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Abstract. Dynamic instability behavior of functionally graded carbon nanotube reinforced hybrid composite plates subjected to 
periodic loadings is studied. The governing equations of motion of Mathieu-type are established by using the Galerkin method 
with reduced eigenfunctions transforms. With the Mathieu equations, the dynamic instability regions of hybrid nanocomposite 
plates are determined by using the Bolotin’s method. Results reveal that the dynamic instability is significantly affected by the 
carbon nanotube volume fraction, layer thickness ratio, bending stress, static and dynamic load parameters. The effects of 
important parameters on the instability region and dynamic instability index of hybrid nanocomposite plates are discussed. 
 
Keywords: Functionally graded; Volume fraction; Dynamic instability regions; Dynamic instability index. 

1. Introduction 

Composite plates can offer higher stiffness to weight ratio than traditional metal plates and have been used successfully in 
various engineering industries. When the composite plate is subjected to periodic in-plane loads, dynamic instability may occur 
due to parametric resonance. It has important theoretical and practical significance to accurately determine the dynamic stability 
area of the composite plate structure in the design stage [1, 2]. Sofiyev and his coworkers discussed in detail the dynamic 
instability of functionally graded cylindrical shells [3-5] and conical shells [6-8] under static and time-dependent periodic loads. 
First, the governing partial differential equations of cylindrical and conical shells with functionally graded interlayer were derived. 
Then the above governing equations were simplified to Mathieu-Hill differential equation describing dynamic instability, and the 
Bolotin׳s method was used to solve the excitation frequencies of cylindrical shells and truncated cone shells in order to 
understand the effects of the volume fraction index, shell characteristics, static and dynamic load factor on the unstable regions. 
In most cases, the mechanical properties of composite materials are enhanced by adding a high percentage of fibers to the matrix. 
Additionally, the tensile strength and elastic modulus of nanocomposites can be improved by adding a small amount of nanotubes 
to the matrix. The performance of the composite plate reinforced with a small percentage of nanotubes is even better than that of 
the composite plate using conventional carbon fibers. Therefore, many publications [9-13] have focused on the vibration and 
stability of functionally graded carbon nanotube (CNT) reinforced composite plates. 

Based on the Euler and Timoshenko beam theories, the dynamic stability of embedded single-walled CNTs beam under axial 
compression was studied by Ansari et al. [14]. A Winkler-type elastic foundation was employed to represent the interaction of the 
CNT and the surrounding elastic medium. The influences of the static load factor, temperature change, slenderness ratio and 
spring constant of the elastic medium on the dynamic stability characteristics of the nanocomposite beam were presented. Yas 
and Heshmati [15] investigated the vibrational properties of nanocomposite beams reinforced by randomly oriented straight CNTs 
under moving load. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase was replaced with an 
equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The Newmark method was 
also used to evaluate the time response of the system. The effects of material distribution, CNT orientation, moving load velocity, 
slenderness ratio and boundary conditions on the dynamic characteristics of nanocomposite beams were showed. Bhardwaj et al. 
[16] presented the nonlinear flexural and dynamic responses of CNT reinforced laminated composite plates. The CNT-reinforced 
polymer matrix was treated as new matrix and then reinforced with glass fiber in an orthotropic manner. The effects of the 
percentage of CNT and aspect ratio on the dynamic response of the nanocomposite plates were presented. 

The dynamic analysis of nanocomposite cylinders reinforced by CNTs subjected to impact loads was presented by Rasool et al. 
[17]. Four types of distribution of arranged CNTs are considered; uniform distribution and three functionally graded distributions 
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along the radial direction of the cylinder. The effects of the distribution type and volume fraction of CNTs on the frequency and 
stress wave propagation of CNT-reinforced cylinders were investigated. Ke and Yang [18] presented the dynamic stability of 
functionally graded nanocomposite beams reinforced by CNTs based on Timoshenko beam theory. The boundary of unstable 
region was determined by the Bolotin's method. A parametric study was conducted to study the influence of CNT volume fraction 
and slenderness ratio on the dynamic stability characteristics of nanocomposite beams. Rafiee et al. [19] studied the nonlinear 
dynamic stability of piezoelectric functionally graded CNT-reinforced composite plates under external resonance. The governing 
equations of the piezoelectric nanocomposite plates were derived based on the first-order plate theory and von Kármán 
hypothesis. It was assumed that the single-walled CNTs were aligned, straight and uniformly laid out. The periodic solution and its 
stability were determined by using the harmonic balance method. The effect of the applied voltage, defect, volume fraction and 
distribution pattern of nanocomposite plates on the parametric resonance was investigated.  

The dynamic stability of CNT-reinforced functionally graded cylindrical panels and plates under static and periodic axial forces 
were presented by Lei et al. [20, 21]. The cylindrical plates were reinforced by single-walled CNTs with uniform and functionally 
graded distributions of CNTs along the plate thickness direction. The extended rule of mixture was employed to estimate the 
effective material properties of the resulting nanocomposites. The principal instability regions were analyzed by Bolotin’s 
first-order approximation. The influences of CNTs volume fraction, aspect ratio and distribution type on the dynamic instability 
were examined. A new and improved plate model was presented for the vibration characteristics of functionally graded plates by 
Belkorissat et al. [22]. The displacement field of this theory was chosen based on the hyperbolic variation of the in-plane 
displacements. The effects of plate thickness, aspect ratio, and various material compositions on the dynamic response of 
functionally graded nanocomposite plates were studied. Wang and Shen [23] investigated the dynamic response of CNT-reinforced 
composite plates resting on elastic foundations. A single-layer nanocomposite plate and a three-layer plate composed of a 
homogeneous core and two CNT-reinforced composite sheets were considered. The CNT reinforcement was either uniformly 
distributed or functionally graded in the thickness direction. The effects of volume fraction distribution, foundation stiffness, 
initial stress, and the core-to-face thickness ratio on the dynamic behavior of nanocomposite plates were discussed. The impact 
behavior of hybrid glass-carbon composite plates was investigated by Sayer et al. [24]. The energy profiling method was used 
together with the load–deflection curve to determine the thresholds of hybrid composites. The failure process of the damaged 
specimen was evaluated by comparing the load–deflection curve with the image of the damaged sample. The nonlinear dynamic 
instability analysis of FG CNT-reinforced composite plates resting on elastic foundations was investigated by Fu et al. [25] using the 
classic plate theory. Based on the two-step perturbation technique, a Mathieu-type equation was formulated, and the effect of 
various factors on the dynamic unstable zones was studied by using the method of incremental harmonic balance. Wu et al. [26] 
investigated the dynamic instability of FG graphene-reinforced nanocomposite plates based on the differential quadrature method 
combined with the Bolotin’s method. The system equations were established using the first-order plate theory. Numerical results 
showed that adding a small amount of graphene platelet would enlarge the natural frequency, but would decrease the instability 
region. Singh et al. [27] presented a semi-analytical approach to study the dynamic instability of FG CNT-reinforced composite 
plates under uniform and non-uniform in-plane loads. Based on the Hamilton’s principle, the governing equations were derived, 
and transformed into Mathieu type equations by the Galerkin’s method. Then, the Bolotin’s method was applied to solve Mathieu 
type equations to determine the unstable boundaries. 

The active vibration of hybrid composite and fiber multilayered plates integrated with piezoelectric fiber reinforced composite 
sensors and actuators was studied by Kapuria et al. [28]. The effective electromechanical properties of the piezoelectric fiber 
reinforced laminas were computed using a coupled iso-field micromechanical model. The effects of piezoelectric fiber orientation, 
volume fraction and dielectric ratio on the control response were investigated. Khalili and Yasin [29] presented the dynamic 
analysis of sandwich beams with shape memory alloy hybrid composite face sheets and flexible core. The influence of the shape 
memory alloy wires vibration phenomena and thickness location inside the composite face sheets and the dynamic response were 
analyzed. The dynamic analysis of functionally graded CNTs-reinforced composite structures was studied by Frikh et al. [30]. Zero 
transverse shear stress was applied to the top and bottom surfaces. Four types of distributions of CNTs were considered, namely 
uniform distribution and three functionally gradient distributions. The extended rule of mixture was used to estimate the effective 
material properties of the CNT-reinforced composite plate. The effects of volume fractions, profiles of CNTs and geometrical 
parameters on dynamic behaviors of functionally graded CNTs reinforced plates were presented. 

It is worth noting that the hybrid fiber-reinforced metal laminate composite plates made of a fiber reinforced polymer core 
covered by face-sheet metal have higher wear and corrosion resistance than traditional composite plates [31]. Thus, when 
designing a plate structure in a thermal environment, a hybrid nanocomposite plate with face-sheet metal is a good choice. In 
these previous studies, the investigation concerning the sandwich plate with metal face sheets subjected to an arbitrary dynamic 
load has seldom been reported. The dynamic vibration of hybrid composite plates was analyzed previously by the first author and 
coworkers [32, 33]. However, there is no literature to study the dynamic behavior of hybrid nanocomposite plates under arbitrary 
periodic loads. In the present study, the dynamic stability behavior of a three-layer hybrid nanocomposite plate under arbitrary 
dynamic loads is studied. Three kinds of CNT-reinforced hybrid nanocomposite plate are considered, in which the single-walled 
CNTs in the core layer are assumed to be uniformly distributed (FG-U) or symmetric functionally graded (FG-X and FG-O). The 
Galerkin method is applied to the governing partial differential equations to yield ordinary differential equations. Then, the 
Mathieu-type equations are formed and solved by employing Bolotin’s method to determine the regions of dynamic instability of 
hybrid nanocomposite plates. The effects of CNT volume fraction, distribution type, layer thickness ratio, static and dynamic load 
parameter on the dynamic instability boundary and dynamic instability index of hybrid nanocomposite plates are investigated and 
discussed. 

2. Modeling of nanocomposite plate  

Following the similar technique described by Chen et al. [34], the perturbation method is used to derive the system equations of 
motion of the CNTs-reinforced hybrid nanocomposite plate under dynamic load, including the effects of rotary inertia and 
transverse shear. The governing equation is expressed as 

s s si j s,j , ij sj s,j s,j , i( u ) [ ( u +u )] +F + F = uiσ σ δ ρ+ + ∆ ɺɺ  (1) 

where ijσ , ijσ , sF  and sF∆  are the initial stress, perturbing stress, body force and perturbed body force, respectively. su , su  

and suρɺɺ  represent the initial displacement, incremental displacement and inertia force and ρ  is the mass density. 

In order to account for the transverse shear deformation and rotary inertia effects in a nanocomposite plate, the displacements 

assumes the following forms based on Mindlin plate theory: 
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x xu(x,y,z,t)=u (x,y,t)+z (x,y,t) φ  

y yv(x,y,z,t)=v (x,y,t)+z (x,y,t)φ  

zw(x,y,z,t)=w (x,y,t)  

(2) 

where xu , yv  and zw  are displacements at the midplane in the respective x, y and z direction; xφ  and yφ  are rotation angles 

about y and x axes, respectively. The x and y axes of the coordinate system are set to coincide with the two edges of the 
rectangular nanocomposite plate. The constitutive matrix equation of the nanocomposite plate is given by: 
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The plate is subjected to an arbitrary periodic stress system that changes with time, and the states of the periodic load is a 

combination of pulsating compressive stress n
ijσ  and pure pulsating bending stress m

ijσ . The periodic initial load system is 

assumed to have the form: 

n m
ij ij= 2z /ij hσ σ σ+ ( cos ) 2 ( cos )S D Sm Dm

ij ij ij ijt z tσ σ ϖ σ σ ϖ= + + + /h  ( i, j = x, y, z ) (4) 

which consists of the spatially uniform longitudinal, transverse, shear, bending and twisting stresses. Here S
ijσ  and D

ijσ  are the 

static and dynamic components of the periodic normal or shear stress n
ijσ ; Sm

ijσ  and Dm
ijσ  are the static and dynamic components 

of the periodic pure bending or torsion stress m
ijσ ; ϖ  is the angular frequency of external excitation. Substitute the displacement 

field (2), Eqs. (3) and (4) into Eq. (1), and then integrate them. The dynamic motion equations of nanocomposite plate can be written 
as 

[
11A x,xu +

16A (
x,yu +

y,xu )+
12A y,yu +

11B x,xφ +
16B (

x,yφ +
y,xφ )+

12B y,yφ +
,xx x xN u +

,xx x xM φ +
, , ,xy x y xy x y xz z xN u M N uφ+ + ]

,x
+[

16A x,xu  

+
26A y,yu +

66A (
x,y y,xu +u )+

16B x,xφ +
66B (

x,y y,x+φ φ )+
26B y,yφ +

, ,yy x y yy x yN u M φ+ +
, , ,xy x x xy x x yz z xN u M N uφ+ + ]

,y
+

xf =
xhuρ ɺɺ  

(5) 

[
16A x,xu +

66A (
x,y y,xu +u )+

26A y,yu +
16B x,xφ +

66B (
x,y y,x+φ φ )+

26B y,yφ +
, , , , ,xx y x xx y x xy y y xy y y xz z yN u M N u M N uφ φ+ + + + ]

,x
 

+[
12A x,xu +

26A (
x,y y,xu +u )+

22A y,yu +
12B x,xφ +

26B (
x,y y,x+φ φ )+

22B y,yφ

 +
, , , , ,yy y y yy y y xy y x xy y x xz z yN u M N u M N uφ φ+ + + + ]

,y
+

yf =
yhuρ ɺɺ  

(6) 

[
55A (

,x xw +φ )+
45A (

,y yw +φ )+
,xx xN w ,xy yN w+ ]

,x
+[

45A (
,x xw +φ )+

44A (
,y yw +φ )+

, ,xy x yy yN w N w+ ]
,y

+
zf = hwρ ɺɺ  (7) 

[
11 x,xB u +

16B (
x,yu +

y,xu )+
12 y,yB  φ +

11 x,xD φ +
16D (

x,yφ +
y,xφ )+

12 y,yD  φ +
,xx x xM u + *

,xy x xM φ +
,xy x yM u + *

,xy x yM φ +
,xz z xM u ]

,x
 

+[
16B x,xu +

66B (
x,y y,x+u u )+

26B y,yu +
16D x,xφ +

66D (
x,y y,x+φ φ )+

26D y,yφ +
,yy x yM u + *

,yy x yM φ +
,xy x xM u + *

,xy x yM φ +
,yz z xM u ]

,y
 

-
55A (

,x xw +φ )-
45A (

,y yw +φ )-(
, ,xz x x xz x xN u M φ+ +

zz xN φ +
, ,zy x y zy x yN u M φ+ )+

xm = 3 / 12xhρ φɺɺ  

(8) 

[
16B x,xu +

66B (
x,y y,x+u u )+

26B y,yu +
16D x,xφ +

66D (
x,y y,x+φ φ )+

26D y,yφ +
,xx y xM u + *

,xx y xM φ +
,xy y yM u + *

,xy y yM φ +
,xz z yM u ]

,x
 

+[
26B (

x,y y,xu +u )+
12 x,xB u +

22 y,yB  u +
12D x,xφ +

26D (
x,y y,x+φ φ )+

22D y,yφ +
,yy y yM u + *

,yy y yM φ +
,xy y xM u + *

,xy y xM φ +
,xz z yM u ]

,y
 

-
45A (

,x xw +φ )-
44A (

,y yw +φ )-(
, ,xz y x xz y xN u M φ+ +

zz yxN φ +
, ,zy y y zy y yN u M φ+ )+

ym = 3 / 12yhρ φɺɺ  

(9) 

where 

(
ij ij ijA ,B ,D )

ij= C∫ ( 21,z,z ) dz ( i, j = 1, 2, 6 ) 

(
ij ij ijA ,B ,D )

ij=  Cκ∫ ( 21,z,z ) dz  ( i, j = 4, 5) 

( *
ij ijN ,M , ijM )

ij= σ∫ ( 21,z,z ) dz  ( i, j = x, y, z ) 

(10) 

Here ijA , ijB  and ijD are the stiffness coefficients; ijN , ijM  and *
ijM  are the arbitrary load resultants. ijC ’s are the elastic 

constants and κ  is the shear correction factor. xf , yf , zf , xm  and ym  are the lateral loadings. All integrations are done 

through the plate thickness from -h/2 to h/2.  

In order to simulate the influence of CNTs on the core layer, the extended rules of mixture micromechanical model are used to 

evaluate the effective Young’s modulus and shear modulus: 

11 1 11
CN M

CN ME V E V Eη= +  (11) 
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22 22

CN M
CN M

V V

E E E

η
= +  

3

12 12

CN M
CN M

V V

G G G

η
= +  

where CNV  and MV  are the volume fractions of the CNTs and the matrix of nanocomposite plate, respectively. 11
CNE , 22

CNE and 12
CNG  

are Young's and shear modules of the CNTs; ME  and MG  are Young's and shear modules of the matrix; 1η , 2η  and 3η  are the 

CNT efficiency parameters. The size-dependent CNT efficiency parameters can be obtained from the rule of mixture. It is assumed 

that the single-walled CNT reinforced material of the core layer of the studied hybrid nanocomposite plate has uniform (FG-U) or 

symmetric functionally graded (FG-X, FG-O) distributions. For symmetric-type nanocomposite plates, the volume fraction CNV  of 

CNTs is assumed as: 

FG-O： *2
( ) 2(1 )CN CN

z
V z V

h
= −  (12) 

FG-X： *( ) 4( )CN CN

z
V z V

h
=  (13) 

where * / ( ( / )(1 ))CN CN CN CN M CNV w w wρ ρ= + − . CNw  is the mass fraction of CNTs. CNρ  and Mρ  are the respective CNTs and matrix 

mass densities, and are related to the mass density of the core layer by 

CN CN M MV Vρ ρ ρ= +  (14) 

and 

1CN MV V+ =  (15) 

3. Dynamic instability analyses  

The hybrid nanocomposite plate investigated in this study consists of three layers. The top and bottom layers are made of a 
metal and the material of the middle layer is a functionally graded CNTs-reinforced composite. The configuration of functionally 
graded CNTs-reinforced hybrid nanocomposite plate is shown in Fig. 1. In the core layer of the hybrid nanocomposite plate, the 
matrix is isotropic and the CNTs are uniformly distributed or functionally graded along the thickness direction. The CNTs are 
assumed to be aligned and straight with a uniform layout. Different distribution profiles of CNTs are shown in Fig. 2. FG-U stands 
for a uniformly distributed CNTs layer. FG-X and FG-O represent two symmetric distributions of the volume fraction of CNTs in the 
functionally graded CNTs-reinforced composite layer.  

Since arbitrary periodic loads in the governing equations (5)-(9) of the hybrid nanocomposite plate will lead to very 
complicated conditions, it is difficult to discuss the results of all cases. Therefore, the object to be investigated in this study is the 
dynamics of a simply supported hybrid nanocomposite plate subjected to a periodic load system, which is composed of pulsating 
longitudinal normal stress and pulsating pure bending stress. Assuming that all other stresses are zero, the stress system equation 
(4) is simplified to 

n 2 /xx mz hσ σ σ= +  (16) 

 

 

Fig. 1. The functionally graded CNTs reinforced composite plate 

       

 FG-U  FG-O  FG-X 

Fig. 2. Different CNTs distributions profiles 
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where 
nσ = cosS D

xx xx tσ σ ϖ+ = cosS D tσ σ ϖ+  and 
mσ = cosSm Dm

xx xx tσ σ ϖ+  = cosSm Dm tσ σ ϖ+ . Sσ , Dσ , Smσ  and Dmσ  are the static and 

dynamic stress components. The only nonzero periodic loads are
n=hxxN σ , 2

n= h / 6xxM S σ , * 3
xx nM =h / 12σ , where bending ratio 

m n/S σ σ=  is the ratio of bending stress to normal stress. When S=0, there exists no initial bending stress. The lateral loads and 

body forces 
xf , 

yf , 
zf , 

xm  and 
ym  are taken to be zero. The hybrid nanocomposite plate has boundary edges along x=0 and a, 

y=0 and b, all of which are simply supported. Based on the Navier solution procedure, the displacement fields satisfying the above 

geometric boundary conditions can be given as follows 

x mnu = h U∑∑ (t) cos( x/amπ ) sin( y/bnπ ) 

y mnu h V=∑∑ (t) sin( x/amπ ) cos( y/bnπ ) 

mnw h W=∑∑ (t) sin( x/amπ ) sin( y/bnπ ) 

x xmnφ = Ψ∑∑ (t) cos( x/amπ ) sin( y/bnπ ) 

y ymnφ = Ψ∑∑ (t) sin( x/amπ ) cos( y/bnπ ) 

(17) 

Assume that the displacement parameters [ , , , , ]Tmn mn mn xmn ymnU V W Ψ Ψ  can be expressed as ∆ (t)=∆ f(t). ∆ (t) and ∆  denote 

the time dependent and time independent displacement vector, respectively. Substituting Eq. (17) into governing equations (5)-(9) 

and applying the Galerkin method leads to the governing matrix equation of motion 

{([K]+[G]) f(t)+ [M] ( 2d f(t)/dt)}∆ =0 (18) 

where [K], [G] and [M] are the elastic stiffness matrix, geometric stiffness matrix and consistent mass matrix, respectively. 

Equation (18) represents the following three eigenvalue problems: (i) free vibration, (ii) static buckling stability and (iii) dynamic 

instability. 

To study the buckling of the hybrid nanocomposite plate, by neglecting the consistent mass term [M] in Eq. (18) and setting 

f(t)=1, the eigenvalue equation for the static buckling loads 
xxN  is expressed as follows 

{[K]-(
xxN )[G]}∆ =0 (19) 

By setting [G]=0 and f(t)= i te ω , the eigenvalue equation of free vibration is obtained from Eq. (18) as 

{[K]- 2ω [M]}∆ =0 (20) 

which will be used to analyze the free vibration of the hybrid nanocomposite plate. The condition for the existence of the 

nontrivial solutions is that the determinant of coefficients should vanish. Hence, the natural frequency n can be obtained from 

the equation 

2[K]- [M]nω =0 (21) 

The non-zero periodic load in Eq. (16) for the dynamic stability analysis of the hybrid nanocomposite plate can be written as  

xxN =-(
Sα crP +

Dα crP cos tϖ ) (22) 

where 
Sα =h Sσ /

crP , 
Dα =h Dσ /

crP . 
crP  is the buckling load of the hybrid nanocomposite plate. 

Sα  and 
Dα  are the static and 

dynamic load parameters, respectively. Substituting Eq. (22) into Eq. (18) gives  

{([K]+(
Sα )

crP [G]+(
Dα )

crP [G] cos tϖ )f(t)+ [M]( 2d f(t)/dt)}∆ =0 (23) 

Equation (23) expresses the dynamic stability of the hybrid nanocomposite plate under periodic in-plane loads. To determine 

the instability regions, the Bolotin’s method is used to obtain the dynamic instability boundary. Here the periodic solutions with 

period 2T and T are represented by Fourier series as 

f(t)∆ =
1,3,5...

( sin cos )
2 2k k

k

k t k t
a b

ϖ ϖ∞

=

+∑  (24) 

f(t)∆ =
0,2,4...

( sin cos )
2 2k k

k

k t k t
a b

ϖ ϖ∞

=

+∑  (25) 

where 
ka  and 

kb  are arbitrary time invariant constants. By substituting the Fourier series solutions (24) and (25) into Eq. (23) and 

separating sine and cosine parts, two sets of linear algebraic equations in 
ka  and 

kb  are obtained for each solution. The 

eigenvalue system of the dynamic stability boundaries with period 2T is given as 

21 1 1
2 4 2

291
2 4

[ ] [ ] [ ] [ ] [ ] .....

[ ] [ ] [ ] [ ] .....

... ... .....

S cr D cr D cr

D cr S cr

K P G P G M P G

P G K P G M

α α ϖ α

α α ϖ

+ ± −

+ − = 0 (26) 
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For the period T, the eigenvalue systems are 

2 1
2

21
2

[ ] [ ] [ ] [ ] .....

[ ] [ ] [ ] 4 [ ] .....

... ... .....

S cr D cr

D cr S cr

K P G M P G

P G K P G M

α ϖ α

α α ϖ

+ −

+ − = 0 (27) 

and 

2

[ ] [ ] [ ] .....

[ ] [ ] [ ] [ ] .....

... ... .....

S cr D cr

D cr S cr

K P G P G

P G K P G M

α α

α α ϖ

+

+ − = 0 (28) 

The stability-instability boundary frequencies can be obtained from the determinants (26)-(28). The determinants are infinite, 

but the results can be determined by considering only the first few terms. The boundary of primary unstable zone with a period of 

2T is usually much larger than that of the secondary unstable region with a period of T, so it is of greater importance in practical 

engineering. Since the first-order approximation (
1a  and 

1b ) of the primary unstable region is capable of obtaining solutions with 

sufficient accuracy [35], the boundary of the primary instability zone of dynamic stability can be determined as [27] 

| 21 1
2 4[ ] [ ] [ ] [ ]S cr D crK P G P G Mα α ϖ+ ± − |=0 (29) 

4. Numerical results and discussions   

In this study, the dynamic instability of a three-layer hybrid nanocomposite plates is investigated, which is composed of two 

aluminum laminates and a functionally graded CNT-reinforced composite layer. The top and bottom layers are aluminum, and the 

core layer of the hybrid composite plate is CNTs reinforced composite. The single-walled CNTs are assumed to be uniformly 

distributed (FG-U) or symmetrical functionally graded (FG-X and FG-O). The material properties of the functionally graded 

CNT-reinforced composite layer gradually change in the thickness direction, and are evaluated by a micromechanical model.  

The middle layer of the hybrid plate is a CNT-reinforced nano-layer, and PMMA is selected as the matrix. The total thickness of 

the hybrid Al/nanolayer/Al plate is h; 
1h , 

2h  and 
3h  are the individual layer thickness of Al, nanolayer and Al, respectively. The 

layer thickness ratio is defined as γ =
CNTt /

Alt =
2 1 2 3/ /h h h h= , 

1h =
3h , so an increase in the layer thickness ratio indicates an 

increase in the core layer thickness. For the case of γ =0, the hybrid plate is a pure aluminum plate. On the other hand, when γ  
is 

infinite, the hybrid plate is a pure nanocomposite plate. The material properties of Al and PMMA in the analysis are as follows [36, 

37]: 

Aluminum: E=72GPa, G=28Gpa, υ =0.33, ρ =2780 3/kg m     PMMA: 
mυ =0.34, 

mρ =1150 3/kg m , 
mE =2.23 GPa,  

The material properties of CNTs are assumed to be single-walled CNTs of the armchair (10, 10) type and are determined by 

molecular dynamic simulations [38, 39]. The Young’s and shear modulus are 11
CNE =5.6466TPa, 22

CNE =7.0800TPa, 12
CNG = 1.9445TPa, and 

the density is CNTρ =1400 3/kg m . The CNT efficiency parameters ( 1η , 2η , 3η ) can be determined by matching the effective 

material properties of CNT obtained from the rule of mixture. The CNT efficiency parameters from the molecular dynamics 

simulations are given in Table 1 [37, 40]. These efficiency parameters alongside with 12 13G G= , 23 131.2G G= will be used in all the 

following examples.  

The following non-dimensional coefficients of excitation frequency Ω = 2 2/M Mb h Eϖ ρ , instability region ∆Ω = UΩ - LΩ  and 

dynamic instability index DIΩ =100 ∆Ω /( nfω crK ) are defined and used to evaluate the dynamic stability of the hybrid 

nanocomposite plates. UΩ  and LΩ  are the upper and lower excitation frequency, respectively. nfω  is the non-dimensional 

fundamental natural frequency given by nfω = 2 2/M Mb h Eω ρ  and crK is the dimensionless critical buckling load denoted by 

crK = 2 4/xx MN b E h . The dynamic instability index DIΩ  indicates the relationship between the unstable region, the natural frequency 

and the buckling load. The influence of various variables of the hybrid nanocomposite plate on its dynamic instability will be 

examined and discussed next. The accuracy of the presented model for the analysis of the dynamic behaviors of the hybrid plate 

was verified in the authors’ earlier study [24]. To prove the accuracy of the proposed method for the nanocomposite plate, the 

natural frequencies and critical buckling loads for various single CNT reinforced composite square plates are presented and 

compared with those by other investigators in Tables 2 and 3. It can be observed that the presented results are in close agreement 

with those by Alibeigloo and Emtehani [41], Lei et al. [42] and Malekzadeh and Shojaee [43]. Through these comparisons, the 

reliability and accuracy of the present computer program is assured. 

 

Table 1. The single walled CNTs efficiency parameters 

*

CN
V  1 2 3 

0.11 0.149 0.934 0.653 

0.14 0.150 0.941 0.659 

0.17 0.149 1.381 0.967 

0.28 0.141 1.585 1.109 



Dynamic Response of FG CNT-Reinforced Hybrid Composite Plates  

 

Journal of Applied and Computational Mechanics, Vol. xx, No. x, (2021), 1-14 

7 

Table 2. Effects of CNT volume fraction and distribution on the natural frequency for CNT reinforced square plates (a/b =1, a/h=10)  

Type Source 
 *

CN
V   

0.11 0.14 0.17 

FG-U 
A 13.555 14.357 16.838 

Present 13.229 14.025 16.571 

FG-O 
A 11.332 12.125 14.103 

Present 11.368 12.195 14.183 

FG-X 
A 14.668 15.388 18.173 

Present 14.216 14.982 17.908 

A: Comparative data by Alibeigloo and Emtehani [41] 

Table 3. Effects of CNT distribution types on the critical buckling load for CNT reinforced square plates (a/b =1, a/h=10, *

CN
V =0.11) 

Source 
 Type  

FG-U FG-O FG-X 

B 30.9076 17.7534 40.8005 

C 31.5258 19.0745 41.7608 

Present 31.4551 18.9875 41.6484 

B: Comparative data by Lei et al. [42] 
C: Comparative data by Malekzadeh and Shojaee [43]  

 

Figures 3 and 4 present the effects of static and dynamic load parameters on the excitation frequency ratio Ω / nfω , 

respectively. It can be seen, the primary instability region appears near the position where Ω  is equal to 2 nfω , that is, Ω / nfω =2. It 

is evident that the compressive static load ( Sα >0) produces a softening effect on the excitation frequency ratio and reduces the 

instability region. On the other hand, the tensile static load ( Sα <0) has a reverse effect. Hybrid nanocomposite plates with various 

layer thickness ratios, CNT volume fractions and CNT distribution types also have the same results. It is attributable to that the 

excitation frequency ratio is independent of CNT volume fraction and distribution type. Regardless of the compressive or tensile 

static load, the distance between the two boundaries increases with the static load parameter. The increase of the dynamic load 

parameter increases the upper excitation frequency ratio and decreases the lower excitation frequency ratio. The influence of 

dynamic load parameters on the excitation frequency ratio is more significant than that of static load parameters.  
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Fig. 3. Effect of static load types on excitation frequency ratio (a/b=1, a/h=10, D/|S|=0.3, S=0) 
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Fig. 4. Effect of dynamic load parameters on excitation frequency ratio (a/b=1, a/h=10, S =0, S =0) 
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Table 4. Dynamic stability of hybrid nanocomposite plates with different layer thickness ratios and static 

load parameters (a/b=1, a/h=10, *

CN
V =0.28, FG-X type, D/S=0.3, S=0) 

γ   
  Sα    

0 0.2 0.4 0.6 0.8 

0 UΩ  11.6756 10.6370 9.4853 8.1729 6.6048 

 LΩ  11.6756 10.2453 8.5798 6.5007 3.3024 

 ∆Ω  0 0.3917 0.9055 1.6722 3.3023 

 
DIΩ  0 1.9435 4.4932 8.2976 16.3862 

5 UΩ  12.9034 11.7555 10.4827 9.0323 7.2992 

 LΩ  12.9034 11.3226 9.4820 7.1842 3.6494 

 ∆Ω  0 0.4329 1.0008 1.8481 3.6498 

 
DIΩ  0 2.3820 5.5070 10.1698 20.0840 

10 UΩ  12.8603 11.7163 10.4478 9.0023 7.2749 

 LΩ  12.8603 11.2849 9.4504 7.1604 3.6376 

 ∆Ω  0 0.4314 0.9974 1.8419 3.6374 

 
DIΩ  0 2.6233 6.0647 11.1997 22.1173 

∞  UΩ  10.0060 9.1158 8.1288 7.0041 5.6601 

 LΩ  10.0060 8.7802 7.3528 5.5709 2.8297 

 ∆Ω  0 0.3357 0.7761 1.4332 2.8304 

 
DIΩ  0 4.9959 11.5501 21.3297 42.1245 

 
 

Table 5. Dynamic stability of hybrid nanocomposite plates with different layer thickness ratios and dynamic 

load parameters (a/b=1, a/h=10, *

CN
V =0.28, FG-X type, S=0.1, S=0) 

γ   
  

Dα    

0 0.4 0.8 1.2 1.6 

0 UΩ  11.0765 12.2455 13.3122 14.2996 15.2231 

 LΩ  11.0765 9.7685 8.2559 6.3950 3.6922 

 ∆Ω  0 2.4770 5.0563 7.9046 11.5309 

 
DIΩ  0 12.2907 25.0896 39.2229 57.2166 

5 UΩ  12.2412 13.5332 14.7121 15.8034 16.8240 

 LΩ  12.2412 10.7957 9.1240 7.0674 4.0802 

 ∆Ω  0 2.7375 5.5881 8.7360 12.7438 

 
DIΩ  0 15.0638 30.7503 48.0725 70.1266 

10 UΩ  12.2004 13.4880 14.6630 8.7067 16.7678 

 LΩ  12.2004 10.7597 9.0937 15.7506 4.0669 

 ∆Ω  0 2.7283 5.5694 8.7067 12.7009 

 
DIΩ  0 16.5895 33.8648 52.9413 77.2285 

∞  UΩ  9.4925 10.4944 11.4086 12.2548 13.0463 

 LΩ  9.4925 8.3716 7.0752 5.4803 3.1638 

 ∆Ω  0 2.1228 4.3334 6.7745 9.8824 

 
DIΩ  0 31.5940 64.4942 100.8251 147.0811 

 

The effect of the layer thickness ratio on the excitation frequency, instability area and dynamic instability index of FG-X type 

hybrid nanocomposite plates under various static and dynamic load parameters are showed in Tables 4 and 5. The static load 

parameter varies from 0 to 0.8 and the ratio of Dα / Sα  is kept at 0.3 in Table 4. The increasing static load parameter increase both 

the upper and lower excitation frequencies, respectively. However, the increase in the dynamic load parameter enlarges the upper 

excitation frequency but reduces the lower one. The excitation frequencies vary against the static and dynamic load parameters in 

a similar way as shown Figs. 3 and 4. The layer thickness ratio always increases the dynamic instability index regardless of the 

magnitude of the static or dynamic load parameter. A higher layer thickness ratio and load parameter result in a larger dynamic 

instability index. Thus, the hybrid nanocomposite plate with a larger layer thickness ratio is more dynamically unstable under 

higher load parameters. 

The effects of different CNT distribution types on the dynamic instability of hybrid nanocomposite plates under various static 

and dynamic load parameters are presented in Tables 6 and 7, respectively. It can be seen that the FG-X type CNT distribution 

profile causes a larger instability region, but produces a smaller dynamic instability index. On the other hand, the distribution of 

FG-O type CNTs leads to a decrease in unstable regions and an increase in the dynamic instability index. The comparison between 

the three CNT distribution types shows that the hybrid nanocomposite plate with FG-X core is the most dynamically stable, 

followed by FG-U and FG-O cores. In general, the influence of the distribution profile on the instability region and the dynamic 

instability index is not as significant as the static and dynamic load parameters. 
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Table 6. Dynamic stability of hybrid nanocomposite plates with different carbon nanotube distribution 

types and static load parameters (a/b=1, a/h=10, *

CN
V =0.28, =10, D/S= 0.3, S=0) 

Core 
type 

 
 Sα   

0 0.2 0.4 0.6 0.8 

FG-U UΩ  12.4114 11.3073 10.0831 8.6880 7.0210 

 LΩ  12.4114 10.8910 9.1205 6.9104 3.5106 

 ∆Ω  0 0.4164 0.9626 1.7776 3.5104 

 
DIΩ  0 2.8226 6.5256 12.0507 23.7979 

FG-O UΩ  11.9190 10.8587 9.6831 8.3434 6.7425 

 LΩ  11.9190 10.4589 8.7587 6.6364 3.3716 

 ∆Ω  0 0.3998 0.9244 1.7070 3.3710 

 
DIΩ  0 3.0672 7.0911 13.0949 25.8594 

FG-X UΩ  12.8603 11.7163 10.4478 9.0023 7.2749 

 LΩ  12.8603 11.2849 9.4504 7.1604 3.6376 

 ∆Ω  0 0.4314 0.9974 1.8419 3.6374 

 
DIΩ  0 2.6233 6.0647 11.1997 22.1173 

 
 

Table 7. Dynamic stability of hybrid nanocomposite plates with different carbon nanotube distribution 

types and dynamic load parameters (a/b=1, a/h=10, *

CN
V =0.28, γ =10,

S
α =0.1, S=0). 

Core 
type 

 
 

Dα   

0 0.4 0.8 1.2 1.6 

FG-U UΩ  11.7745 13.0172 14.1512 15.2008 16.1825 

 LΩ  11.7745 10.3841 8.7762 6.7980 3.9249 

 ∆Ω  0 2.6331 5.3750 8.4027 12.2576 

 
DIΩ  0 17.8500 36.4381 56.9641 83.0968 

FG-O UΩ  11.3074 12.5007 13.5897 14.5977 15.5404 

 LΩ  11.3074 9.9722 8.4281 6.5284 3.7694 

 ∆Ω  0 2.5285 5.1616 8.0692 11.7710 

 
DIΩ  0 19.3969 39.5958 61.9005 90.2972 

FG-X UΩ  12.2004 13.4880 14.6630 8.7067 16.7678 

 LΩ  12.2004 10.7597 9.0937 15.7506 4.0669 

 ∆Ω  0 2.7283 5.5694 8.7067 12.7009 

 
DIΩ  0 16.5895 33.8648 52.9413 77.2285 

 
 
Table 8. Dynamic stability of hybrid nanocomposite plates with different carbon nanotube volume fractions 

and static load parameters (a/b=1, a/h=10, FG-X type, =10, D/S =0.3, S=0) 

*
CNV   

 Sα   

0 0.2 0.4 0.6 0.8 

0 UΩ  9.4340 8.5948 7.6643 6.6039 5.3368 

 LΩ  9.4340 8.2783 6.9326 5.2528 2.6687 

 ∆Ω  0 0.3165 0.7316 1.3511 2.6681 

 
DIΩ  0 4.8177 11.1381 20.5683 40.6173 

0.11 UΩ  11.0482 10.0654 8.9756 7.7338 6.2499 

 LΩ  11.0482 9.6948 8.1188 6.1515 3.1253 

 ∆Ω  0 0.3706 0.8568 1.5823 3.1247 

 
DIΩ  0 3.5293 8.1594 15.0677 29.7551 

0.14 UΩ  11.4129 10.3976 9.2719 7.9890 6.4562 

 LΩ  11.4129 10.0148 8.3867 6.3545 3.2283 

 ∆Ω  0 0.3829 0.8851 1.6346 3.2279 

 
DIΩ  0 3.3116 7.6561 14.1383 27.9202 

0.28 UΩ  12.8603 11.7163 10.4478 9.0023 7.2749 

 LΩ  12.8603 11.2849 9.4504 7.1604 3.6376 

 ∆Ω  0 0.4314 0.9974 1.8419 3.6374 

 
DIΩ  0 2.6233 6.0647 11.1997 22.1173 

 

Tables 8 and 9 present the effects of various CNT volume fractions on the dynamic instability of FG-X type hybrid 

nanocomposite plates subjected to the static and dynamic load parameters. Tables 8 and 9 indicate that the plate stiffness 

increases with the increase of the CNT volume fraction, which results in a larger instability region, but the dynamic instability 

index is reduced to improve stability. Therefore, the increasing CNT volume fraction has a tendency to enhance the dynamic 

stability of the hybrid nanocomposite plate. Figures 5 and 6 show the effects of static load parameter on the instability region and 
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dynamic instability index for the FG-X type hybrid nanocomposite plates with various CNTs volume fractions. It can be seen that 

the increasing static load | Sα | increases the instability region and dynamic instability index regardless of the CNT volume fraction. 

However, with the increase in CNT volume fraction, the instability region is enlarged but the dynamic instability index is reduced. 

Additionally, the compressive static load ( Sα >0) has a more significant effect on the unstable region and dynamic instability index 

than the tensile static load has. 

 
Table 9. Dynamic stability of hybrid nanocomposite plates with different carbon nanotube volume fractions 

and dynamic load parameters (a/b=1, a/h=10, FG-X type, γ =10,
S
α =0.1, S=0) 

*
CNV   

 
Dα   

0 0.4 0.8 1.2 1.6 

0 UΩ  8.9499 9.8944 10.7564 11.5542 12.3004 

 LΩ  8.9499 7.8931 6.6709 5.1674 2.9836 

 ∆Ω  0 2.0014 4.0855 6.3868 9.3167 

 
DIΩ  0 30.4672 62.1939 97.2283 141.8312 

0.11 UΩ  10.4812 11.5874 12.5968 13.5312 14.4050 

 LΩ  10.4812 9.2436 7.8123 6.0515 3.4941 

 ∆Ω  0 2.3438 4.7845 7.4797 10.9110 

 
DIΩ  0 22.3192 45.5611 71.2262 103.9009 

 UΩ  10.8272 11.9699 13.0126 13.9778 14.8805 

0.14 LΩ  10.8272 9.5487 8.0702 6.2512 3.6093 

 ∆Ω  0 2.4212 4.9425 7.7266 11.2712 

 
DIΩ  0 20.9424 42.7507 66.8326 97.4922 

0.28 UΩ  12.2004 13.4880 14.6630 8.7067 16.7678 

 LΩ  12.2004 10.7597 9.0937 15.7506 4.0669 

 ∆Ω  0 2.7283 5.5694 8.7067 12.7009 

 
DIΩ  0 16.5895 33.8648 52.9413 77.2285 

 

Table 10. Dynamic stability of hybrid nanocomposite plates with different bending stress parameters and 

compressive loads (a/b=1, a/h=10, FG-X type, *

CN
V =0.28, =10, D/S=0.3) 

Sα   
S 

0 5 10 15 20 

0.2 UΩ  11.7163 11.7154 11.7125 11.7077 11.7010 

 LΩ  11.2849 11.2831 11.2776 11.2685 11.2558 

 ∆Ω  0.4314 0.4323 0.4349 0.4392 0.4452 

 DIΩ  2.6233 2.6285 2.6442 2.6705 2.7073 

0.4 UΩ  10.4478 10.4435 10.4306 10.4091 10.3788 

 LΩ  9.4504 9.4417 9.4156 9.3718 9.3098 

 ∆Ω  0.9974 1.0018 1.0150 1.0373 1.0690 

 DIΩ  6.0647 6.0914 6.1719 6.3074 6.5001 

0.8 UΩ  7.2749 7.2503 7.1755 7.0483 6.8642 

 LΩ  3.6376 3.5463 3.2551 2.6929 1.5747 

 ∆Ω  3.6374 3.7040 3.9205 4.3554 5.2895 

 DIΩ  22.1173 22.5226 23.8387 26.4830 32.1633 

Table 11. Dynamic stability of hybrid nanocomposite plates with different bending stress parameters and 

tensile loads (a/b=1, a/h=10, FG-X type, *

CN
V =0.28, =10, D/|S|=0.3). 

Sα   
S 

0 5 10 15 20 

-0.2 UΩ  14.2628 14.2613 14.2570 14.2498 14.2397 

 LΩ  13.9106 13.9098 13.9073 13.9033 13.8977 

 ∆Ω  0.3522 0.3516 0.3497 0.3465 0.3421 

 DIΩ  2.1417 2.1378 2.1263 2.1070 2.0800 

-0.4 UΩ  15.5392 15.5339 15.5180 15.4915 15.4540 

 LΩ  14.8869 14.8839 14.8748 14.8597 14.8385 

 ∆Ω  0.6523 0.6500 0.6432 0.6317 0.6155 

 DIΩ  3.9662 3.9524 3.9109 3.8411 3.7424 

-0.8 UΩ  17.8198 17.8013 17.7455 17.6509 17.5149 

 LΩ  16.6689 16.6581 16.6257 16.5711 16.4935 

 ∆Ω  1.1509 1.1432 1.1198 1.0798 1.0214 

 DIΩ  6.9981 6.9513 6.8092 6.5657 6.2105 
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Figures 7 and 8 present the variations of the instability region and dynamic instability index against the dynamic load 

parameters for the FG-X type hybrid nanocomposite plates under various static loads. The results show that the instability region 

and dynamic instability index increase with the dynamic load. The instability region and dynamic instability index increase with 

the compressive static load ( Sα ＞0), but decrease as the tensile static load ( Sα ＜0) increases. Therefore, increasing the static 

compression load has the effect of making the hybrid nanocomposite plate more unstable under higher dynamic loads. However, 

the compressive static load produces a more significant influence on the instability region and dynamic instability index than the 

tensile one. It is also found that compressive static load will significantly increase the dynamic instability of the hybrid 

nanocomposite plate when it is subjected to a higher dynamic load. 
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Fig. 5. Effect of static load parameters on the instability region for different carbon nanotube volume 
fractions (a/b=1, a/h=10, FG-X type, =10, D/|S|=0.3, S=0) 
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Fig. 6. Effect of static load parameters on the dynamic instability index for different carbon nanotube 
volume fractions (a/b=1, a/h=10, FG-X type, =10, D/|S|=0.3, S=0) 
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Fig. 7. Effect of dynamic load parameters on the instability region for various static load parameters (a/b=1, 
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Table 12. Dynamic stability of hybrid nanocomposite plates under different bending stress parameters and 

dynamic loads. (a/b=1, a/h=10, FG-X type, *

CN
V =0.28, =10, S=0.1) 

Dα   
S 

0 5 10 15 20 

0.4 UΩ  13.4880 13.4877 13.4869 13.4854 13.4834 

 LΩ  10.7597 10.7565 10.7468 10.7305 10.7077 

 ∆Ω  2.7283 2.7312 2.7401 2.7549 2.7758 

 DIΩ  16.5895 16.6074 16.6614 16.7515 16.8782 

0.8 UΩ  14.6630 14.6606 14.6535 14.6416 14.6248 

 LΩ  9.0937 9.0830 9.0509 8.9970 8.9205 

 ∆Ω  5.5694 5.5776 5.6026 5.6446 5.7044 

 DIΩ  33.8648 33.9151 34.0668 34.3223 34.6857 

1.6 UΩ  16.7678 16.7565 16.7223 16.6647 16.5829 

 LΩ  4.0669 3.9890 3.7439 3.2894 2.5022 

 ∆Ω  12.7009 12.7675 12.9783 13.3753 14.0806 

 DIΩ  77.2285 77.6333 78.9153 81.3291 85.6180 
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Fig. 8. Effect of dynamic load parameters on the dynamic instability index for various static load parameters 

(a/b=1, a/h=10, *

CN
V =0.28, FG-X type, =10, S=0) 

 
Tables 10 and 11 show the effects of bending stress parameters on the dynamic stability of FG-X hybrid nanocomposite plates 

under various compressive and tensile loads, respectively. The bending stress increases the instability region and dynamic 
instability index for hybrid nanocomposite plates under compressive loads, but the effect of bending stress is reversed for those 
under tensile loads. Moreover, the effect of bending stress is more significant at higher compressive loads, but it is less obvious at 
lower compressive loads and tensile loads. Table 12 indicates the effects of bending stresses on the dynamic instability of FG-X 
hybrid nanocomposite plates subjected to dynamic loads. The results are similar to those in Table 10 for hybrid nanocomposite 
plates under compressive loads. The bending stress increases the instability region and dynamic instability index, and its effect is 
considerable at higher dynamic loads. 

5. Concluding remarks 

The dynamic behaviors of hybrid nanocomposite plates subjected to an arbitrary periodic load are examined and discussed. 
The preliminary results are summarized as follows: 

1. The excitation frequency, unstable region and dynamic instability index are significantly affected by the layer thickness 
ratio, CNT volume fraction, static and dynamic load parameters. 

2. The excitation frequency increases with the increase of the layer thickness ratio, CNT volume fraction, tensile static load 
and dynamic load, but decreases as the compressive load and bending stress increase. The layer thickness ratio, CNT 
volume fraction, bending stress, static and dynamic load parameter enlarge the unstable region.  

3. The dynamic instability index increases with the increase in the layer thickness, bending stress, static and dynamic 
loading, and reduces as the CNT volume fraction increases. 
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