percent of this result.

3.6.2 Aggregation of test functions

The problems faced by companies are difficult, multi-modal and often close to hybrid and composite functions. Therefore, test
functions should be weighted differently. Moreover, optimization ismeaningless if the performance increase of the result is not high
enough to justify the time and energy costs. As no algorithm can obtain convincing results on all problem topologies, an algorithm
can be considered interesting if it can perform very well on some function typologies. Therefore, an algorithm with good or bad
results should have a better score than another one with only average results. That is why a continuum method, with exponent
superior to 1, has been chosen to aggregate over the test functions [17]. The mathematical expression of this method is given in
Equation (12). The choice of weight values is based on experimental observations [28].
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AF :



Rd
F =

√√√√√f=NF∑
f=1

wf

(
Rdf

M

)2

wf = Wf/(

f=NF∑
f=1

Wf )

with


For f = 1, 2; Wf = 5/Nuni

For f = 3, · · · , 9; Wf = 6/Nmulti

For f = 10, · · · , 12; Wf = 8/Nhybrid

For f = 13, · · · , 15; Wf = 9/Ncomposition

(12)

3.6.3 Aggregation of dimensions

In an industrial context, it is more important for an algorithm to be efficient on high dimension problems than on low dimen-
sional ones. The results from the high dimensional problems should be weighted more than the results from the low dimensional
problems. In fact, an efficient algorithm for every dimension between 1 and 50 is searched. An algorithm with average results for
each problem dimension should have a better score than an algorithm with both good and bad results. This is the reason why a
continuum method with an exponent inferior to −1 has been chosen [17]. The mathematical expression of this method is given in
Equation (13).

AD :



S =
−2

√√√√d=ND∑
d=1

wd

(
Rd

F

)−2

wd = Wd/(

d=ND∑
d=1

Wd)

with Wd = {10, 20, 30, 50}

(13)

4. Scoring method analysis through algorithms testing

In order to analyze and compare the proposed benchmark to the CEC one, different algorithms were tested. For this task, a
set of algorithms were chosen. The thorough selection of a consistent set of algorithms in order to test a benchmark is a work in
itself. The motivation behind the choice of algorithms made is explained below. In order to fit the context of this work, the chosen
algorithms should be classified as global search meta-heuristics. The algorithms represent different families of meta-heuristics as
this benchmark is a generic tool. There is no guarantee that an up-to-date variant of a current optimization algorithm is a good
representative of its family. Hence its initial version is used. Moreover, hybrid algorithms are not considered in this article because
there are toomany references in the literature. A limited number of algorithmshave been selected to avoid burdening the readerwith
toomuch information. According to [31, 2, 5], particle swarm optimization, evolution strategy, genetic algorithm, swarm intelligence
and differential evolution seem to be efficient families of optimization algorithms. Therefore, a representative from each of these
families was chosen: the inertial PSO [15], the CMAES [32], an unpublished in-house Genetic Algorithm [33], the Cuttlefish [34] and
DE/rand/1/bin [35]. A population-based version of the simulated annealing [36] was added to represent algorithms considered less
efficient [2]. The PSO, GA and DE algorithms use a single stopping criterion, the radius which causes the algorithm to stop if, for
a certain amount of iterations, all points evaluated are inside the selected radius. The CMAES, in addition of the radius stopping
criterion, stops in case of a ill-conditioned matrix. The Cuttlefish and the SA algorithms do not use stopping criterion. Detailed
information about the algorithms, such as their pseudo-code and their settings can be found in [28]. The proposed benchmark score
is compared to the CEC one, considered as a reference and called here the classic benchmark. The algorithms results with both
scoring methods are presented in Figure 7.

Fig. 7. Scores from the CEC benchmark and the proposed benchmark for classical meta-heuristic algorithms

From Figure 7, the CEC Benchmark shows very high scores for CMAES and Cuttlefish and very low scores for the other algorithms.

Journal of Applied and Computational Mechanics, Vol. 7, No. 3, (2021), 1803-1813



Performance measure and tool for benchmarking metaheuristic optimization algorithms 1811

From the literature, this seems surprising. According to [2], evolutionary algorithms, such as CMAES, PSO and Cuttlefish should
obtain good results and PSO should be the best one. In accordance with [5], PSO and GA are the most prolific families of algorithms
in terms of publications since 2004. It suggests that the scientific community considers them to be efficient. In [31], Yang confirms
this assertion and recognizes that PSO and GA have become the hotspots of current research in optimization and computational
intelligence.

The proposed benchmark presents more homogeneous scores with limitedmaximum values. According to the results obtained,
this benchmark is in good agreement with the literature. The CMAES algorithms show strong potential [32]. For both benchmarks,
the assertion is confirmed and the CMAES is the reference algorithm. Due to their architecture and settings, GA, DE/rand/1/bin
and SA are based on a large part of randomization. This explains why they have the lowest results. Cuttlefish and PSO have close
results because they both use the displacement to the best local and global result. In fact, they are based on a well balance between
random and logic. Finally, CMAES is the best optimization algorithm because it uses the most sophisticated technique to collect
information about the iterated values of the objective function. An important source of improvement in optimization is the algorithm
hybridization. To go further in this work, testing hybrid algorithms should be considered with regards to the results obtained for the
initial algorithms. For instance, a PSO-CMAES hybridization, as proposed by [37], could obtain better results.

5. Conclusion

In the last few years, a great number of new optimization algorithms, most of them are meta-heuristic, has been developed. A
hot topic in the community is to be able to measure the efficiency of these algorithms, to rank them and to select the right one for
a given problem. As demonstrated by [5], benchmarking is the correct way to reach these objectives. Two benchmarks are quite
renowned: CEC and BBOB. While of merit, their scoring strategy could be enhanced.

A benchmark, based on the CEC one, has been proposed. It is composed of 420 optimization cases with 51 runs per case. The
cases are generated by the variation of three quantities: an objective function, a dimension and a MaxFEs coefficient. A scoring
strategy has been developed to consider industrial needs and avoid some errors in the analysis of the algorithms. Several stopping
criteria are used: target, FEs and algorithm convergence criteria. The results of a run take into account a normalized value for
the objective function at the end of optimization and a normalized convergence speed. The results for the optimization cases are
computed using statistics over the results of a run. The cases result goes through three steps of aggregation to produce a score.

Finally, the scoring method has been analyzed. First, several meta-heuristic algorithms have been tested on the CEC scoring
method and the proposed scoring methods. These algorithms are PSO, CMAES, Genetic, Cuttlefish, DE/rand/1/bin, and SA. The idea
is, using both benchmarks, to investigate if some conclusions, found in the literature, are confirmed by the algorithms scores. It
appears that, with the proposed benchmark, the concluding comments are verified whereas with the CEC method they are not.
Secondly, a thought experiment has been conducted to see the impact of using non-normalized results. It revealed that using the
CEC scoring method is biased.

To properly use the proposed benchmark, one should keep inmind its limits. It has been designed for global searchmetaheuristic
algorithms. The main score is a measure of efficiency and not a measure of quality [16]. This benchmark has been designed for
industrial needs. Thus, its design is centered around the designer’s point of view. A version of this benchmark including sub-
scores could be found in [28]. These sub-scores could be used to analyze an algorithm and select an algorithm from a set of tested
algorithms for a given problem.
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Appendix A Objective-functions set

The set of objective-functions used by the proposed benchmark is presented by table 2. This set is the one used by the CEC 2015
[30]. The functions have been rotated, shifted and offset. The uni-modal and multi-modal functions use either one function or the
sum of several functions. An hybrid function is obtained by the addition of the results of several sub-functions each using only a
randomly selected part of all the variables. A composite function is obtained by the addition of the results of several sub-functions
each given a weight depending on how close to the minimum of the function the point evaluated is. The exact formulation of the
objective-functions composing this set could be found in [28]. The set of objective-functions used by the proposed benchmark is
presented by table 2. This set is the one used by the CEC 2015 [30]. The functions have been rotated, shifted and offset. The uni-
modal and multi-modal functions use either one function or the sum of several functions. An hybrid function is obtained by the
addition of the results of several sub-functions each using only a randomly selected part of all the variables. A composite function
is obtained by the addition of the results of several sub-functions each given a weight depending on how close to the minimum of
the function the point evaluated is. The exact formulation of the objective-functions composing this set could be found in [28].

Table 2. Objective-functions set

Categories No Functions

Unimodal 1 Bent Cigar

2 Discus

Multimodal 3 Weierstrass

4 Schwefel

5 Katsuura

6 HappyCat

7 HGBat

8 Griewank plus Rosenbrock

9 Scaffer

Hybrid 10 Hybrid 1 (Schwefel, Rastrigin, High Conditioned Elliptic)

11 Hybrid 2 (Griewank, Weierstrass, Rosenbrock, Scaffer)

12 Hybrid 3 (Katsuura, HappyCat, Griewank, Rosenbrock, Schwefel,
Ackley)

Composite 13 Composition 1 (Rosenbrock, High Conditioned Elliptic, Bent Cigar)

14 Composition 2 (Schwefel, Rastrigin, High Conditioned Elliptic)

15 Composition 3 (HGBat, Rastrigin, Schwefel, Weierstrass, High Con-
ditioned Elliptic)
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