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Abstract. A major goal in the design of architected structures for low frequency vibration applications (also called mechanical 
metamaterials, metastructures, elastic metamaterials, auxetic structures) is the creation of regions in the frequency domain 
where vibration amplitudes are minimal, regardless of the source of excitation. The idea is to provide vibration suppression in 
manmade structures. The proposed effort is to examine approaches to produce straightforward methods of designing a given 
mechanical metamaterial to have a specified gap in the frequency spectrum by adjusting its local mass and stiffness values of the 
individual cells. Previous work in mechanical metamaterial design has focused on using optimization procedures concerned with 
global vibration suppression. Here our efforts are focused on frequency separation using two direct approaches by interpreting 
techniques from the areas of model updating and inverse eigenvalue solutions. Rather than examining the overall suppression of 
vibration, creating specific bandgaps eliminates the possibility of resonance occurring in a given range of excitation frequencies.  

Keywords: Inverse eigenvalue problems, model updating, frequency separation, vibration suppression, metastructures. 

1. Introduction 

Architected structures, or mechanical metamaterials, have received increasing attention since the advent of 3D printing 
allowing easy manufacturing and construction of such structures. Mechanical metamaterials as used here refers to a structure 
composed of repeated cells, each of which constitutes a vibration absorber. Fig. 1 illustrates several such mechanical 
metamaterials. The goal and type of mechanical metamaterials considered here is to arrange the internal cells to create a system 
that creates a frequency region in which little or no vibration amplitude occurs for harmonic excitations of frequency in that 
region. Borrowing language from acoustic metamaterials such regions are called bandgaps. Introductions to and reviews of 
metamaterials, mechanical metamaterials and architected structures have been recently published [1-4] capturing their main 
features, construction, and applications. The engineering application of mechanical metamaterials ranges from vehicles to civil 
infrastructures. 

 Mechanical metamaterials are artificially made structures designed to have properties not easily obtained by conventional 
structures at the macro scale. The area was originally an outgrowth of literature dealing with rearranging atoms and molecules to 
manipulate electromagnetic waves. Acousticians took the repeated lattice concept to a larger scale and applied it to creating 
regions in the acoustic spectrum where no waves would pass, leading to the concept of bandgaps. Ruzzene [5] and others took 
this approach down to the vibration scale and introduced the concept of materials that notch out low frequency spectrum 
regions where very little amplitude is transmitted, providing a solution to the age-old problem of avoiding resonance. Essentially 
the mechanical metamaterial problem can be thought of as the classic multiple vibration absorber problem as the equations of 
motion are similar, the difference being the structural configuration. The multiple absorber problem considers adding absorbers 
externally to the structure whereas the mechanical metamaterial approach is to arrange the absorber like inserts internally to the 
structure using a cell like configuration. As will be shown here, the approach has the potential to provide a solution without 
increasing the total system mass as in the case of a traditional absorber approach. Increasing the mass of a structure by adding 
traditional vibration absorbers is an issue in both ground and aerospace vehicles as it generally increased fuel consumption. The 
approach here offers an alternative by providing absorber like performance without increasing mass. 

The currently dominant method of designing mechanical metamaterials is to create bandgaps using optimization schemes to 
minimize a structures frequency response magnitude. The approach presented here is to use two different scenarios, one 
borrowed from the field of model updating and the other from inverse eigenvalue theory. 

Model updating, also called model correction, is a field that grew out of the use of vibration testing results to validate 
analytical models. The basic idea being that the differences between the analytically predicted frequencies and mode shapes and 
the measured frequencies and mode shapes would be minor and small corrections to the analytical model would result in a 
predictive model for further design and analysis. 

Inverse eigenvalue problems for second order matrix differential equations resulting from the modeling of structures using 
Newton’s Laws or Hamilton’s principal have mostly been studied in the context of mathematics [6, 7]. Inverse eigenvalue 
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problems have been used in the solution of a number of problems including pole placement and eigenstructure assignment from 
the field of control theory [8] using feedback control to obtain a more favorable response. The research reported here is to use the 
mathematics of inverse eigenvalue theory to create specific bandgaps in architected structures by examining a previously 
published metastructure solution [9] designed such that the overall mass remained constant. 

The forward problem for a linear damped structure is given the equations of motion, initial conditions and applied forces determine 
the displacement of the system. For linear, time invariant systems the solution exists and is unique. On the other hand, the inverse 
problem is given the response to the system determined the coefficients in the equation of motion. Unfortunately, the solution to an 
inverse problem may or may not exist and if it does exist, it is not necessarily unique. The inverse eigenvalue problem is given 
eigenvalues and eigenvectors reconstruct the system’s mass, damping and stiffness matrices.  

The idea of existence and uniqueness in inverse eigenvalue problems is conceptionally explained by considering a simple 
one-degree-of freedom example because it has only one eigenvalue. The inverse problem consisting of given the natural 
frequency of the system determine its mass and stiffness. Because the frequency is the square root of the stiffness k divided by 
the mass m, there is no single, unique solution to this inverse eigenvalue problem. In addition, if m and k are constrained to be 
values in certain ranges a solution may not exists. For example, if the stiffness is limited to lie between 300 N/m < k < 400 N/m, 
the mass is limited to 1 kg and the design calls for a 21 rad/s frequency, then no solution exists because the largest frequency 
available with the parameters given is 20 rad/s. When solving inverse eigenvalue problems, one must keep in mind the properties 
of existence and uniqueness of solutions. In the cases considered here, uniqueness is not as important as existence.  

2. Model Updating Approach 

Model updating (see [10] for example) is the concept that analytical models often to not faithfully reproduce measured 
frequencies. Updating methods were devised to adjust an analytical model in such a way that the updated model would 
reproduce the frequencies as measured in a vibration test. Here we use this approach to adjust the model to produce a bandgap 
defined as a range of frequencies where resonance will not occur.  

Consider an undamped mechanical metamaterial defined by the equations of motion: 

( ) ( ) 0M t K t+ =x xɺɺ  (1) 

Here M is the n x n symmetric, positive definite mass matrix, K is the corresponding n x n symmetric positive semi- definite 
stiffness matrix, and x(t) is the n x 1 vector of displacements. In order to capitalize on the symmetry properties of matrices 
consider the coordinate transformation defined by  

( ) ( )1 /2t M t−=x q  (2) 

Substitution of eq. (2) into eq. (1) and multiplying by 1/2M− yields: 

( ) ( )ˆ 0I t K t+ =ɺɺq q  (3) 

where 1/2 1/2K̂=M KM− −  is symmetric and positive definite, thus having positive real eigenvalues corresponding to the squares of 

the natural frequencies of vibration. Because of the symmetry, eq. (3) can be further transformed into a diagonal system of modal 

equations by solving the corresponding eigenvalue problem for the eigenvalues and eigenvectors of K̂ . Let i the n eigenvalues 

and ui, i = 1, 2 … n, the n eigenvectors. To complete the modal analysis, form the eigenvector matrix U = [u1  u2  u3  … un] and use 

the additional coordinate transformation q(t) =Ur(t) substituted into equation (3) and multiply by UT to get the diagonal system of 

modal equations: 

( ) ( ) 0t t+Λ =ɺɺr r  (4) 

The eigenvectors are orthonormal so that UTU = I, and the matrix  is the diagonal matrix of eigenvalues, i.e. the squares of 
the natural frequencies.  

Next, consider the n x n diagonal matrix  consisting of all zeros except where it is desired to increase the bandgap. Then 
create a new system in the modal coordinates of eq. (4) of the form: 

( ) ( ) ( ) 0t t+ Λ + Γ =ɺɺr r  (5) 

These new modal equations will have the desired gap in frequencies. However, to be useful in the application of mechanical 
metamaterials, eq. (5) needs to be transformed back into the physical coordinate system so that adjustments in the stiffness 
matrix can be made to approach the desired frequency shifts. Solving for r(t) in terms of x(t) yields: 

                    

(a) (b) (c) 

Fig. 1. Examples of several 3D printed mechanical metamaterials. Such structures can reduce the mass and increase the vibration suppression of a 
variety of engineering structures. 
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( ) ( )1/2Tt =U M txr  (6) 

Substitution of r(t) back into eq. (5) and multiplying from the left by 1/2M U yields: 

( ) ( ) ( )1 /2 1/2 0Tt t+ Λ+Γ =x xɺɺM M U U M  (7) 

Thus, the updated stiffness matrix becomes: 

( )1 /2 1 /2T
U = Λ+ΓK M U U M  (8) 

The new system ( ) ( ) 0Ut K t+ =x xɺɺM  will have a larger frequency separation (e.g. a larger bandgap) than the original system. 

2.1 Example  

Many of the initial mechanical metamaterial designs focused on identical mass and stiffness values for the absorbers and 
sought optimal values to decrease the global amplitude. Later methods allowed individual mass and stiffness values vary to find 
the minimum global displacement. In this example the mass is fixed, and the focus is on creating a range of frequencies where 
no excitation will occur, that is the creation of a bandgap. 

To mimic a repeated lattice mechanical metamaterial, consider the 5-degree-of-freedom (DOF) system given in Fig. 2 minus 
the incasing structure. Each mass and stiffness are assumed to have the same value so the equations of motion are represented 
as 

( ) ( ) ( )4

3 0 0 0 0 8 4 0 0 0

0 3 0 0 0 4 8 4 0 0

0 0 3 0 0 0 4 8 4 01 10 0

0 0 0 3 0 0 0 4 8 4

0 0 0 0 3 0 0 0 4 8

t t

   −
   
   − −   
   − −+ × =   
   − −   
   

−      

x xɺɺ   

The eigenvalues for the system given in eq. 8 are 0.3573, 1.3333, 2.6667, 4.0000, 4.9761 (rad/s)2 x 104. In Hertz these frequencies 
are: 

1 2 3 4 59.5130, 18.3776, 25.9899, 31.8310, 35.5029f f f f f Hz= = = = =   

Note that the gap between the third and fourth frequencies is f4 - f3 = 5.8411 Hz. Next chose a set of adjustments in the 
eigenvalues with the goal of producing a larger gap between these two frequencies. In this case, the following numbers are 
chosen to decrease 3 and increase 4: 

3 40.666 and 0.5λ λ∆ =− ∆ =   

in an attempt to make a larger gap between the 3rd and 4th frequency. Note that no attempt is made to change the 1st, 2nd and 5th 
eigenvalues although they will change as the result of coupling. Referring to eq. (8), the correction matrix becomes 

0 0 0 0 0

0 0 0 0 0

0 0 0.666 0 0

0 0 0 0.5 0

0 0 0 0 0

 
 
 
 
 −Γ =  
 
 
 
  

  

Following the steps outlined in eq. (7) to compute the required stiffness, the modified system results in the following set of 
frequencies:  

1 2 3 4 59.513, 18.3776, 22.5117, 33.7619, 35.5029f f f f f Hz= = = = =   

The change in frequency between f3 and f 4 is originally f 4 - f 3 = 5.84 Hz while the gap in the updated system (f 4 - f 3)new = 11.25 
Hz, a 93% increase.  

Unfortunately, the new value of the stiffness matrix when transformed back into the physical coordinate system, while still 
symmetric loses its connectivity. In this case it becomes:  

4

7.7090 4.3750 0.6660 0.3750 1.0410

4.3750 8.3750 4 0.3750 0.3750

0.6660 4 7.3340 4 0.6660 10

0.3750 0.3750 4 8.3750 4.3750

1.0410 0.3750 0.6660 4.3750 7.7090

UK

 − −
 
 − − − 
 − −= × 
 − − − 
 
− −  

  

 

Fig. 2. A representation of a repeated lattice structure as a series of springs and masses. 



2087 Daniel J. Inman and Aishwarya Gunasekar, Vol. 7, No. 4, 2021 

 

Journal of Applied and Computational Mechanics, Vol. 7, No. 4, (2021), 2084–2095   

Unfortunately, this stiffness matrix does not correspond to the physical connectivity of the original stiffness matrix, which is 
banded. In an attempt to translate this to a physical system the off band elements are set to zero to produce: 

4

7.7090 4.3750 0 0 0

4.3750 8.3750 4 0 0

0 4 7.3340 4 0 10

0 0 4 8.3750 4.3750

0 0 0 4.3750 7.7090

UCK

 −
 
 − − 
 − −= × 
 − − 
 

−  

  

The corresponding frequencies become 

1 2 3 4 57.9931, 17.5657, 25.2804, 32.3958, 35.6973f f f f f Hz= = = = =   

Note that in this case all of the frequencies have shifted some. The new band gap between the 3rd and 4th frequency is also 
reduced to 7.1154 Hz but is still a 28% increase in gap compared to the original frequencies. In this case, KUC indicates how the 
stiffness values of the absorbers can be adjusted to improve the bandgap. Thus, while this is not an ideal approach, it does 
produce a physically realizable solution capable of being constructed. 

However most systems have damping. In particular most experimental examples of metastructures are 3D printed [5] and 
most 3D printers use polymers. Of course, polymers introduce damping. To include damping in the above analysis, the equations 
end up having to be decoupled complicating the expressions. Thus, a second method is proposed taking advantage of inverse 
eigenvalue analysis set forth by Starek [11]. 

3. Inverse Eigenvalue Approach  

To distinguish between the inverse approach and the above updating approach the vibration problem of interest is defined in 
terms of the following matrix equation of motion: 

( ) ( ) ( ) 0M t C t K t+ + =x x xɺɺ ɺ  (9) 

Here the matrices M, C and K are the symmetric positive definite n x n mass, damping and stiffness matrices respectively, x(t) 
is the n x 1 vector of displacements and the over dots denote differentiation with respect to time. Multiplying by the inverse of 
the mass matrix yields: 

( ) ( ) ( ) 02 3I t H t H t+ + =x x xɺɺ ɺ  (10) 

where the matrix I is the identity matrix, 1 1
2 3 and H M C H M K− −= = . Equation (10) has associated Lambda Matrix or second order 

matrix polynomial [7]: 

2
2 3( ) ( ) 0λ λ λ= + + =x xL I H H  (11) 

Here x is a right eigenvector, complex valued for underdamped systems [12], and y where yL() = 0 is the left eigenvector. The 
scalars  are the complex eigenvalues taking on the form 

2
1, 1i i i i i i iλ λ ζ ω ω ζ+ =− ± −  (12) 

Here i is the ith natural frequency, i is the ith modal damping ratio and 1i= − . Likewise, the frequencies and damping 

ratios are determined from the complex values of  by 

2 2

2 2

Re( )
Re( ) Im( ) ,    

Re( ) Im( )

i
i i i i

i i

λ
ω λ λ ζ

λ λ

−
= + =

+
  i = 1, 3, ….2n-1 (13) 

The state space formulation for eq. (10) is 

3 2

0
( ) ( ),   ,   

I
t A t A

H H

   
   = = =
   − −   

x
z z z

x
ɺ

ɺ
 (14) 

Equations (13) and (14) provide an easy route to numerical calculation of the mode shapes, natural frequencies and damping 
ratios for a damped system. A second form of the state equations can be formed by pre-multiplying eq. (14) by the matrix N 
defined by 

2

0

H I
N

I

 
 =
 
 

  

This forms the equation 

3 0
( ) ( ) 0,  where 

0

H
N t P t P

I

 −
 − = =
 
 

v vɺ  (15) 

The eigenvalue problems for eqs. (14) and (15) are 

( ) 0,   0A Iλ− = ≠z z  (16) 

and  

( ) 0,   0P Nλ− = ≠v v  (17) 



Frequency Separation in Architected Structures using Inverse Methods 2088 
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 4, (2021), 2084–2095 

This last expression is a first order matrix pencil and is sometimes used for numerically ill conditioned state matrices. Here 
however, the matrix pencil provides the key to solving the inverse eigenvalue problem. Both eqs. (16) and (17) will yield the same 
eigenvalues and eigenvectors when solved. Thus eqs. (11), (16) and (17) are three ways to solve for the same thing. Also note that 
x, z, v and  are in general all complex numbers for an underdamped system. 

Using the various eigenvectors the following matrices can be constructed: 

[ ]

[ ]

[ ]

1 2 2

1 2 2

1 2 2

,    which is 2

,    which is 2 2

,    which is 2 2

n

n

n

X n n

Z n n

V n n

= ×

= ×

= ×

x x x

z z z

v v v

⋯

⋯

⋯

 (18) 

In addition, the eigenvalues can be collected into the 2n x 2n diagonal matrix 

1

1

2

0 0

0 0

0 0 n

λ

λ

λ

 
 
 
 Λ =  
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (19) 

Using the four matrices X, Z, V and , the three eigenvalue problems of interest can be written as: 

2
2 3 0X H X H XΛ + Λ+ =  (20) 

AZ Z= Λ  (21) 

PV NV= Λ  (22) 

The matrix of physical eigenvectors X and the matrix of state space eigenvectors Z are related by: 

i

i
i i

X
Z

Xλ

   
   = ⇒ =
   Λ   

x
z

x
 (23) 

Left eigenvectors satisfy the equation T TW A W= Λ  where the columns of the matrix W are the left eigenvectors of the matrix 
A. The left eigenvectors can be computed directly in a code (such as the Matlab command ([Z, D, W] =eig(A)) or from the formula 
relating the left and right eigenvectors: 

( ) [ ]1
1 2 2

T

nW Z−= = w w w⋯  (24) 

Thus, WTZ=S-1Z=I, and 

T TW A W= Λ  (25) 

Obtaining the left eigenvectors in the physical space (i.e. for L()) requires a bit of manipulation. To that end, define the 
nonsingular matrix Q by: 

1 1   so that  Q Z N QNZ I− −= =  (26) 

Next define the product matrix B1 by 

2 31 1 1
1

3 2 2 2

0 0 0

0

H I I I H
B NAN NZ Z N

I H H I H I H
− − −

       −
       = = Λ = =
       − − − −       

 (27) 

Recognizing that Q=NZ, B1 can be written as 

1 1 1 1
1B NAN NZ Z N Q Q− − − −= = Λ = Λ  (28) 

Partitioning of Q into two 2n x n matrices Q1 and Q2 such that Q = [Q1 Q2], allows the first partition to be calculated from 

1 1 1
1

0 0

0 0
T T

I I
Q Q Z N Z W Y

I I
− − −

       
       = = = = =
       
       

 (29) 

Here the matrices I and 0 are both n x n and Y is the matrix of left eigenvectors of the physical system. Solving for Q2 in a 

similar way yields that Q2 = Q1. Thus, the matrix Q takes on the form 

T TQ Y Y = Λ    (30) 

With these various matrices and partitions, inverse eigenvalue problems can be formulated in such a way as to represent the 
coefficient matrices in terms of the partitioned sets of eigenvectors and eigenvalues. From eq. (26), the matrix Z-1 can be written 
as 

21
20

T T T T T
H I

Z QN Y Y Y H Y Y
I

−
 

    = = Λ = +Λ       
 

 (31) 

This relationship along with eq. (21) in the form A = ZZ-1 can be expressed as 

1
1 1

2 1
3 2

0X IX Z
Z Z Z

X H HX Z

−
− −

−

    Λ    Λ = Λ = =    Λ − −Λ    
 (32) 
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Replacing Z-1 in eq. (22) with its formulation given in eq. (31) yields: 

2

2 2
3 22

0( )

( )

T T T

T T T

IX Y H Y X Y

H HX Y H Y X Y

   Λ +Λ Λ   =   − −Λ +Λ Λ   
 (33) 

Equating the four partitions of the left side to those in the right side yields the inverse eigenvalue solution (put forth by 
Starek, [11]). They are 

2( ) 0,          T T TX Y H Y X Y IΛ +Λ = Λ =  (34) 

and  

2 2
2 3 2  and     ( )T T TH X Y H X Y H Y=− Λ =− Λ +Λ  (35) 

Combining these 4 equations into three yields that the coefficient matrices are determined by 

2
22

2 3
3 2

T

T

H X Y

H H X Y

=− Λ

= − Λ
 (36) 

where the modal eigenvectors are normalized according to 

TX Y IΛ =  (37) 

The diagonal matrix  contains the complex eigenvalues represented in terms of the natural frequencies and damping ratios 
as given in eq. (13). 

4. Eigenvalue Separation by Inverse Equations 

In this section the inverse eigenvalue problem is modified by partitioning the inverse formulas into those eigenvalues 
corresponding to resonances that are acceptable and those that are not acceptable. Consider the diagonal matrix of eigenvalues 

, and segregate the eigenvalues into those to be kept and those to me moved. Then, partition these into two groups arranged in 
the form: 

1

2

0

0

 Λ
 Λ =
 Λ 

 (38) 

At the same time move and partition the associated right eigenvectors of the physical system X, and the matrix of left 
eigenvectors Y corresponding to the moved eigenvalues denoted 

[ ] [ ]1 2 1 2  and   X X X Y Y Y= =  (39) 

Here the subscript 1 denotes those eigenvalues that are to be kept and the subscript 2 indicates the replacement eigenvalues 
chosen to insure the desired bandgap. Substitution of the partitioned matrices of eqs. (38) and (39) into eqs. (36) and (37) yields: 

( )

( )

2 2
2 1 1 1 2 2 2

2 3 3
3 2 1 1 1 2 2 2

1 1 1 2 2 2

T T
c

T T
c c

T T

H X Y X Y

H H X Y X Y

I X Y X Y

=− Λ + Λ

= − Λ + Λ

= Λ + Λ

 (40) 

Here the n x n “corrected” coefficient matrices H2c and H3c are related to the physical matrices of eq. (9) by 2cC MH=  and 

3cK MH= . In principle this set of damping and stiffness matrices along with the original mass matrix will produce a system with 

the desired separation in frequencies, and hence the desired bandgap. By comparing these new damping and stiffness matrices 

to the original matrices can provide insight into how to arrange the absorbers in a structural metamaterial. 

4.1 Example 

This example illustrates the procedure as well as the fact that there is no guarantee that the newly constructed matrices 
retain the same physical connections corresponding to the original device. A low order model is again used to illustrate the point. 
Consider the following system: 

1 1 1

2 2 2

3 3 3

4 4 4

4 0 0 0 3 2 0 0 4 3 0 0

0 6 0 0 2 5 3 0 3 5 2 0

0 0 8 0 0 3 7 4 0 2 5 3

0 0 0 2 0 0 4 4 0 0 3 3

x x x

x x x

x x x

x x x

           − −
           
          − − − −          + +          − − − −          
          − −                     
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
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
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The natural frequencies are: f1 = 3.0346 Hz, f2 = 10.4270 Hz, f3 = 19.7024 Hz, and f4 = 22.2831 Hz. Suppose it is desired to have a 
bandgap that prevents resonance from 0 to 9 Hz. To remove the 3 Hz frequency, chose a new eigenvalue, say 1,2 = - 0.002 + 0.6i 
corresponding to a natural frequency of 9.5 Hz. Following the procedure outlined above in eq. (40) the new damping and stiffness 
matrices become: 

2 3

3.1117 1.7658 0.3353 0.0850 4.1332 2.7432 0.4189 0.1073

1.6388 5.7328 1.8948 0.2815 2.7432 5.4949 1.1927 2.2068
,  

0.4440 2.0847 8.3460 3.6579 0.4189 1.1927 6.3

0.1174 0.2414 3.6438 4.0906

c cH H

 − −
 
 − − − − − − = = − − − 
 −  

170 2.6626

0.1073 2.2069 2.6625 3.0865

 
 
 
 
 − 
 − −  
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Fig. 3. Drawing of the mechanical metamaterial pictured in Fig. 1c, showing the host structure and the structure as printed with 10 absorbers. 

 

Fig. 4. A lumped mass model of the mechanical metamaterial of Figs. 1c and 3. The large masses labeled, m, and stiffnesses, k, model the host 
structure. The absorbers are the masses mi and stiffness ki. 

The resulting natural frequencies become f1 = 9.5493 Hz, f2 = 10.4270 Hz, f3 = 19.7024 Hz, and f4 = 22.2831 Hz. Thus, there will be 
no resonance for any harmonic input with frequency between 0 and 9 Hz and the remaining 3 natural frequencies remain 
unchanged. 

Unfortunately, the solution to this example has lost symmetry in the damping matrix and along with the stiffness matrix is 
no longer banded indicating that the solution although it exists mathematically may not be physically realizable. It is possible in 
some situations to find a transformation to a symmetric form [13] and new connections may be found to agree with the 
numerical solutions. However, additional assumptions provide a way forward as described in the following section. 

5. Lightly Damped Solution 

The inverse problem approach of Section 3 can be improved by adding constraints or additional assumptions provided the 
existence of solution is not violated. Here we assume small proportional damping. This allows us to use real eigenvectors 
consisting of the normal modes of the undamped system which we chose to remain unchanged as the metamaterial is updated. 
This essentially is akin to solving a pole placement problem in control theory by using an inverse approach. Thus, in the 

formulation outlined in the previous section, the vectors xi remain unchanged and only the diagonal matrix of eigenvalues, , is 
changed to accommodate the desired bandgap. While the matrix, X, of right eigenvectors remains unchanged, its columns are 

rearranged to agree with the partitioning of . Likewise, the matrix of left eigenvectors, Y, is also partitioned accordingly. This set 
of assumptions also allows us to develop a solution that results in a symmetric stiffness and damping matrix, which has a better 
chance of producing a physical solution. The total mass is also held constant. The following two examples illustrate the 
procedure.  

5.1 Examples 

Two examples are presented in this section to illustrate the modified inverse eigenvalue approach for lightly damped 
structures. The examples are simple models of the 1-dimensional mechanical metamaterial depicted in Fig. 3 and printed as 
pictured in Fig. 1c. Note that the block masses pictured on the right in Fig. 3 move back and forth in the direction of the arrow. 
The small attachment beams are stiff in the transverse direction by flexible and spring like in the longitudinal direction. 

The longitudinal vibrations of the system of Fig. 3 are modeled as illustrated in Fig. 4. The first example is a low order system 
presented to illustrate the procedure while the second example is for the system of Fig. 3. Consider a host structure with just 
three masses and two absorber masses all connected in series. While not a good mechanical metamaterial example, the low 
order allows an easy display of the results. The host structure is assumed to have the following mass and stiffness matrices: 

7

1.990 0 0 2.364 1.1820 0

0 1.990 0 , 1.1820 2.364 1.1820 10

0 0 1.990 0 1.1820 1.1820

M K

   −
   
   = = − − ×   
   −   

  

 
The proportional damping matrix is given by C = 10-5K. The units are kg, N/m and Ns/m and the resulting natural frequencies 

are in Hz are f1 =545.9, f2 =1,529.5, and f3 =2,210.3. 
Adding absorbers to the first and second mass results in the 5 degree of freedom system. The metastructure design given in 

[9] is used to keep the total mass constant and minimizes the H2 norm of the frequency response. The resulting mass and 
stiffness matrices become: 

0.1393 0 0 0 0 2.4693 1.1820 0 0.1053 0

0 0.1393 0 0 0 1.1820 2.4693 1.1820 0 0.1053

0 0 0.1393 0 0 0 1.1820 1.1820 0 0, 10

0 0 0 0.0895 0 0.1053 0 0 0.1053 0

0 0 0 0 0.0895 0 0.1053 0 0 0.1053

M K

   − −
   
   − − −   
   −= = ×   
   −   
   

−      
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The damping matrix is again C = 10-5K. The new frequencies become (in Hz) 

1 2 3 4 5456.2,  536.2,  769.0,  1,865.7,  and 2,675.4f f f f f= = = = = .  

The design shifts the frequencies either side of the fundamental frequency of the host structure creating a bandgap of 107 Hz.  
Next the inverse eigenvalue approach is applied to create a larger bandgap and completely eliminate any resonance between 

0 and 600 Hz. The concept is to change the first two natural frequencies to 600 and 700 Hz respectively. Using eqs. (12) with these 
new natural frequencies, the new eigenvalues become 

1,2 3,470 3770   and 95 4399i iλ λ=− ± =− ±   

Using these new eigenvalues and the original eigenvectors from the constant mass solution and following the steps outlined 
in eqs. (40) yields the following new stiffness and damping matrices (note the mass stays constant): 

7

2.4719 1.1780 0.0044 0.0973 0.0070 247.1815

1.1780 2.4736 1.1743 0.0070 0.0897

0.0044 1.1743 1.1905 0.0076 0.0174 10 ,

0.0973 0.0070 0.0076 0.1699 0.0125

0.0070 0.0897 0.0174 0.0125 0.1546

K C

 − − −
 
 − − − 
 −= × = 
 − − 
 

− −  

117.8166 0.4240 9.7615 0.6744

117.8166 247.6055 117.4573 0.6744 9.0224

0.4240 117.4573 119.0226 0.7391 1.6792

9.7615 0.6744 0.7391 16.7104 1.1753

0.6744 9.7915 1.6792 1.1753 15.2694

 −
 
 − − − 
 − 
 − − 
 

− −  

  

With these adjusted coefficient matrices, the new natural frequencies (in Hz) become: 

1 2 3 4 5600.1,  700.3,  769.0,  1,865.7,  and 2,675.4f f f f f= = = = =   

Note that the resulting system has the desired 0 to 600 Hz frequency gap and the remaining three frequencies remain 
unchanged. Also note that the new system retains symmetry in the stiffness and damping matrix, but the physical connections 
have not been retained. To see the visual difference in bandgap between the three different designs, the frequency response of 
the tip displacement divided by the tip excitation is plotted for all three cases in Fig. 5. Note that the inverse approach has 
improved the bandgap substantially compared with both the base structure and the optimized structure given in [8] with not 
additional increase in mass. 

The frequency response plots are made by using the modal information to compute the receptance matrix, , given by 

( ) ( )2 2
1 2

Tn
k k

ij
k k k k

α
ω ω ζ ω ω=

 
  =

− +
∑

u u
  

Here i is the output location, j is in coordinate were the driving force of frequency  us applied, k is the kth natural frequency and 
uk is the kth right eigenvector. 

Because the chosen bandgap is between 0 and 600 Hz, one would also expect the impulse response to be improved by the new 
design. The impulse responses for the three systems to the same unit impulse are plotted in Fig. 6. Comparing the three plots 
shows that the impulse response is also improved. The inverse approach results in a response that has a lower settling time and 
lower amplitudes than the other two designs.  

 

 

Fig. 5. The frequency response of the tip displacement divided by the force applied at the tip for the three cases of the base structure (dashed blue 
line), the constant mass mechanical metamaterial from [8] (the red line) and the bandgap solution presented here (the yellow line).  
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Fig. 6. The impulse responses of the 3 mass 2 absorber system showing that the system with the largest bandgap designed by the inverse 
eigenvalue method has a shorter settling time and lower overall deflection than either the host or the mechanical metamaterial design by 

optimization. 

 

Fig. 7. The frequency response of the tip displacement divided by the force applied at the tip for the three cases of the base structure (dashed blue 
line), the constant mass mechanical metamaterial from [8] (the red line) and the bandgap solution presented here (the yellow line). 

Next consider the ten degree of freedom model suggested in [9] as a base structure with 10 absorbers added, presenting a 
reasonable model of the longitudinal mechanical metamaterial pictured in Fig. 1c and Fig. 4. The system was designed to reduce 
the magnitude of the tip deflection by minimizing the H2 norm of the response which is equivalent to minimizing the total 
energy. The system was also designed to keep the mass of the original structure constant so that the base structure (no 
absorbers) and the mechanical metamaterial with absorbers have the same mass. Essentially this represents designing a 
structure to have better vibration suppression properties by redistributing its mass. The analytical model given in [8] was 
experimentally validated and is used here as a starting point. We start with the H2 solution and apply the proposed inverse 
method to create a specific bandgap designed to avoid resonance between 0 and 900 Hz. Fig. 7 shows the resulting frequency 
response functions (FRF) of all three systems: base structure, H2 design (labeled “Metastructure”) and the bandgap design (labeled 
“Corrected Metastructure”). Note the large low frequency bandgap in the inverse solution along with the much lower amplitude 
compared with the baseline solution and optimized solution presented in [9].  
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Fig. 8. The impulse response of the system with a 900 Hz bandgap. 

 

Fig. 9. The impulse responses of all three versions. 

The fundamental frequency of the base structure is 613.8 Hz. The effect of the metastructure design was to split this first 
peak into two peaks a 501 Hz and a second peak at 901.8 Hz. To obtain the desired bandgap between 0 and 900 Hz the first two 
frequencies need to be changed. These were changed to 900 Hz and 1000 Hz by replacing the first four eigenvalues (first two 
frequencies) with 

( )

( )

1,2 1 1

3,4 2 2

70 5,655 5656 rad/s 900 Hz 0.0159

115 6,280 6282 rad/s 1000 Hz 0.0199

i f

i f

λ ζ

λ ζ

=− ± ⇒ = = =

=− ± ⇒ = = =
  

These new values produced the 0 to 900 Hz bandgap illustrated in Fig. 7 without adding mass. While the impulse response of 
the bandgap structure was not the focus of the research it is of interest to note that the impulse response is also improved by the 
shifting of resonance away from zero. The impulse response for the system designed by the inverse method corresponding 900 
Hz bandgap is plotted in Fig. 8. Note the beating behavior in the impulse response which is the result of the repeated frequencies 
of the added absorbers. Figure 9 superimposes the impulse responses of all three structures. The baseline response is represented 
by the blue dashed line, the constant mass metastructure response is represented by the red line and the black line is the repeat 
of Fig. 8 of the structure with a 900 Hz bandgap. Note that the settling time, i.e., the time for the system to approach zero 
response is shortest (about 0.05 sec) for the system with the large bandgap compared to about 0.07 sec for the base structure. The 
peak amplitudes are also reduced. 
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In addition to providing a shorter settling time for the impulse response, note in Fig. 9 that the magnitude of the response is 
clearly lower for the system with the large bandgap. This is because the bandgap chosen was to strike out the low frequency 
response and an impulse response excites mostly the low frequency modes. Unlike traditional vibration absorber systems which 
add substantial mass to a structure, the approach outlined here does not add any mass to the system, but rather redistributes 
mass and adjusts stiffness to provide substantial vibration suppression and avoid resonance. 

6. Conclusion  

Two methods of creating bandgaps in architected structures have been presented to directly obtain specified gaps. The idea is 
to specify a specific range of frequencies through which an architected structure will not exhibit resonance. The first method was 
to mimic the method of model updating taken from the discipline of vibration testing and focused on an undamped system. The 
second technique employs elements of inverse eigenvalue theory which allows a given mechanical metamaterial design to be 
altered to have a bandgap in its frequency spectrum corresponding to excitation frequencies to be avoided. By employing an 
earlier theory of inverse eigenvalue solutions, fixing the mode shapes and assuming proportional damping, the inverse result 
produces real symmetric matrices. Several examples are given to illustrate the procedure as applied to a model of a mechanical 
metamaterial which was previously validated by experiments.  

While the design proposed here focused on bandgaps in the frequency response, impulse responses were also plotted 
revealing that in general the structure with a significant bandgap produced an impulse response with lower overall displacement 
and faster settling times compared to both the original structure and the previously designed mechanical metamaterial. The 
original metastructure designed in [9] solved a unique problem because it did not involve increasing the mass of the original 
structure. Typical absorber type solutions require a mass increase of up to 25%. Traditionally the mass ratio of absorber mass to 
primary mass varies from 0.05 to 0.25 such that the larger the mass ratio the broader the frequency band of absorption. The 
design proposed here increased the bandgap of absorption substantially, again without any increase in mass by combining the 
results of [9] with inverse eigenvalue theory set forth in [11], modified by assuming normal mode solutions via proportional 
damping.  

There are several issues which remain to be solved using this technique and these were pointed on and summarized here. 
First there is no general existence or uniqueness of solution for inverse problems. While uniqueness is not too much of an issue 
for a designer, as it can lead to search for an optimal solution, existence is important to understand when using the technique. As 
shown by example physical constraints on mass and stiffness values may render the mathematical solution to the bandgap 
problem physically unrealizable. That is, the solution may require stiffness or mass values out of the range of possibility for a 
given application. The second issue is that while the procedure presented here produces symmetric matrices, the physical 
connections of the original problem can be lost. For the example given the original equations of motion render the stiffness 
matrix and damping matrix banded, but the inverse solution’s matrices are not banded. This means that to be able to physically 
print a mechanical metamaterial with the given properties new connections between masses by adding additional springs must 
be added, and these may or may not be possible. The approach outlined here solves the usual problem with designing vibration 
absorber solutions to remove resonance problems by avoiding adding mass and being able to specify exact ranges of frequencies 
where no resonance will occur.  
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Updated stiffness matrix 
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Corrected stiffness matrix 
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