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Abstract. Solid deposition in fluid may involve solids with different density and size and may happen in quiescent fluid or rather 
in counter flow. We perform a numerical investigation on the role of density-ratios, size-ratio, and initial configuration on the 
settling of two circular solids in a fluid channel with or without counter-flow. Through this study, we show how settling dynamics 
of two solids can be controlled. Numerical experiment based on a coupled Immersed Boundary-Lattice Boltzmann is employed. It 
is shown that certain parameter set leads to guided deposition while denser solid leaves the less dense one as time progressing. 
However, certain parameter set leads to periodic close encounters which is robust in the presence of Poiseuille-like counter-flow. 
In this case, the separation between two solids is bounded during the deposition. 

Keywords: Counter-flow; Density ratio; IBLBM; Initial configuration; Size ratio. 

1. Introduction 

Solid-fluid transport phenomena has a vast application in industry. Some of them involve suspended nanomaterials as a 
mean for improving heat convectivity such as in the case of solar energy collector system [1-3]. The nanomaterials are dispersed 
in water flowing through a tube containing a turbulator. Another study performed by Sheikholeslami and Farshad [4] showed that 
the presence of suspended nanomaterials contributes to enhance flow convectivity as well as reducing energy loss in such 
system. Some other application involves larger particles suspended in fluid. Deposition of solids in viscous fluid has been long 
investigated to understand different aspects that might control the solid-fluid dynamics. Numerous applications in engineering 
such as powder technology, coating technology and fluidized beds have attracted more attention to investigate dynamics of solids 
as they settle in viscous fluid that involves solid-solid, solid-fluid, as well as solid-wall interaction. Jayaweera and Mason [5] 
analyzed the deposition of long thin cylinders as well as flat base cones. The effect of finite boundaries has also been shown to 
increase drag experienced by settling solids. Brenner [6] showed this effect through a theoretical study on the effect of wall at the 
proximity of a moving arbitrary solid within two restrictions that drag correction due to the presence of wall for a moving 
spherical solid is known and the size of the solid is small compared to its distance from the wall. 

Several studies also address the influence of solid parameter on the deposition dynamics. Nie et al. [7], for instance, studied 
the role of density ratio on the dynamics of two circular solids settling in narrow tunnel. They also found that for certain range of 
small density ratio, repeated Draft-Kissing-Tumbling can also occur. The increasing capacity of computing power has allowed 
more detail investigation on the dynamics of settling solids. For instance, Glowinski et al. [8] performed a numerical study on 
particulate flows based on fictitious-domain method. Aidun and Ding [9] used Lattice-Boltzmann Method to investigate the 
dynamics of two identical circular solids settling in bounded domain.  

However, in some engineering applications, such as fluidize beds, solids may settle in pre-existing flow. So, we extend our 
investigation with the presence of counter-flow. Previously, Arbie et al. [10] considered the case of two disks falling under the 
influence of gravity through counter-flow to study the role of initial position on the deposition. In this study, we are interested in 
investigating the change of deposition dynamics through quiescent fluid as well as counter-flow if the two disks have different 
initial position, density, and size. Several techniques have been developed for performing the simulation of solid-fluid interactions. 
Mesh-based method such as Finite Element is used by Izadpanahi et al. [11] to study the stress on wing designs in aeroelastic 
flight. Other study by Mehryan et al. [12] involves the coupling of Finite Element and Arbitrary Lagrangian-Eulerian to study 
natural convection in a square domain partitioned by a flexible membrane. It is also used to study other solid-fluid interaction 
such as fluid flow in pipe system (see a review by Ferras et al. [13]). As an alternative, Finite Volume is also widely used such in 
solid-fluid interaction simulation such as demonstrated by Tuković et al. [14]. On the other hand, meshfree method such as 
Smoothed Particle Hydrodynamics (SPH) is widely used to avoid grid reconstruction usually encountered in mesh-based methods. 
Zhang et al. [15] presented a multi-resolution SPH for fluid-solid interaction. For this purpose, we employ Lattice Boltzmann (LB) 
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Method as fluid solver and Immersed Boundary (IB) Method to account the solid-fluid interaction. LB method can be regarded as a 
low Mach number approximation to the incompressible Navier-Stokes equation [16]. The main ingredient of Lattice Boltzmann 
Method consists of collision and streaming process. In-depth discussion of these two processes can be found in [17].  

Solid dynamics in fluid using the LB method can be done by the Bounce-back procedure [18] which shows a fluctuation on the 
computed force at solid-fluid interface due to the sudden change of fluid and non-fluid nodes during the solid movement. A 
coupling between LB and IB can be used to eliminate the sudden change of fluid and non-fluid nodes. Immersed Boundary was 
first proposed by Peskin [19, 20]. The idea is to use a set of Lagrangian points immersed in fluid as a discrete representation of the 
solid perimeter while the dynamics of fluids is solved in an Eulerian grid (fixed frame). Force due to solid-fluid interaction is 
assigned at each IB points. A review on vast applications of IB can be found in Mittal and Iaccarino [21]. 

Feng and Michaelides [22] introduced the coupling of IB and LB in which the discretized solid surface is considered as a 
flexible body with high stiffness. Cheng and Zhang [23] computed the IB forces by considering each Lagrangian points as a flexible 
segment. In this study we employ the coupling procedure proposed by Li et al [24]. IB forces are directly computed from fluid 
velocity field through a modified spreading procedure proposed by Pinelli et al [25]. The discretized immersed surface is regarded 
as having the so-called hydrodynamics thickness which prevents fluid from entering the region enclosed by the IB. As mentioned 
in Peskin [20] and Cheng and Zhang [23], fluid leakage across the discretize IB can be significantly reduced by setting the 
separation between any two Lagrangian points to be less than half of the spacing of Eulerian grid used to solve the governing 
equation for fluid. In their work, Pinelli et al [25] emphasize that the hydrodynamics thickness can be best computed by setting 
the separation between any two Lagrangian points to be equal to the spacing of Eulerian grid. This reduced the number of 
Lagrangian points and thus reduces computing time. 

Through the rest of the article, we describe the employed coupling procedure of IB and LB method. We then briefly explain the 
governing equation for solid moving in viscous fluid followed by a benchmark. Next, we describe numerical experiments using 
Immersed Boundary-Lattice Boltzmann (IB-LB) on the deposition dynamics of two solids. We demonstrate the effect of solid 
density on deposition dynamics for different initial configuration. Then we add numerical experiments on the effect of solid 
diameter. In some engineering applications, the deposition may be happening in a counter-flow such as in fluidized bed. 
Therefore, we also consider deposition through a counter-flow which is incorporated in the computational domain by imposing a 
Poiseuille-like flow as the inflow. The objective of these numerical experiments is to examine important parameters of two-solid 
deposition dynamics and how robust the resulting dynamics in the presence of counter-flow. 

2. Methods 

2.1 General description of IB-LB method 

Incompressible fluid motion is usually modeled by the following Navier-Stokes 

( ) 2u p
u u u

t
ν

ρ

∂ ∇
+ ⋅∇ =− + ∇

∂

�

� � �

 (1) 

where u
�

is the velocity field, p is the pressure field, ρ is the fluid density, and ν is the kinematic viscosity of the fluid. Standard 
numerical procedure to approximate the solution for eq. (1) requires one to solve Poisson equation for pressure field. On the other 
hand, we can also describe the transportation of fluid mass by considering smaller scale that is by considering the particle 
distribution function. The evolution of the distribution function is described by the Boltzmann Transport equation. Macroscopic 
variables such as fluid velocity can be computed once the probability function at a given time is obtained. Pressure field can be 
obtained from an equation of state which is chosen properly according to the fluid being modeled. The discretization of the 
Boltzmann Transport equation results in the Lattice Boltzmann (LB) equation. The LB equation can approximate the 
incompressible Navier-Stokes equation within the low Mach number assumption [16]. 

In this study, we employ the LB method with Bhatnagar-Gross-Krook (BGK) collision operator with an explicit forcing term. 
Velocity space is discretized into nine possible directions as shown in Fig. 1 for two-dimensional space (D2Q9 set-up) which 
results in the following LB equation 
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where ke
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gives the nine directions ( { }0,1,2, ,8k= … ), ( ),kf x t
�

is the particle distribution function for k -th direction at position x
�

and 
time t , ( ),eq

kf x t
�

 is the equilibrium distribution function, ( ),k x t
�

g is the forcing term, and τ is the relaxation time which is related to 
the viscosity of fluid via the relation ( )1 / 2 / 3tν τ= − ∆ for the D2Q9 set-up. We use the following forcing strategy proposed by Guo 
et al. [26] 
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where F
�

is a body force per unit volume acting on the fluid, and kω is the weighting factor for each direction in the discretized 
velocity space given by 
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for the D2Q9 model. Macroscopic fluid density ρ and velocity field u
�

are obtained by the following relations 

( ) ( )
8

0

, ,k
k

x t f x tρ
=

=∑
� �

, (5) 



 M. Rizqie Arbie et. al., Vol. 7, No. 3, 2021 
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 3, (2021), 1814-1825   

1816

( ) ( ) ( ) ( )
8

0

, , , ,
2k k

k

t
x t u x t e f x t F x tρ

=

∆
= +∑

�
�� � � � �

. (6) 

We recommend the readers to visit references [17], [24], and [26] for detail discussions on eq. (2) to eq. (6). 
We use the Immersed Boundary (IB) method to incorporate moving solid in the fluid. The perimeter Γ of the solid is 

discretized into a set of Lagrangian points at which forces ( ),IB qF x t
�
�

are assigned where q denotes the q -th Lagrangian point as 
shown in Fig. 1. The no-slip condition for velocity is enforced on the IB. The assigned forces are spread to the surrounding fluid to 
obtain forces acting on the fluid ( ),F x t

�
�

by using the modified spreading procedure proposed by Pinelli et al [25] which is given by 
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where δ is the delta function and dl is the element of length. In this study, this delta function is approximated using the 
formulation proposed by Roma et al. [27]. The modification from the usual spreading, as in Peskin [20], is the multiplication 
factor ( ),qx tε

�

called characteristic strip-width to enforce better the no-slip condition at the immersed boundary. In this study, ε is 
computed at each time step. However, we recommend readers to have a look on Favier et al. [28] regarding the sensitivity 
of ε computation due to the movement of immersed boundary for rigid and flexible bodies. 

For the coupling of IB and LB, we adopt the coupling procedure proposed by Li et al [24]. The idea is to compute the force on 
each Lagrangian point based on interpolation of velocity field in the vicinity of the Lagrangian point. This is done by applying 
relation (6) at each IB point which leads to the following relation 
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where ( ),qU x t
�
�

is the fluid velocity at q -the IB point. The no-slip condition on the solid perimeter is imposed by 
taking ( ),qU x t

�
�

equals to the velocity of the solid boundary. Therefore, the value of ( ),IB qF x t
�
�

can be obtained from relation (8). In this 
study, we use the IBLBM program documented in Arbie et al. [10]. Details on the numerical procedures, the governing equation for 
solid dynamics, and its corresponding time marching procedure can also be found in Arbie et al. [10]. The combination of IB and 
LB eliminates the necessity to reconstruct the computational grid at each time step as normally done in computational 
techniques which use body-conformed grid. 
 

2.2 Validation of the IB-LB method 

The range of Reynolds number in this study might exceed the one validated in Arbie et al. [10] due to higher solid density and 
greater diameter. Therefore, we perform a test case of two settling circular solid to simulate Drafting-Kissing-Tumbling process 
during the deposition. The two solids are initially separated vertically by a distance of 2D where D is the diameter of the two 
solids. The leading and trailing disks are deviated from the vertical centerline of the tunnel by a distance of +0.004D and -0.004D 
respectively. We compare the normalized horizontal and vertical velocity component of the two solids with reference results from 
Favier et al. [28] and Uhlmann [29]. The results show a good agreement as shown in Fig. 2. The comparison is done up to kissing 
stage. After this stage, the dynamics depend strongly on the chosen collision model and its magnitude. Note that the result by 
Favier et al. [28] was produced by IB-LB method with different coupling procedure while the results by Uhlmann [29] was 
produced by a coupling of Central Finite Difference and Immersed Boundary. Figure 2 also shows that the results are consistent 
for different spatial resolution represented by different lattice unit (LU) per solid diameter. Throughout the study, we use spatial 
resolution of 60 LU per solid diameter. The benchmark shows the capability of the IB-LB coupling used in this study to simulate a 
settling phenomenon having Reynolds number (based on solid diameter and maximum vertical velocity) up to 450. 

 
 

 
 

Fig. 1. Schematic illustration of Lattice Boltzmann (LB) and Immersed Boundary (IB) computational discretization. Top left shows the discretization 
of velocity direction in the D2Q9 LB model for a probability distribution function at a particular position. Top right depicts the IB on fixed rectangular 
grid where macroscopic fluid variables are computed via the LB equation. The blue dots indicate the IB points. The yellow-shaded area indicates the 

influence domain of q-to IB point at
q

x
�

. 
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         (a) 

 
        (b) 

 
Fig. 2. Velocity components of two circular solid during settling process with an initial vertical separation of 2D (measured center-to-center): (a) 

horizontal velocity, and (b) vertical velocity. Note that v
s,max

is the maximum value of the vertical component of solid velocity. 

 
Fig. 3. Different configurations considered in this study. Case I: Two circular solids initially levelled; Case II: Two circular solids initially separated by a 

horizontal distance of x∆ and a vertical distance of y∆ measured center-to-center. 

3. Effect of solid density 

Here, we examine the influence of solid-fluid density ratio on the deposition dynamics for different initial position with and 
without the presence of counter-flow. The two initial configurations are named as they are named as Case I and Case II. The 
graphical summary of the two cases considered here are given in Fig. 3. Cases without counter-flow will be denoted as Case Ia and 
Case Ilia while cases with counter-flow will be denoted as Case IBM and Case IIb. Note that, starting from this point on, the 
velocity components of each solid is normalized with the computed terminal velocity (denoted by 0v ) of a circular solid (having 
diameter D = 60 LU) moving downwards under gravity in fluid. The width of the computational domain is taken as 50D to mimic 
free-falling in a fluid. In this study, both circular solids have densities 1.5 times the density of the surrounding fluid. We then vary 
the density of one solid to see how it effects the dynamics of the two solids. Here we specify that the two circular solids have 
similar diameter that is 1 2 60D D D= = = LU. Two vertical boundaries are set at 0x = and 8x D= to make a tunnel of 8D wide. The 
tunnel configuration will also be used for the next numerical experiments presented through the rest of this article. We will see 
how the dynamics differs from the one described in Arbie et al. [10]. 

In our simulation, we set the initial velocity of the fluid as zero everywhere in the computational domain while the initial 
distribution function is taken to be equal to the equilibrium distribution function, i.e., ( ) ( ), ,eq

k kf x t f x t=
� �

. At the two vertical walls, 
we apply the no-slip condition ( 0u=

�

). We use the standard bounce-back procedure (see [17]) to impose the no-slip condition on 
each vertical wall. For the upper and bottom boundaries, we also impose the no-slip condition. To guarantee that there is no 
significant influence of the upper and bottom boundaries, we performed a series of numerical experiments with a variation of 
initial distance between a circular solid and a wall. We found that a distance of 10D is sufficient to avoid any significant 
interaction between the solid and the wall. Each simulation is also stopped when one of the solid reaches a distance of 10D from 
the bottom boundary. 
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     (a) 

 
     (b) 

 
Fig. 4. Trajectory of the two solids in (a) Case Ia and (b) Case IIa for 1 2/

s s
ρ ρ equals to 1 (──), 7/6 (──), 8/6 (──), 9/6 (──), dan 10/6 (──). Bold lines 

represent the trajectory of Solid 1 while dashed lines represent the trajectory for Solid 2. Note that the vertical position is measured relative to the 
initial position. 

3.1 Stable deposition 

Firstly, let us consider Case Ia where the two solids have the same diameter and are initially situated at the same height in 
quiescent fluid. They are separated symmetrically at the vicinity of the vertical centerline (see Fig. 3). Here we take 2x D∆ = . 
Density of Solid 1 ( 1sρ ) is varied while the density of Solid 2 ( 2sρ ) is fixed. Here we set 2 / 1.5sρ ρ = where ρ  is the fluid density. 
The settling trajectories of the two solids are given in Fig. 4(a). If both left and right solid have the same density, they simply move 
away symmetrically from each other and establish a stable settling trajectory between the vertical centerline and the closest 
vertical walls. They also move with the same velocity while being at the same vertical position. It demonstrates the equilibrium of 
solid-wall and solid-solid indirect repulsive interactions. As we increase the density of Solid 1, it moves downwards faster than 
Solid 2. This breaks the solid-solid and solid-wall interactions equilibrium. The two solids are then moving away from their closest 
walls. They then move towards the vertical centerline. As the vertical velocity of Solid 1 increases, Solid 2 has an increasing 
tendency to accelerate towards Solid 1 and trail behind it due to the wake created by Solid 1. This is due to the low-pressure 
region in the wake produced by Solid 1 [30, 31]. The two solids then move asymptotically towards the vertical centerline. 

We now consider Case IIa with 2x D∆ = and y D∆ = . In the previous study by Arbie et al. [10] where the two solids have a 
similar density, this configuration results in periodic close encounters. This is shown by the bold lines in Fig. 4(b). Here we only 
take the dynamics in the interval of ( )0 / 80iy y D≤ − ≤ to emphasize the difference in the resulting dynamics due to density 
difference of the two solids. After the deposition starts, Solid 1 approaches Solid 2. When Solid 1 reaches the same height as Solid 
2, they move away from each other. Once Solid 1 overtakes Solid 2, we can observe similar mechanism as in Case Ia where Solid 2 
accelerates towards Solid 1 (due to its interaction with the wake created behind Solid 1) and trails behind it. They then move 
asymptotically towards the centerline of the tunnel as Solid 1 leaves Solid 2. These first two cases demonstrate well the 
competition between solid-solid and solid-wall indirect repulsive interaction. We would also like to point out that if the two 
settling solids have different density, the deposition dynamics shown in Arbie et al. [10] is no longer observed. 

Previously, a study by Nie et al. [7] shows similar symmetrical settling for two identical circular solid in a 4D wide tunnel. This 
tunnel width is narrower than the one considered in this study. The two solids are released from the same height with respect to 
the bottom boundary. In their study the Reynolds number ( Re ) is defined by taking the diameter D of the solid as the 
characteristic length. The characteristic velocity is taken as ( / 1) / 2s gDρ ρ π− . They also defined another parameter 

1 2( ) /s sα ρ ρ ρ= −  which represents normalized solid density difference. They observed that for 0α = and Re 25= the two solids 
settle symmetrically. Numerical experiments by Arbie et al. [10] indicated that if the two solid has the same diameter and density, 
the settling dynamics depends on the initial configuration. On the other hand, we have shown earlier that as the two solids have 
different density, the settling trajectory become guided sedimentation which we called as stable deposition.  

The study by Nie et al. [7] mentioned also periodic behavior for the settling of two circular solids having different densities 
in 4D wide tunnel. Their results show the pattern of limit cycle in the phase space of horizontal positions of the two solids. Note 
that their study covers the settling dynamics for 0 0.25α≤ <  and Re 18≤ . Following definitions of Reynolds number Re and 
normalized solid density difference α , in our numerical experiments these parameters are {0.25,0.5,0.75,1}α =  and 
Re {21.49,26.32,30.39,33.98,37.22}=  for both solids having similar diameter (aside from the case where the two solids have the 
same density). These values are higher than those considered by Nie et al. [7]. The tunnel width considered in this study is also 
two times larger than the one considered by Nie et al. [7]. However, we do not observe such behavior in our chosen parameters. 
We can say that the limit cycle can only be observed for relatively small density difference. We will show in the next section that 
the periodic close encounters can be recovered by taking different diameter for the two solids. 
 

3.2 Presence of counter-flow 

Now we would like to see the settling dynamics of two circular solids with different density in the presence of counter-flow 
for the two initial configurations. Here we pick 1 2/ 8 / 6s sρ ρ = . We name these numerical experiments as Case Ib and Case IIb. 
The counter-flow is triggered by imposing a Poiseuille-like velocity profile at the inflow (bottom boundary), that is ( )( )0, inu v x=

� T

 
with inv  is given by: 
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Fig. 5. Variation of Poiseuille-like profile imposed at the inlet. The width of the domain is 8D . 

 
 

 
     (a) 

 
        (b) 

 
        (c) 

 

Fig. 6. Settling dynamics of two circular solids in Case Ib with 1 2/ 8 / 6
s s
ρ ρ = : (a) trajectory of the two solids, (b) vertical velocity of Solid 1, and (c) 

vertical velocity of Solid 2. The counter-flow parameter / gκ is equal to 43.92 10−× (──), 47.84 10−× (──), 31.18 10−× (──), 31.57 10−× (──), 

and 31.96 10−× (──). Bold lines represent the dynamics of Solid 1 while dashed lines represent the dynamics for Solid 2. Note that the vertical 

position is measured relative to the initial position. Settling dynamics in quiescent fluid (──) is also given for comparison. 
 

( )2( )
2 xinv x L x x
κ

ν
= − . (9) 

Once the value of kinematic viscosity ν has been chosen, the maximum value of inflow velocity can be controlled by varying κ . 
Here κ is given by 
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κ
ρ

∂
= −
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which gives the upward acceleration to move fluid and is the difference between a pressure gradient and the strength of 
gravitational acceleration. Here we define a non-dimensional quantity / gκ as parameter to describe the strength of the counter-
flow. In this study, we take five different values of / gκ which are given in Fig. 5. The increment of / gκ we use is sufficient to 
reduce the vertical velocity component of less dense solid by 15% to 20%. This is also due to the additional drag by the confined 
geometry which has been shown to contribute to the total drag experienced by a solid settling through the confined fluid [32]. 
Without the confined geometry, the choice of counter-flow might be too weak.  

To include the counter-flow, we use the Zou-He boundary condition [33] for velocity at the bottom boundary. On the other 
hand, the fluid must be able to escape smoothly form the computational domain at the upper boundary. We then apply the Zou-
He boundary condition for constant pressure at the upper boundary. The simulation is carried out by letting the imposed counter-
flow to be fully developed inside the domain while the two solids are held fixed. The deposition is commenced once the 
horizontal and vertical force exerted on the two solids by the fluid are constant over time. 

The deposition trajectory in the presence of counter-flow for Case Ib with 1 2/ 8 / 6s sρ ρ =  is shown in Fig. 6(a). The results show 
that varying the strength of counter-flow does not give significant change in the settling trajectory of both solids. This is true for 
all value of / gκ demonstrated here. Based on Fig. 6(b) and (c), we can also say that the presence of counter-flow only causes the 
two solids to settle slower as the strength of the counter-flow is increased. Figure 6(b) shows also that Solid 1, as the leading one, 
eventually reaches its terminal velocity. For Solid 2 as the trailing solid, there is an acceleration in the time interval 

010 / 20tv D< < as shown in Fig. 6(c). This due to the interaction between Solid 2 and the wake created behind Solid 1. But as the 
separation between the two solids increases, Solid 2 interacts with decaying wakes produced by Solid 1. Eventually, the vertical 
velocity of Solid 2 becomes approximately constant. For Case IIb with 1 2/ 8 / 6s sρ ρ = (see Fig. 7(a)), we also observe that there is no 
significant change in the settling trajectory of each solid due to the increasing strength of counter-flow. Figure 7(b) and (c) also 
show that the two solids settle with smaller vertical velocity as the strength of the counter-flow is increased. As in Case Ib, Fig. 
7(c) shows that Solid 2, as the trailing solid, accelerates in the time interval 010 / 20tv D< < .  

 
 

 
     (a) 

 
        (b) 

 
        (c) 

 

Fig. 7. Settling dynamics of two circular solids in Case IIb with 1 2/ 8 / 6
s s
ρ ρ = : (a) trajectory of the two solids, (b) vertical velocity of Solid 1, and (c) 

vertical velocity of Solid 2. The counter-flow parameter / gκ is equal to 43.92 10−× (──), 47.84 10−× (──), 31.18 10−× (──), 31.57 10−× (──), 

and 31.96 10−× (──). Bold lines represent the dynamics of Solid 1 while dashed lines represent the dynamics for Solid 2. Note that the vertical 

position is measured relative to the initial position. Settling dynamics in quiescent fluid (──) is also given for comparison. 
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      (a) 

 
      (b) 

 
      (c) 

 
      (d) 

 
Fig. 8. Variation of normalized center-to-center distance as a function of normalized time for (a) Case Ia and (b) Case IIa as well as the variation of 
the difference in vertical position between Solid 1 and Solid 2 for (c) Case Ia and (d) Case IIa. The purple line marks the center-to-center distance 

of 1.57D .  

4. Adding the effect of solid diameter 

Here we show that one may recover the periodic close encounters by adding solid diameter difference. We then 
set 2 12 2D D D= = to observe how solid diameter can affect the settling in Case I and Case II. The initial horizontal separation 
between Solid 1 and Solid 2 is 4x D∆ = . The density ratio of Solid 2 with the fluid density is 2 / 1.5sρ ρ = . As in previous section, the 
numerical experiments are performed for different 1 2/s sρ ρ , i.e., by varying the value of 1sρ . Note that since Solid 2 is larger than 
Solid 1 while density of Solid 1 will be increased, we then set the initial position of Solid 2 higher than Solid 1. We have seen from 
previous section that density difference may change the periodic close encounters into a stable deposition where less dense solid 
trails behind the denser one.  

The variation of center-to-center distance ( ssl ) between the two solids as a function of time is shown in Fig. 8(a) and (b) while 
the difference in vertical position of the two solids is given in Fig. 8(c) and (d). The settling trajectory of the two solids is given in 
Fig. 9. Figure 8(a) depicts the center-to-center distance in Case Ia. For 1 2/ 1s sρ ρ = , Solid 1 trails behind Solid 2 with an increasing 
distance between the two solids and thus close encounter does not take place. From Fig. 9(a), we can see that Solid 1 trails behind 
Solid 2 with a damped oscillating trajectory as the two solids settling asymptotically towards the vertical centerline. Figure 8(c) 
also indicates that Solid 1 settles behind Solid 2. Similar dynamics is also observed in Case IIa as being shown in Fig. 8(b) and (d). 
The only difference is on the early dynamics due to the difference in initial arrangement for the two cases. As we increase the 
value of 1 2/s sρ ρ to 7 / 6 , Fig. 8(a) and (b) shows that there is single close encounter in both Case Ia and Case IIa within the time 
interval of our numerical experiment. After the close encounter there is an increase of separation between the two solids. 
However, after 0 / 70tv D ≈ , Solid 1 approaches Solid 2 again. From Fig. 9(b), we can identify that Solid 1 performs a damped 
oscillation as it drifts towards the vertical centerline to approach Solid 2. Again, the settling only differs at the early time due to 
different initial configuration if compare the result in Fig. 8(c) and (d). 

For 1 2/ 8 / 6s sρ ρ = , we observe in Fig. 8(a) and (b) that multiple close encounters take place during the settling process in both 
Case Ia and Case IIa. Each close encounter leaves a center-to-center distance of 1.57D which is marked by the purple line in the 
figures. Each close encounter is caused by the interaction between the low-pressure wake produced behind the leading solid as 
mentioned in previous section. Once the trailing solid enters the wake region, it is accelerated towards the leading particle. As the 
trailing solid getting close to the leading one, there is a pressure build up in the fluid between the two solids. The closer the two 
solids are, the larger this pressure. This results in the trailing solid pushes the leading one. So the center-to-center distance 
increases again. This process takes place periodically and gives the periodic close encounters. The process is depicted in Fig. 9(c) 
in which the settling trajectory of the two solids forms a periodic curve after the first close encounter. From Fig. 8(c), we can say 
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that Solid 2 leads the deposition most of the time. Solid 1 only get ahead of Solid 2 for a short period of time during the close 
encounter. This also holds true for Case IIa as shown in Fig. 8(d) for the multiple close encounters (excluding the early time where 
Solid 1 is ahead of Solid 2 due to the initial arrangement). 

As we set the value of 1 2/s sρ ρ to 9 / 6 , Fig. 8(a) shows that the value ssl for Case Ia is decreasing towards 1.57D . It gives an 
indication for close encounter to be taking place. However, it requires larger computational domain to observe. We can also see 
from Fig. 8(c) and 9(d) that Solid 2 trails behind Solid 1 while performing an oscillating movement as the center-to-center distance 
between them decreases. On the other hand, Fig. 8(b) shows that the value of ssl for Case IIa keeps increasing. This means that the 
density of Solid 1 is sufficiently large to move fast and leave Solid 2 behind. We can also see from Fig. 9(d) that both solids simply 
drift towards the vertical centerline as the separation distance between them increases. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Fig. 9. Settling trajectories of two circular solids in Case Ia and Case IIa with 2 12D D= for (a) 1 2/ 1

s s
ρ ρ = , (b) 1 2/ 7 / 6

s s
ρ ρ = , (c) 1 2/ 8 / 6

s s
ρ ρ = , 

(d) 1 2/ 9 / 6
s s
ρ ρ = , and (e) 1 2/ 10 / 6

s s
ρ ρ = in quiescent fluid. 
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     (a) 

 
     (b) 

 
Fig. 10. Variation of normalized center-to-center distance as a function of normalized time for (a) Case Ib and (b) Case IIb 

with 2 12D D= and 1 2/ 8 / 6
s s
ρ ρ = as the two solids settle through the counter-flow. The purple line marks the center-to-center distance of 1.57D . 

 

For 1 2/ 10 / 6s sρ ρ = , Fig. 8(a) and (b) show that Solid 2 always trails behind Solid 1 with increasing center-to-center distance for 

both Case Ia and Case IIa. Solid 1 is always ahead of Solid 2 as shown by Fig. 8(c) and (d). This is an indication that the solid 

density ration is large enough to prevent any close encounter. Also, we can see from Fig. 9(e) that the two solids simply move 

asymptotically towards the vertical centerline with Solid 1 leading the deposition. 

These results demonstrate a dynamic transition from stable deposition (a simple drift towards the vertical centerline as one 

solid leaves the other) to periodic close-encounters. When the two solids have identical density and one solid has a diameter 

twice as large as the other, the larger one leaves the smaller one. But as the smaller solid has larger density than the bigger one, 

we observed dynamics transition to periodic close encounters. If the density ratio between the smaller solid and the larger solid 

surpass certain value ( 1 2/ 10 / 6s sρ ρ = in this case), the smaller yet denser one leads ahead with increasing separation distance 

between the two solids. These results also indicate that one may keep the separation distance between the two solids below 

certain value by adjusting both the density ratio and the size ratio of the two circular solids. In this study, the choice 

of 2 12D D= and 1 2/ 8 / 6s sρ ρ = leaves an approximate maximum center-to-center distance of 5.45D between the two solids for both 

Case Ia and Case IIa.  

In some engineering application, such as fluidized beds, counter-flow may exist. We then perform another test to investigate 

whether the presence of periodic close encounters for 2 12D D= and 1 2/ 8 / 6s sρ ρ = is robust if the two solids are settling through a 

counter-flow. Now we call the two initial configurations as Case Ib and Case IIb. As in previous section, we use the Poiseuille-like 

velocity profile as inflows at the bottom boundary. As in previous section, we run the simulation with the solid at rest first until 

the flow inside the domain is fully developed. Once the flow is fully developed, we start the deposition process. The variation of 

center-to-center distance between the two solids as a function of time is given in Fig. 10(a) for Case Ib and Fig. 10(b) for Case IIb. 

By varying the strength of the counter-flow (parameterized by / gκ ). The multiple close encounters are still observed as shown in 

Fig. 10. The distance between the two solids (measured center-to-center) is also still within certain range. For instance, 

at 3/ 1.96 10gκ −= × we observe that ssl lies in the range 1.57 5.84ssD l D< < . For 4/ 3.92 10gκ −= × , the multiple encounters we 

observe is qualitatively similar to those without counter-flow. Increasing / gκ changes the settling dynamics especially for 

large / gκ considered here but the close encounters are still observed. 

5. Conclusion 

We have performed numerical experiments on the influence of certain physical parameters to the deposition dynamics of two 
solids in a channel. For two solids initially not levelled, we observe that the multiple close encounters shown by Arbie et al. [10] 
turn into guided deposition where denser solid leads the deposition. For both initial configurations considered in this study, both 
solids move asymptotically towards the vertical centerline of the tunnel as the separation distance between them increases. This 
holds true with the present of counter-flow at least within the range of counter-flow strength considered in this study, that 
is 4 33.92 10 / 1.96 10 .gκ− −× ≤ ≤ ×  For the choice 1D D= , 2 2D D= and 1 2/ 1s sρ ρ =  where 60D= LU, the larger solid leads the 
deposition as the smaller one trails behind. At long time, the two solids settle along the vertical centerline. Multiple close 
encounters is observed as we set 1D D= , 2 2D D= and 1 2/ 8 / 6s sρ ρ = . Once the solid density ratio is set to 1 2/ 10 / 6s sρ ρ = , the 
denser solid, yet smaller one, leads the deposition and the two solids settle along the vertical centerline at long time. We can 
conclude that a careful choice of solid size ratio and density ratio may produce the multiple close encounters although the 
density ratio is larger than the ones studied by Nie et al. [7]. It is also observed that in the presence of counter flow, the spatial 
distance between the two solids (measured center-to-center) for 1D D= , 2 2D D= and 1 2/ 8 / 6s sρ ρ =  is limited on the 
range 1.57 5.84ssD l D≤ < . The multiple close encounters also appear to be periodic and robust to the present of counter flow at 
least within the range of counter-flow strength considered in this study. Together with our previous study [6], these numerical 
experiments show the importance of initial configuration, density ratio, and size ratio (taken to be diameter) to control dynamics 
and spatial separation of two circular solids during their deposition in narrow channel. 
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Nomenclature 

D  Solid diameter inv  Vertical component of fluid inflow velocity 

ke
�  Unit direction for velocity space discretization x

�  Position 

kf  Particle distribution function qx
�  Position of q -th IB point 

eq
kf  Particle distribution function at equilibrium x  Horizontal position 

F
�

 Body force per unit volume y  Vertical position 

IBF
�

 Body force per unit volume at the IB points iy  Initial vertical position 

kg  Forcing term in LB equation α  Normalized solid density difference 

g  Gravitational acceleration Γ  Solid perimeter 

xL  Tunnel width δ  Delta function 

yL  Tunnel height ε  Characteristic strip-width 

ssl  Center-to-center Distance between two solids κ  Upward net acceleration 

p  Pressure field ν  Fluid viscosity 

t  Time ρ  Fluid density 

u
�  Fluid velocity field 1sρ  Density of Solid 1 

U
�

 Fluid velocity at the IB points 2sρ  Density of Solid 2 

su  Horizontal component of solid velocity τ  Relaxation time 

sv  Vertical component of solid velocity kω  Weighting factor for unit direction in velocity space 
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