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Abstract: In this article, the nonlinear vibrational behavior of a nano-disk was analyzed using the multiple scales method (MSM). 
The modified couple stress theory was used to consider the small-scale effect via the application of nonlocal parameter. 
Employing Hamilton's principle, two coupled nonlinear differential equations were derived based on the nonlinear von-Kármán 
strain-displacement relation and the classical plate theory. The Galerkin-based procedure was utilized to obtain a Duffing-type 
nonlinear ordinary differential equation with a cubic nonlinear term and solved by the application of MSM. The effects of 
nonlocal parameter, aspect ratio, different boundary conditions, and the nonlinear shift frequencies, were obtained on the overall 
behavior of the nano-disk. Results indicate that increasing the central dimensionless amplitude of the nano-disk, the nonlinear 
frequency, and the shift index exhibit an increasing behavior, while the increase in the non-dimensional nonlocal parameter, 
causes a decrease in the nonlinear frequency ratios and the shift index. Additionally, the increase in h/r increases the effect of 
dimensionless central amplitude on the nonlinear frequencies ratios. Additionally, comparison of the current results with those 
previously published in the literature shows good agreements. This indicates that the MSM can ease up the solution, and hence, 
can be applied to the solution of nonlinear nano-disks with high accuracy.  

Keywords: Multiple scales method; modified couple stress theory; nano-disk; nonlinear vibration. 

1.   Introduction 

Nanotechnology is defined as designing, characterizing, producing, and applying structures, devices, and systems by 
controlling shape and size at the nanoscale. It utilizes all the conventional scientific and engineering subjects to accomplish 
novel applications using phenomena where small size is the best way to achieve a helpful property. The physicist Richard 
Feynman first put it forward. 

One of the well-known and widely utilized nanostructures in the industry is nano-disk, especially those in micron and sub-
micron sizes, which are of practical concern in several NEMS devices, including oscillators, clocks, sensors micro-gyroscopes (Tsai 
et al., [1]; Tsai et al., [2]; Tsai et al., [3]), and micro-motors (Lee et al., [4]). One of the essential photonic devices is a nanoscale 
refractive index sensor with a nano-disk resonator, which is frequently utilized in biosensors (Dolatabady et al., [5]). Besides, 
several attempts have been performed to monitor the biological behavior of nanoparticles. In this regard, many studies have been 
conducted on safer imaging agents for biomedical applications (Zhang et al., [6]), focusing on nano-disks and nano-spheres. 
Furthermore, micro/nano-disks are widely utilized in resistive switching phenomena (Hwang et al., [7]), cell structures (Horejs et 
al., [8]), solar cells (Hägglund et al., [9]; Huang et al., [10]), nano-disk array electrodes (Ito et al., [11]; Ito and Perera, [12]; Luo and 
White, [13], lasers (Chin et al., [14]; Cao et al., [15]; Van Campenhout et al., [16]; Kwon et al., [17]), and sensors (Cho and Jokerst, 
[18]). 

Three experimental, molecular dynamics simulations and continuous environment theory methods are utilized to investigate 
nanostructure behavior because of their small size. Experimental methods in the nanoscale are very costly and challenging to 
execute. The molecular dynamics (MD) simulation is time-consuming and incapable of dealing with large-size nanostructures 
because it is restricted to structures with fewer molecules and atoms. Accordingly, utilizing several continuum theories have been 
suggested in the last decade owing to the fact that the classical continuum theories cannot predict the small-scale effect. 
Therefore, many higher-order theories have been developed to predict the size effect in the nanostructures, including the strain 
gradient theory, (Aifantis, [19]; Anjomshoa and Tahani, [20]; Sedighi, [21]; Koochi, [22]), Mindlin’s strain gradient theory (Mindlin 
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and Eshel, [23]), couple stress theory (Toupin, [24]), modified couple stress theory (Yang et al., [25]), nonlocal elasticity theories 
(Eringen, [26]; Eringen, [27]; Eringen, [28]; shishesaz et al., [29]; shishesaz et al.,[30]; Barretta et al., [31]; Demir et al., [32]; Malikan 
[33]) peri dynamic theory (Chen et al., [34]; Diyaroglu et al., [35]; O’Grady and Foster, [36]); stress-driven nonlocal theory (Barretta et 
al., [37]; Barretta et al., [38]; Barretta et al., [39]). 

For example, in the study by (Romano et al. [40]), the nonlocal elasticity was addressed in the context of geometrically 
linearized structural models. Two iterative solution methods for the stress-driven and mixture strain-driven models were 
introduced. The iterative procedure for the stress-driven models yields the exact solution just at the first step of the iteration. The 
iterative solution relevant to the mixture strain-driven models do not exhibit such property, yet, convergence is always 
asymptotic and fast. Apuzzo et al. (Apuzzo et al., [41]) analyzed the axial and torsional free vibrations of elastic nano-beams by 
stress-driven two-phase elasticity. 

The modified couple stress theory has been frequently utilized to analyze the size-dependent mechanical responses of 
micro/nanostructures with reasonable accuracy. Based on the results, the theory is consistent with the experimental results than 
the Eringen's nonlocal elasticity (Miandoab et al., [42]), where, unlike the classical couple stress theory, the couple stress tensor 
includes one material length scale parameter related to the symmetric rotation gradient tensor.  

So far, this theory has been utilized to investigate the static and dynamic behaviors of nanostructures. For example, (Asghari 
et al., [43]) have studied the size-dependent Timoshenko beams based on the couple stress theory. The thermoelastic behavior of 
nano-sized film/substrate multilayers with poor interfaces and size-dependent characteristics has also been studied using this 
theory (Liu and Chen, [44]). In a study by Baghani (Baghani, [45]), the length scale parameter of silicon has been identified by 
fitting the pull-in voltage of several micro-beams utilizing modified couple stress theory. In a study by Akgöz and Civalek (Akgöz 
and Civalek, [46]), thermo-mechanical size-dependent buckling of embedded functionally graded (FG) microbeams has been 
examined using the sinusoidal shear deformation beam and modified couple stress theories. Pal and Das (Pal and Das, [47]) 
formulated the motion equation and boundary conditions for a rotary functionally graded annular microsystem through modified 
couple stress theory, Kirchhoff theory, and Hamilton's principle. In the study by Shaat et al. (Shaat et al., [48]), the size-dependent 
bending of Kirchhoff nano-plates has been analyzed using a modified couple stress theory. Besides, 'micro shells' dynamic and 
stability behaviors have been analyzed using a modified couple stress theory and different shell theories. (Veysi et al., [49]; 
Jouneghani et al., [50]). 

The modified couple stress theory has been applied in several works to study vibration in nanostructures, including 
nanotubes, nano-beams, nano-plates, and nano-shells. For example, the nonlinear dynamics of circular microplates were 
analyzed asymmetrically by Wang et al. (Wang et al., [51]). Karamanli (Karamanli and Aydogdu, [52]) has studied the vibration 
information of a laminated micro-beam concerning the effects of physical parameters on structural stability. Ghadiri and Shafiei 
(Ghadiri and Shafiei, [53]) have analyzed the vibration in rotating functionally graded Timoshenko micro-beam, utilizing the 
modified couple stress theory under different temperature distributions. Ghadiri and SafarPour (Ghadiri and SafarPour, [54]) 
analyzed the free vibration characteristics of functionally graded porous micro-shell in the thermal environment using the first-
order shear model and modified couple stress theory. Malikan et al. (Malikan et al., [55]) analyzed Buckling of a Micro Composite 
Plate with Nano Coating Based on the Modified Couple Stress Theory. Consequently, the modified couple stress theory is of great 
importance in qualifying the mechanical responses of small-scale structures.   

Natural frequencies and other nonlinear dynamic properties play an essential role in designing and analyzing different 
nanostructures like nano-plates, nano-beams, and nano-shells. For this, wide research attention has been paid to the nonlinear 
analysis of nanostructures in recent years. For example, the nonlinear free vibration of isotropic single-layer nano-plates was 
analyzed by (Jomehzadeh and Saidi, [56]) utilizing nonlocal elasticity theory. The nonlinear forced vibration of isotropic and 
classical nano-plates, which were based on simple supports and followed the theory of nonlocal elasticity, was studied by He et al. 
(He et al., [57]). In the study performed by Zhang et al. (Zhang et al., [58]), the nonlinear vibrations of rectangular graphene nano-
sheet were investigated  

It isn't easy to find an exact solution to the nonlinear vibration in nanostructures, so it is possible to use an approximate 
analytical approach or numerical technique to this end. The multiple-scale method (MSM), as a powerful and efficient analytical 
technique, has been applied to engineering dynamics problems and to study the vibration in nanostructures, to solve highly 
nonlinear problems, for example, Foda (Foda, [59]) utilized MSM to analyze the nonlinear vibrations in a beam having pinned ends 
concerning the effects of shear deformation and rotary inertia. Ramezani et al. (Ramezani et al., [60]) utilized the same method for 
the same problem based on the boundary conditions for a double clamped beam. They found that shear deformation and rotary 
inertia effects need to be considered for an accurate dynamic analysis when the beam theory is utilized to analyze the 
micro/nano-electromechanical structures. EL- dib et al. (El-Dib et al., [61]) analyzed Stability of a Strongly Displacement Time-
Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method. 

The present study aims to study the nonlinear free vibrational behavior of a nano-disk. The differential equations are derived 
based on the modified couple stress theory and the Hamilton principle, while the inertial and shear stress effects were ignored. 
For this purpose, the equation of motion is discredited utilizing the Galerkin weighted residual method. The transverse 
displacement is expressed in terms of finite series of basic functions, namely the linear free vibrational mode shapes described in 
terms of Bessel's functions. The nonlinear time variable equations are eliminated utilizing the Galerkin method, and then, using 
MSM, the natural nonlinear frequencies are extracted. A comparison with the relevant literature confirms this approach's validity. 
The following sections in this study discuss the numerical results, including the effects of nonlocal parameters, aspect ratios, 
different boundary conditions, and nonlinear shift frequencies on the nano-disks' overall behavior. Finally, the results can 
function as a profound guiding foundation for designing nano-motors, nano-rotors, and other rotary nano-structures. In most 
studies, the nonlinear vibrations of the nano-structures, as well as the nonlinear natural frequencies have been studied only in 
one main mode due to the complexity of the calculations. In the present article, however, nonlinear frequencies are explored and 
analyzed in several modes using the unique method presented. 

2.   Modified Couple Stress Relations  

The modified couple stress theory is one of the widely utilized size-dependent continuum theories proposed by Yang et al. 
(Yang et al., 2002 [25]). The classical couple stress theory contains two classical and two additional material constants for isotropic 
elastic materials. The two additional constants are related to the material's underlying nanostructure and are inherently difficult 
to determine. Yang proposed the modified couple stress theory involving only one additional material length scale parameter. 
This feature makes the modified couple stress theory easier to utilize. Based on this theory, the strain energy density is a function 
of both strain and gradient of rotation vector. 

Based on this theory, the elastic potential energy is in the following form: 
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( )1
: :

2
σ ε δχ= +∫

V

U m dv  (1) 

where the strain tensor ε and the symmetric part of the curvature tensor χ can be written as; 

( )1
2

ε  = ∇ + ∇  
T

u u  (2) 

( )1
2

χ ω ω=  ∇ + ∇  
T

 (3) 

Here, u is a displacement vector andω is the rotation vector defined as: 

( )1
2

ω = curl u  (4) 

Two states of stress are described by the stress tensor ,σ and the deviatoric part of the couple stress tensor m is given as 
follows: 

( ) 2σ λ ε δ µε= +tr  (5) 

22 µχ=m l  (6) 

In the above equations,λ and µ are Lamé’s constants, l is the material length-scale parameter regarded as a material property 
characterizing the effect of couple stress.  

This model has only one additional material length scale parameter and includes the symmetric couple stress, while in the 
formulations of modified strain gradient theory (Yang et al., 2002 [25]) there are three independent length scale parameters. Hence, 
modified couple stress theory is adopted in this research. 

It is worth noting that the deformation measures describing the couple stress theory are kinematically redundant. Recently, 
researchers have considered this redundancy and proposed simple models which are free from the inherent conceptual weakness 
of most redundant models (Romano et al., [62]; Barbagallo et al., [63]; Neff et al., [64]). 

3.   Problem Formulation 

The derivation in this section is performed on an isotropic axisymmetric von Kármán circular plate. According to this theory, 
the straight lines initially normal to the mid surface remain straight and normal to that surface after bending. The stress normal 
to the mid-plane, σz, is small compared with the other stresses and may be neglected in stress-strain relations. Nonetheless, 
despite the small strains for the plate, the mid-plane rotations are moderate and may not be neglected. 

For the axisymmetric vibration of a Kirchhoff nano-disk, the displacements ,ru θu and zu can be expressed in terms of the 
displacements of a point on the middle surface of the plate as: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

, , , , , , , ,

1
, , , , , , , ,

, , , , ,

θ

θ θ θ

θ θ θ
θ

θ θ

∂
= −

∂
∂

= −
∂

=

r

z

w
u r z t u r t z r t

r
w

u r z t v r t z r t
r

u r z t w r t

 (7) 

where [0, ]∈r R , and ,ru θu and zu are the radial, angular, and transverse displacements, respectively. Furthermore, u, v, and w are 
the radial, angular, and transverse displacements of the plate mid surface, respectively. 

According to the von Kármán plate theory, the nonzero nonlinear strain components for the large-amplitude vibrations of a 
circular plate takes the form of: 

2

2

1
2

1 1 1
2

1 1

θ
θθ

θ
θ θ

ε

ε
θ θ

γ
θ θ

 ∂ ∂ = +   ∂ ∂

 ∂ ∂ = + +   ∂ ∂
 ∂ ∂ ∂ ∂= − + +  ∂ ∂ ∂ ∂

r z
rr

r z

r z z
r

u u

r r

u u u

r r r

u u u u
u

r r r r

 (8) 

 

 

Fig. 1. Geometry and coordinate system of the nano-disk. 
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Substituting the displacement components given in Eq. (7) back into Eq. (8) and realizing that for axisymmetric loading 
/ 0,θ∂ ∂ = and v = 0, then, the first two expressions in Eq. (8) can be reduced into:   

2 2

2

1
2

θθ

ε

ε

 ∂ ∂ ∂= + −  ∂ ∂ ∂
∂

= −
∂

rr

u w w
z

r r r

u z w

r r r

 (9) 

The component of the rotation vector and the corresponding symmetric curvature tensor can be obtained from Eqs. (3) and (4) 
as: 

1 2

2

3 2

1
( , , ) ( , , )

( , , )( , , ) ( , , )
1

( , , ) ( , , )
2

ω θ ω θ
θ

θθ θ
θθ θ

ω θ θ

∂ ∂
= =−

∂ ∂
   ∂     ∂ ∂                      ∂ ∂ ∂     ∂ ∂  = − + + −    ∂            

w r t w r t
r r

z w r tz u r t z u r t
r

v r t r v r t
r r r r r

 (10) 

Additionally, for axisymmetric vibrational analysis, Eq. (10) can be reduced into: 

2 ( , )ω
∂

=−
∂

w r t
r

 (11) 

The corresponding symmetric curvature tensor can be obtained from Eqs. (3) and (11) as follows: 

2
1 2

2

( ,t) ( ,t)1 1 1 1
2 2θ

ω ω
χ

θ

   ∂ ∂∂ ∂  = + = −    ∂ ∂ ∂ ∂ r

w r w r

r r r r r
 (12) 

Based on these equations, the governing equations of motion and the corresponding boundary conditions for a nano-disk can 
be obtained utilizing Hamilton’s principle as: 

[ ]
2

1

0δ δ δ− + =∫
t

t

T U W dt  (13) 

where U, W and T are the strain energy, work of external loads, and kinetic energy of the nano-disk, respectively. 
The first variation in the work done by the external forces in terms of transverse loading p, as well as the first variation in the 

kinetic energy of a structure, is given by: 

[ ]

0 2 1

. . . .
. . . . . .

δ δ

δ δ
δ δ δ δ θ

Ω

Ω

= Ω

         ∂ ∂ ∂ ∂    = + + − +          ∂ ∂ ∂ ∂         

∫

∫

W p wd

w w w w
T I u u w w I I u u rdrd

r r r r

 (14) 

where, 1I , 2I  and 0I are the longitudinal and rotary inertias, respectively. These parameters are defined as: 

/2 /2
2 3

0 1 2

/2 /2

1
 

12
, 0,      ρ ρ ρ ρ

− −

= = = = =∫ ∫
h h

h h

I dz h I I z dz h  (15) 

Moreover, the variation in strain energy is given by: 

( ). .δ σ δε δχ= +∫
V

U m dV  (16) 

Following the appropriate replacement of the Lamé’s constants by the modulus of elasticity E and Poisson's ratio v, and the 
use of Eqs. (5) and (6), the stress and deviatoric parts of the couple stress tensor take the following form: 

( ) ( )

( ) ( )

2 2
0

2 2

2 2
0

2 2

, ,( ,t) ( ,t)1
(1 ) 2

, ,( ,t) ( ,t) ( ,t)1
(1 ) 2

0

θθ

θ

σ ν
ν

σ ν
ν

σ

   ∂ ∂ ∂∂   = + − + −      − ∂ ∂ ∂ ∂   
   ∂∂ ∂ ∂   = − + + −      − ∂ ∂ ∂ ∂   

=

rr

r

u r t u r tw r w rE w z
z

r r r r r r

u r t u r tw r w r w rE z
z

r r r r r r
 

(17) 

2
2 2

0 0 2

( ,t) ( ,t)1
2θ θχ

 ∂ ∂  = = −   ∂ ∂ r r

w r w r
m l G l G

r r r
 (18) 

Substituting Eqs. (17) and (18) into Eq. (16) and integrating by parts and collecting the similar terms, can obtain the following 
result: 
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( )( ) ( ) ( )
, , ,

, ,

1
( ) ( )

2θ θ θδ δ δ θ

Ω

     ∂     = − + + − + − + + −           ∂   
∫ r r r rr rr r

r rr

w
U u N r N w N r M r M rR drd

r
 (19) 

It is worth mentioning that the following stress resultants (Nr, N), moment resultants (Mr, M), as well as the couple resultants 
(Rr) are defined as below: 

( ) ( )

( ) ( )

d

d

d

2

2

2

2

2

2

,  ,

,  z ,

 

θ θθ

θ θθ

θ θ

σ σ

σ σ

−

−

−

−

−

−

=

=

=

∫

∫

∫

h

r rrh

h

r rrh

h

r rh

N N z

M M z

R m z

 (20) 

Substituting the expression for , ,δ δ δW T U from Eqs. (14) and (16) into Eq. (13) and integrating the terms while collecting the 

coefficients of , ,δ δ δu v w the equations of motion for the nano-disk are obtained as: 

( )( )0 ,

..
: ( ) 0θδ

  + − + =   r r
u rI u N r N  (21) 

( ) ( ) ( ) ( )
2

0 2 2, , , ,
, ,

..1 1
: θ θ θδ

       ∂ ∂ ∂         + + − + + = −               ∂ ∂ ∂    
r r r rrr r rr r

r r

w w
w N r rM M rR R I w I r

r r t r r
 (22) 

The in-plane inertia term can be neglected for the cases in which the in-plane natural frequencies are significant compared 
with the natural transverse frequencies (Faris [65]), and then Eq. (21) may be written as: 

( ) 0θ

∂
− =

∂ rrN N
r

 (23) 

Now, the stress function F is referred to as the Airy stress function, is defined as (Shishesaz et al., [29]). 

2

2

1
     ,     θ

∂ ∂
= =

∂ ∂r

F F
N N

r r r
 (24) 

As can be observed, this equation satisfies Eq. (23). Substituting Eq. (24) into Eq. (22), the equation of motion is obtained as: 

( ) ( ) ( ) ( )
2

0 2 2, , , ,
, ,

..1 1
θ θ θ

∂

∂

       ∂ ∂ ∂         + − + + = −               ∂ ∂ ∂    
r r rrr r rr r

r r

F

r

w w
rM M rR R I w I r

r r t r r
 (25) 

Additionally, the stress resultants can be expressed in terms of strains, as in Eqs. (26) and (27): 

( )21 θθε υε
υ

= +
−r rr

Eh
N  (26) 

( )21θ θθυε ε
υ

= +
− rr

Eh
N  (27) 

 Then, on using Eqs. (8) and (9), Eqs. (28) and (29) can be recast as follows: 

2

2

1 1
1 2

υ
υ

    ∂ ∂ ∂    = + +          ∂ − ∂ ∂ 

F Eh u w u

r r r r r
 (28) 

22

2 2

1
1 2

υ
υ

    ∂ ∂ ∂    = + +         ∂ − ∂ ∂   

F Eh u w u

r r r r
 (29) 

Eliminating u from Eqs. (28) and (29), the compatibility equation is obtained as given in Eq. (30): 

23 2

3 2

1 1
0

2

    ∂ ∂ ∂ ∂  + − + =      ∂ ∂ ∂ ∂  

F F F w
r Eh

r r r r r
 (30) 

Consequently, the equation of motion can be expressed in terms of displacement as: 

( ) ( ) [ ]
3 2

1 2
,

.. 1
( , ) ( , )

12
ρ

ρ
   ∂ ∂        − − + = −            ∂ ∂   r

h w
D A w r t L F w hw r

t r r
 (31) 

where 3 2 2
0 / [12(1 )], Aν= − =D h E l Gh and / [2(1 )],= +G E v while 1( , )w r t and ( , )L F w are expressed as: 
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( )

4
1

,r , ,

( , ) ( , )

1
( , )

=∇

= r r

w r t w t r

L F w F w
r

 (32) 

The differential operator 4∇ is given by: 

4 3 2
4

4 3 2 2 3

2 1 1∂ ∂ ∂ ∂
∇ = + − +

∂ ∂ ∂ ∂r r r r r r r
 (33) 

Equations (30) and (31) give the compatibility equation and equation of motion for the nonlinear vibration of a nano-disk, 
based on large deflections and modified couple stress theory. It is required that the corresponding solutions satisfy the related 
boundary conditions to determine the transverse displacement w(r,t) and stress function F(r,t). The boundary conditions for the 
simply supported and clamped edge constraints at r = R are as follows: 

( ) ( ) ( )( )simply supported:      0   ,    , 0   ,    0@ , , , , 0 ,
∂
= = = + =

∂ rr rr r

F
w r t M w r t vw r t

r
 (34) 

( )
( )2

2

,
clamped edge:      0   ,    , 0   ,    0,

υ ∂∂ ∂
− = = =

∂ ∂ ∂
w r tF F

w r t
r r r r

 (35) 

For convenience, the following dimensionless variables and parameters are introduced into the solution: 

4 3
* *

0, , , , ,
2

ρ
η

     = = = = = = = =       

hR h Eh
w hw t Tt T r Rr l hl F F F F

D R
 (36) 

On substituting Eq. (36) into Eqs. (30) and (31), the non-dimensional governing equations and the corresponding boundary 
conditions at 1=r are obtained as follows: 

( )

( ) ( ) ( )

2 2

1 1 2 2
,

2
2

1 2 , ,2 ,

.. 1
(1 ) ( , ) ( , )

12

1
6 1 , 6 1 , ( , )

η  ∂ ∂     − + + = −        ∂ ∂ 

= − = − =

r

r r r

w
k w t r k L F w w r

r t r

l
k v k v L F w F w

h r

 (37) 

23 2

3 2

1
0

    ∂ ∂ ∂ ∂  + − + =      ∂ ∂ ∂ ∂  

F F F w
r

r r r r r
 (38) 

Additionally, the boundary conditions at 1=r are obtained as follows: 

( ) ( ) ( )( )simply supported:   0   ,    , 0   ,    0@ , , , , 0
∂
= = = + =

∂ rr rr r

F
w r t M w r t vw r t

r
 (39) 

( ) ( )2

2

,
clamped edge:      0   ,    , 0      ,    0

υ ∂∂ ∂
− = = =

∂ ∂ ∂

w r tF F
w r t

r r r r
 (40) 

4.   Galerkin Weighted Residual Method  

Equations (37)-(40) are the consistent basic equations for the nano-disk model. These equations that are the strong forms of 
the governing equations for the nano-disk based on nonlocal elasticity theory are reduced into equations of the classical circular 
plate provided l=0. Since finding the exact solution for the strong form of the nano-disk is commonly difficult, a weak form is 
usually generated for any further process. Here, as a general mathematical tool, the Galerkin weighted residual method is utilized 
to create the weak forms. According to this approach, the nonlinear free vibration response of the nano-disk can be obtained by 
introducing the following admissible function for the transverse deflection (Shishesaz et al., [29]): 

( ) ( ) ( ) ( ) ( ) ( )
1 1

, ,       ,        ϕ ψ
= =

= =∑ ∑ ɶ

N N

i i i i

i i

w r t r q t r t r q tF  (41) 

In Eq. (41), N is the number of half-waves in the r direction, ( )ϕi r are the known basic functions that should satisfy the 
boundary conditions of the nano-disk, and ( ) ( ), ɶi iq t q t are the time variant-coefficient of the mode shape functions (Shishesaz et 
al., [29]) and ( )ψ

i
r are obtained as follows (Shishesaz et al. [29]); 

( ) ( ) ( )

( ) ( )
( )

( ) ( ){ }

2

2

1
simply supprted :    1 ,

2

clamped edge      1 1 .
2 1

ψ ϕ ϕ

ψ ϕ ϕ υϕ
υ

=

=

′−

′′ ′− −
−

i i i

i i i i

r r r

r
: r r

 (42) 

Using Eq. (41) in conjunction with the Galerkin method, Eq. (38) can be recast in the following form;  

( ) ( ) ( )
1 3 2

3 2
1 1 10

1
. 0     ( 1,..., ) 

ϕψ ψ ψ ϕ
ϕ

= = =

            + − + = =                 
∑ ∑ ∑∫ ɶ

N N n
sr r r r

r si i
r r s

dd d d d
r r q t q t q t dr i n

dr dr r dr dr dr
 (43) 
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One can present the solution to Eq. (43) as;  

( ) ( ) ( )
1 1 1

      ( 1,..., )α β
= = =

= =∑ ∑∑ɶ

N N N

r sij j irs
j r s

q t q t q t i n  (44) 

where, 

3 21

3 2

0

1
,

ψ ψ ψ
α ϕ= + −

          
∫ j j j

ij i

d d d
r

dr dr r dr
dr  (45) 

1

0

ϕ ϕ
β ϕ=−

          ∫ r s

irs i

d d

dr dr
dr  (46) 

Solving Eq. (44) for the unknown mode shape functions ( )ɶ
iq t , we obtain; 

( ) ( ) ( )
1 1

        (i 1,..., )γ
= =

= =∑∑ɶ

N N

ki ijk j
j k

q t q t q t N  (47) 

 Substituting Eq. (47) into Eq. (41) and applying the Galerkin method to the Eq. (37), the resulting equation can be recast in the 
following form: 

( ) ( ){ } ( ) ( ) ( )
1 1 1 1 1

 0
= = = = =

+ + =∑ ∑∑∑∑ɺɺ

N N N N N

r sij j ij j ijkrs j
j j k r s

M q t K q t G q t q t q t  (48) 

where Mij and Kij are the linear parameters and Gijrsk are the nonlinear parameters. These parameters are defined: 

( )
( )

( )

( ) ( )( )

1 2

0 ,

1
4

1

0

1

2 , , ,
0

1
( ).

12

( ). (1 )

1
( ).

ϕη
ϕ ϕ

ϕ ϕ

ϕ γ ψ ϕ

∇

  ∂   = − −    ∂   

  = − +     

  
  =
    

∫

∫

∫

j

ij i j

r

ij i j

kijrsk i jrs j r r r

r
M r r r r dr

r r

K r r k r dr

G r r k r r dr
r

 (49) 

Equation (48) (Duffing equation) has received remarkable attention in recent decades due to a variety of engineering 
applications. Surveying the literature shows that different solution methods have been developed so far to solve this equation. 

Based on Eq. (48), for the zero nonlinear parameters of ijrskG , the nonlinear Duffing equation has the following linear form: 

( ) ( ){ }
1

0
=

+ =∑ ɺɺ

N

ij j ij j
j

M q t K q t  (50) 

The diagonalization procedure in linear algebra utilizes the modal matrix eigenvalues and eigenvectors. Accordingly, for 
decoupling Eq. (50), through this procedure, the following expression is introduced: 

{ } { }1 2 1 2, ,... , ,...=ΦT T

N Nq q q p p p  (51) 

whereΦ is a modal matrix for a linear system based on Eq. (50). On substituting Eq. (51) into Eq. (48) and multiply the result by the 

transposed matrix ,ΦT Eq. (48) can be recast in the form of: 

( ) ( ) ( )1 ,..., 0+ + =ɺɺ
Nii i ii i iM p t K p t f p p  (52) 

where  

( ) ( ) ( ) ( )3
1

1 1 1 1

,...,  
= = = =

   = Φ Φ      
   = Φ Φ      

= Φ Φ∑∑∑∑ j r s

T
ii ij

T
ii ij

n n n n
T

Ni ijkrs
j k r s

p p p

M M

K K

f p p G t t t

 
(53) 

Eq. (52) can be written in the form of: 

( ) ( ) ( )2
10,

1
,..., 0ω+ + =ɺɺ

Ni i i i

ii

p t p t f p p
M

 (54) 

where ,ωO i
is defined as: 

2
0,ω = ii

i

ii

K

M
 (55) 

Equation (55) is the linear natural frequency for linear vibration of the nano-disk. 
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5.   The Multiple Scales Method 

The idea underlying MSM is that one can consider an expansion representing the response as a function of multiple 
independent variables, or scales, instead of one single variable. We begin by introducing novel independent variables according to 
(Nayfeh [66]). 

0, 1, 2, ...ε= =n
nT t n  (56) 

Base on this method, the solutions to Eq. (54) can be expressed in the following form: 

2 3
0 1 2 0 1 2 0 1 20, 1, 2,( , ) ( , , ) ( , , ) ( , , ) ...         ( 1,..., )ε ε ε ε= + + + =j j j jp t p T T T p T T T p T T T j N  (57) 

where 0 =T t , 1 ε=T t , and 2
2 ε=T t denote the fast and slow time scales. Introducing the partial differential operator's Dr as: 

, 0.1,2,...
∂

≡ =
∂r

r

D r
T

 (58) 

The first and second exact time derivatives are rewritten as follows: 

( )

2 2
0 1 2

0 1 2

2
2 2 2 2

0 0 1 1 0 22
0 1 2

... D ...,

... 2 2 ...

ε ε ε ε

ε ε ε ε

∂ ∂ ∂
= + + + = + + +
∂ ∂ ∂
 ∂ ∂ ∂ ∂  = + + + = + + + +  ∂ ∂ ∂ ∂ 

d
D D

dt T T T

d
D D D D D D

dt t T T T

 (59) 

On substituting Eqs. (57) and (59) into Eq. (54), the approximate expressions for 1 2 3, ,ε ε ε can be derived as: 

1 2 2
0 0 1 2 0, 0 1 10, 0,: ( , , ) ( , , ) 0ε ω+ =j j jD p T T T p T T T  (60) 

Similarly, 

2 2 2
0 0 1 1 0 1 1 0 1 0 1 21, 0, 1, 0,: ( , , ) ( , , ) 2 ( , , )ε ω+ =−j j j jD p T T T p T T T D D p T T T  (61) 

( )

3 2 2
0 0 1 1 0 0 1 1 0 2 0 1 2 1 1 0 1 2 0 1 0 1 22, , 2, 0, 0, 1,

0,1 0 1 0, 0 1 2

: ( , , ) ( , , ) 2 ( , , ) ( , , ) 2 ( , , )

1
                             ( , , ),..., ( , , )

ε ω+ =− − −

+

j j j j j j

Nj

jj

D p T T T p T T T D D p T T T D D p T T T D D p T T T

f p T T T p T T T
M

 (62) 

in which if  is a part of fi with third-order 's parameters: 

2 2 2
0 0 1 1 0 1 1 0 1 0 1 21, 0, 1, 0,: ( , , ) ( , , ) 2 ( , , )ε ω+ =−j j j jD p T T T p T T T D D p T T T  (63) 

Consequently, the solution to Eq. (60) is: 

( ) 00,

0 1 1 1 20, ( , , ) , ω= +ji T

j jp T T T A T T e CC  (64) 

where symbol i represents the imaginary unit and CC corresponds to the complex conjugate of the preceding terms. The 
coefficients Aj(T1, T2) of the unknown complex function can be determined by eliminating the secular terms given in the following 
paragraphs.  

Now, substituting Eq. (64) into Eq. (61), the following equations are obtained: 

( ) ( )
00,1 22 2 2

0 0 1 1 0 0 1 11, , 1, 0,
1

,
: ( , , ) ( , , ) 2 ω

ε ω ω
∂

+ =− +
∂

ji Tj

j j j j

A T T
D p T T T p T T T i e CC

T
 (65) 

Based on the secular terms of Eq. (65), one can write: 

( ) ( )
( ) ( )1 2

1 2 20,
1

,
2 0 ,ω β

∂
− = → =

∂
j

j j j

A T T
i A T T T

T
 (66) 

where ( )2β j T can be written (in polar form) as: 

( ) ( ) ( )2

2 2

1
2

φ
β = ji T

j jT a T e  (67) 

( ) ( ) ( )2

2 2

1
2

φ
β

−= ji T

j jT a T e  (68) 

Substituting Eq. (67) into the following third-order approximate equation, we have: 

( )
( )00,23 2 2

0 0 1 1 0 0 1 1 0,1 0 1 0, 0 1 22, , 2, 0,
2

1
: ( , , ) ( , , ) 2 ( , , ),..., ( , , )ωβ

ε ω ω
∂

+ =− + + +
∂

ji Tj

Nj j j j j

jj

T
D p T T T p T T T i e CC f p T T T p T T T NSC

T M
 (69) 

where NST denotes the non-secular terms. Now, substituting Eqs. (67) and (68) into Eq. (69), The following relations can be 
obtained: 
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Table 1. The positive real values of i for simply supported and clamped edge boundary conditions. 

Boundary conditions 1 2 3 4 5 6 

Simply supported 2.2215 5.4516 8.6114 11.7608 14.9068 18.0512 

Clamped edge 3.1962 6.3064 9.4395 12.5771 15.7164 18.8565 

Table 2. Comparison of dimensionless frequency parameter values Ω based on two different types of boundary conditions and classical plate theory 

( 2 / ,  10ω ρΩ = =R h D R nm ). 

 
 
 
 
 
 

 

 

Fig. 2. Distribution of functions ( )ϕ
i

r for (a) simply supported and, (b) clamped edge boundary conditions. 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2 2 00,

0,1 0 0, 01 2 2

2 23 2 2
0 0 1 1 0 0 1 1 22, , 2, 0,

2 2

1 2 2

1 1
: ( , , ) ( , , ) 2

2 2

1 1 1
                   ,...,

2 2

φ φ ω

ω ωφ φ

φ
ε ω ω

 ∂ ∂  + =− + +  ∂ ∂ 
 + + + +  

j j j

NN

i T i T i Tj j

j j j j i

i T i Ti T i T
Nj

jj

a T T
D p T T T p T T T i e i a T e e CC

T T

f a T e e CC a T e e CC NS
M

C

 (70) 

As a result, based on the secular terms of Eq. (70), the secular expressions can be obtained as: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 1 2 1 2 2 22 2

2 1 2 20,
2 2

1 1 1
2 ,..., , , ,..., , 0

2 2 2
φ φ φ φ φ φφ

ω
− −

 ∂ ∂  − + + =   ∂ ∂ 
N Ni ii T i T i T i T i T i Ti i

Nj i j

jj

a T T
i e i a T e f a T a T e e e e

T T M
 (71) 

Solving Eq. (71), φj and ja are obtained based on the fast time scale and initial conditions. Finally, based on Eqs. (67), (64), and 

(57), the expression ( , )εjp t is recast as:  

( ) ( )( )2 2 00,( , ) cosε φ ω= +j j j jp t a T T T  (72) 

6.   Numerical Results and Comparisons 

In this study, the selected basic functions ( )ϕi r are used as the circular plate's linear free vibration mode shapes with the 
same boundary conditions to obtain the free vibrational solution of the nano-disk. Figure 2 shows the graphical representation of 
the mode functions, equations of which are given in (73): 

( ) ( ) ( )
( )

( )0
0 0

0

λ
ϕ λ λ

λ
= − i

i i i

i

I
r I r J r

J
 (73) 

Here, J0 and I0 are the Bessel and modified Bessel functions of the first kind with the zeroth-order and positive real values for i, 
presented in Table 1, for simply supported and clamped edges boundary conditions, utilized in this study (Leissa [67]; Leissa and 
Narita [68]).  

To verify the accuracy of the present results, a comparison was made between the results given by (Mohammadi et al., [69]) 
and those from the current analysis for linear free vibrations of a classical circular plate (l = 0) in which the governing differential 
equations were solved utilizing the differential quadrature method (DQM) and similar boundary conditions. The first two non-
dimensional frequencies are given in Table 2 for both types of boundary conditions. Good agreements are observed in the results 
for both types of boundary conditions. These results were deduced based on Young’s modulus of E = 1.06 TPa, the mass density of 

32300 kg/m ,ρ = Poisson's ratio of 0.3ν = , and a thickness of h = 0.34 nm.  

Boundary conditions l (nm) 
Ω1 Ω2 

Ref. [69] Present work Ref. [69] Present work 

Simply supported 0 4.9345 4.9350 29.7198 29.6961 

Clamped 0 10.2158 10.2121 39.7706 39.6125 
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Table 3. Comparison of the first three natural frequencies (kHz) for different thickness to length scale ratios of a circular microplate with 100µ=h m . 

Boundary condition Mode order η  
l/h=0.1 l/h=0.5 l/h=1 

Present Ref. [70] Present Ref. [70] Present Ref. [70] 

Clamped 

First Mode 
0.01 0.5614 0.5614 0.7658 0.7659 1.1977 1.1976 
0.02 2.2455 2.2455 3.0632 3.0631 4.7903 4.7902 

Second Mode 
0.01 2.1807 2.1854 2.9747 2.9811 4.6519 4.6620 
0.02 8.7186 8.7380 11.8932 11.9196 18.5990 18.6403 

Third Mode 
0.01 4.8953 4.8953 6.6777 6.6777 10.4428 10.4429 
0.02 19.5600 19.5618 26.6819 26.6843 41,7263 41.7300 

Simply supported 

First Mode 
0.01 0.2775 0.2775 0.3786 0.3786 0.5921 0.5921 
0.02 1.1101 1.1101 1.5143 1.5143 2.3682 2.3681 

Second Mode 
0.01 1.6381 1.6381 2.2331 2.2346 3.4923 3.4946 
0.02 6.5458 6.5501 8.9292 8.9350 13.9638 13.9729 

Third Mode 
0.01 4.0787 4.0789 5.5638 5.5641 8.7010 8.7013 
0.02 16.3000 16.3005 22.2350 22.2355 34.7728 34.7728 

Table 4. The effect of thickness to length scale ratio on the first dimensionless nonlinear frequency NL,1 for different dimensionless central vibration 
amplitudes in a circular micro-plate with h/R=0.01 and clamped boundary condition. 

h/l 

w(0,0)/h=0.2 
NL,1 

w(0,0)/h=0.4 
NL,1 

w(0,0)/h=0.6 
NL,1 

Ref. [51] Present Ref. [51] Present Ref. [51] Present 

Classical 10.2931 10.3123 10.5240 10.6019 10.8970 11.0845 
10 10.4808 10.4988 10.7065 10.7832 11.0730 11.2571 
5 11.0220 11.0396 11.2381 11.3098 11.5871 11.7600 
4 11.4109 11.4283 11.6195 11.6891 11.9587 12.1238 
3 12.2109 12.2261 12.4052 12.4697 12.7234 12.8756 
2 14.2481 14.2617 14.4155 14,4701 14.6894 14.8175 
1 22.2310 22.2387 22.3373 22.3720 22.5150 22.5942 

 

The present results are compared with those in Ref. [70] for further validations, based on the modified couple stress theory. 
Jomehzadeh et al. (Jomehzadeh et al., [70]) studied the free vibration analysis of a size-dependent circular micro-plate based on 
the modified couple stress theory. The micro-plates were assumed to be made of epoxy with the following material properties: (E 
= 1.44 GPa,  = 0.38,  = 1220 Kg/m3 and h/R=0.01, and h/R=0.02). As shown in Table 3, good agreements are observed between the 
current findings and those in this reference.  

In a relevant study, Wang et al. [51] used the modified couple stress theory to investigate the large amplitude free vibration of 
a size-dependent circular micro-plate. They employed the shooting method and the coding power of MATLAB to solve the 
governing equations. To verify the applicability and precision of the multi-scale method, the equations in this reference were 
solved again in the current study, utilizing the multi-scale method, based on the same parameters (E = 1.44 GPa,  = 0.38,  = 1220 
kg/m3, h/R=0.01, and 100 µ=h m ), and the same initial and boundary conditions. As shown in Table 4, very good agreements are 

observed between the results of both methods. This indicates that the multi-scale method is useful, practical, and accurate and 
can be used for the solution of nano-structural problems. 

In addition, Table 4 indicates that for a given value of the nonlocal parameter, the dimensionless frequency parameter 
increases with an increase in the dimensionless nonlocal parameter. Figure 3 depicts the vibrational transverse displacement of 
simply supported and clamped edge nano-disks for different non-dimensional nonlocal parameter, for the first mod and based on 
w(0,0)/h=1, h/R=0.01, and  = 0.3. According to this figure, the natural frequency increases as the non-dimensional nonlocal 
parameter increases. Results from the classical von Kármán plate theory are also superimposed for further comparison. The 
difference between the transverse displacement predicted by the classical and non-classical models is clear for both types of 
boundary conditions. The difference in responses corresponding to similar values (of l) in both cases is more prominent at higher 
values of the nonlocal parameter l. As a result, one can conclude that the nonlocal parameter l plays an important role in the 
determination of the transverse vibrational displacement of a nano-disk. Hence, to attain a correct solution, the application of 
nonlocal elasticity theory is mandatory. 
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Fig. 3. Central dimensionless vibration displacements in a nano-disk for the different values of the nonlocal parameter, (a) simply supported 
boundary conditions, (b) clamped edge boundary conditions. 
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Fig. 4. Central dimensionless vibrational displacements of a nano-disk with the simply supported boundary conditions and h/r=0.01 at the different 
value of the initial central dimensionless amplitude, (a) linear, l/h=0, (b) nonlinear, l/h=0, (c) linear, l/h=0.5 and, (d) nonlinear, l/h=0.5. 
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Fig. 5. Central dimensionless vibration displacements in a nano-disk with clamped edge boundary conditions and h/r=0.01 for the different values of 
the initial central dimensionless amplitude, (a) linear, l/h=0, (b) nonlinear, l/h=0, (c) linear, l/h=0.5 and, (d) nonlinear, l/h=0.5. 
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Fig. 6. Dependency of the nonlinear frequency ratios on the initial conditions, w(0,0) /h, for a simply supported nano-disk, (a) first mode, (b) second 
mode, and (c) third mode. 
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Fig. 7. Dependency of the nonlinear frequency ratios on the initial conditions, w(0,0) /h, for a clamped edge nano-disk, (a) first mode, (b) second 
mode, and (c) third mode. 

 

Fig. 8. The effect of dimensionless initial conditions of w(0,0) /h , on the linear and nonlinear natural frequencies based on h/R=0.01, v = 0.3 and l/h=1, 
(a) simply supported, and (b) clamped edge. 

 

 

N
o

n
li
n

e
a
r 

s
h

if
t 

in
d

e
x
 

N
o

n
li
n

e
a
r 

s
h

if
t 

o
n

d
e
x
 

N
o

n
li
n

e
a
r 

s
h

if
t 

o
n

d
e
x
 

 

Fig. 9. Dependency of the nonlinear frequency ratios on the initial conditions, w(0,0)/h, for a clamped edge nano-disk, (a) first mode, (b) second mode, 
and (c) third mode. 
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Fig. 10. Dependency of the nonlinear shift index on the initial conditions w(0,0)/h, for a clamped edge nano-disk, (a) first mode, (b) second mode, and 
(c) third mode. 
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Fig. 11. The effect of support types on the nonlinear frequency ratios based on the classical (l/h=0) and non-classical theories (l/h=1), h/r=0.01, and   

v = 0.3, (a) first mode, and (b) third mode. 
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Fig. 12. Dependency of the nonlinear frequency ratios on h/r for a simply supported nano-disk, (a) first mode, (b) second mode, and (c) third mode. 
 
In addition, Figs. 4 and 5 demonstrate the vibrational transverse displacement of simply supported and clamped edge nano-
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disks for various initial values of dimensionless central amplitude in the first mode. These figures are illustrated based on the 
geometric and mechanical properties of: E =1.06 TPa,  = 0.3,  = 2300 Kg/m3, and R=10 nm. These figures reveal how some factors 
such as non-dimensional nonlocal parameters, dimensionless central amplitude, and the type of support could alter the vibration 
behavior of the circular nano-disk. 

Figs. 6 and 7 illustrate the effects of non-dimensional nonlocal parameter l/h on Nl,i/l, i (i=1,2,3), for different values of 
w(0,0)/h and the two types of clamped edge and simply supported boundary conditions introduced before. These figures were 
generated based on the following geometric values and material properties; E =1.06 TPa,  = 0.3,  = 2300 kg/m3, 0.01η = and R=10 
nm. Based on the results, the dimensionless frequency ratio of the nano-disc increases as the initial central dimensionless 
amplitude increases. This shows the dependency of the nonlinear frequency on the initial conditions (there is no such 
dependency in the linear models). To unveil this behavior, the linear and nonlinear natural frequencies of the nano-disk with the 
two types of clamped edge and simply supported boundary conditions with h/R=0.01,  = 0.3, and l/h=1, are shown in Figure 8. As 
is evident, ωL is not dependent on dimensionless initial conditions, w(0,0)/h, while due to the nonlinear geometric properties from 

von Kármán plate theory, the dependency of Nl,i/l, i on the initial conditions is well observed. However, this ratio decreases as 
the non-dimensional nonlocal parameter increases. It is worth mentioning that for all values of the nonlocal parameter l, the 
vibrational frequencies predicted by the modified couple stress theory are greater than those by the classical theory. This 
indicates that the modified couple stress theory results in a stiffer plate compared with the classical plate theory. 

For further investigations, Figs. 9 and 10 are plotted to show the effects of non-dimensional nonlocal parameter l/h on the 
nonlinear shift index in the nano-disk frequency, for different values of w(0,0)/h, based on the clamped and simply supported 
boundary conditions. The nonlinear shift is an essential index in the nonlinear oscillation that is interpreted as the hardening or 
softening effect on the nano-disk motion. These figures are based on the geometric values and material properties introduced 
before.  

Results indicate that the nonlinear shift in the nano-disk frequency increases as the initial central dimensionless amplitude 
increases. This important effect decreases as the non-dimensional nonlocal parameter increases. Accordingly, the hardening 
effect in the nano-disk vibrational behavior is observed for an increase in the initial central dimensionless amplitude or a 
decrease in the non-dimensional nonlocal parameter. 
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Fig. 13. Dependency of the nonlinear frequency ratios on h/r for a clamped edge nano-disk, (a) first mode, (b) second mode, and (c) third mode. 
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Fig. 14. The effect of h/r on the nonlinear frequency ratio for a simply supported nano-disk, (a) first mode, (b) second mode, and (c) third mode. 
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Fig. 15. The effect of h/r on the nonlinear frequency ratio for a clamped edge nano-disk, (a) first mode, (b) second mode, and (c) third mode. 
 
As the other alternative, Fig. 11 demonstrates the effect of supported type on Nl,i/l, i (i=1, 3) ratio. As observed, this effect is 

more pronounced in classical theory (l/h=0), as well as lower mode numbers.  
Figs. 12 and 13 illustrate the dependency of the nonlinear frequency ratios Nl,i/l,i (i=1,2,3), on /η = h r , for different values of 

the nonlocal parameter and geometric and mechanical properties of ; E =1.06 TPa,  = 0.3,  = 2300 Kg/m3, R=10 nm and w(0,0)/h =1. 
It is observed that based on the modified couple stress theory, the ratio η  plays an important role in the nonlinear frequencies. 
Moreover, according to this theory, the effect of η  is more pronounced for lower values of the nonlocal parameter. 

The nonlinear frequency ratios Nl,i/l,i (i = 1,2,3) were plotted for three different values of initial conditions w(0,0)/h= 0.5, 1, 1.5 
and 2 (Figs. 14 and 15), to study the effect of η on the nano-disk transverse vibration. To extract these results, it was assumed that; 
E = 1.06 TPa, ρ = 2300 kg/m3,  = 0.3, nonlocal parameter l = 1 nm, and R = 10 nm. It is observed that for the clamped and simply 
supported boundary conditions, the ratios of natural frequencies increase as the h/R ratio increases. This increase is less 
prominent at lower initial values. 

7.   Conclusions 

In this study, the nonlinear free vibration analysis of a nano-disk was investigated using a modified couple stress model and 
von Kármán geometrically nonlinear theory. The model was size-dependent with a material length scale parameter l to capture 
the size effect. The derived governing nonlinear equations were reduced to the classical von Kármán plate theory provided l = 0. 
Using Hamilton’s principle, the differential equations of motion were derived and the Galerkin weighted residual method in 
conjunction with the multi-scale method was used to solve the equations based on simply supported and clamped edge 
boundary conditions. Results indicate that the proposed method is precise and can be easily applied to extract the nonlinear 
characteristic relations for the frequency response of the nano-disks. It was also concluded that the nonlocal parameter l0, central 
dimensionless amplitude, and the thickness to radius ratio h/r, play important roles in the vibrational behavior of the nano-disk. 
According to the results, it was found that for all values of the non-dimensional nonlocal parameter l0, the linear and nonlinear 
natural frequencies predicted by the modified couple stress theory are greater than those based on the classical method. This 
indicates that the von Kármán plate model offers a stiffer plate compared to the modified couple stress theory. Additionally, the 
numerical results indicate that an increase in the central dimensionless amplitude leads to an increase in the nonlinear 
frequencies ratios and nonlinear shift index. Inversely, the increase in non-dimensional nonlocal parameter l0 leads to a decrease 
in the nonlinear frequencies ratios and nonlinear shift index. This effect seems to be more conspicuous at lower vibrational 
modes. Examination of the results also indicates that for both types of boundary conditions used in this work, the differences in 
frequencies predicted by the classical and non-classical models are well noticeable at higher values of central dimensionless 
amplitude. Furthermore, according to the modified couple stress theory, the h/r ratio has a significant impact on the nonlinear 
vibrational behavior of the nano-disk. Consequently, it can be concluded that increasing this ratio leads to an increase in the 
effect of dimensionless central amplitude on the nonlinear frequencies ratios of the nano-disk. This effect is more prominent at 
the lower values of l0; meaning that the nonlocal effect can be only disregarded if the thickness-to-radius ratio, h/r, is highly 
insignificant. Furthermore, for each boundary condition used in this work, there is a difference in the transverse displacement 
predicted by the classical and non-classical models. This value is less prominent for higher values of the non-dimensional 
nonlocal parameters and higher vibrational modes. Moreover, the obtained results support the idea that the proposed MSM 
significantly reduces the computational effort and is a simple, reassuring, and yet highly effective method for dealing with many 
nonlinear problems that one might face in the field of mathematical physics. 
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