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Abstract. This work analyses the homogeneous isotropic turbulence by means of the equivalence between Euler
and Lagrange representations of motion, adopting the bifurcation rates associated with Navier–Stokes and kinematic
equations, and an appropriate hypothesis of fully developed chaos. The equivalence of these motion descriptions
allows to show that kinetic and thermal energy cascade arise both from the convective term of Liouville equation.
Accordingly, these phenomena, of nondiffusive nature, correspond to a transport in physical space linked to the
trajectories divergence. Both the bifurcation rates are properly defined, where the kinematic bifurcation rate is shown
to be much greater than Navier–Stokes bifurcation rate. This justifies the proposed hypothesis of fully developed
chaos where velocity field and particles trajectories fluctuations are statistically uncorrelated. Thereafter, a specific
ergodic property is presented, which relates the statistics of fluid displacement to that of velocity and temperature
fields. A detailed analysis of separation rate is proposed which studies the statistics of radial velocity component
along the material separation vector. Based on previous elements, the closure formulas of von Kármán–Howarth and
Corrsin equations are finally achieved. These closures, of nondiffusive kind, represent a propagation phenomenon,
and coincide with those just presented by the author in previous works, corroborating the results of these latter. This
analysis applies also to any passive scalar which exhibits diffusivity.
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1. Introduction

Classical studies [1, 2, 3] analyzed homogeneous isotropic turbulence by means of correlations evolution equations using the Eu-
lerian (or spatial) description of fluid motion. There, velocity and temperature fields ensembles (Eulerian ensembles) were adopted
to define correlations of velocity and temperature, without considering the Lagrangian standpoint i.e the fluid displacement evo-
lution. Although these studies give correlations evolution equations, such works neither explain the energy cascade nor provide
the closure formulas for the convective terms of correlation equations unless specific mathematical structures of such closures are
assumed [4, 5, 6, 7, 8]. The reason for this could be due to the fact that fluid displacement and particles trajectories, which play
important roles in turbulence, are not adequately expressed in Eulerian description, at least in the framework of correlations equa-
tions. Viceversa, such elements are expressly defined in Lagrange standpoint. However, the displacement of a mechanical system
contributes to define the state of motion of this latter, where the corresponding phase space is made by generalized coordinates and
velocities (impulses). The reduction of fluid dynamics phase space to velocity and temperature fields spaces (Eulerian description),
without considering fluid displacement (Lagrangian element), could mean that the continuum particles transport, although incor-
porated in the spatial standpoint, is not properly expressed for the purposes of turbulence description in terms of correlations. On
the other hand, Euler and Lagrange representations are equivalent view points if the fluid motion satisfies very general smoothness
conditions [9]. Therefore, the basic idea of this work is of using the equivalence between the two descriptions to study the energy
cascade and a specific hypothesis of fully developed chaos which establishes the statistical independence of velocity field and fluid
displacement. To justify such hypothesis, the concept of bifurcation rate is first introduced. Such bifurcation rate is the average
frequency at which the bifurcations happen during the chaotic regimes. Specifically, this is the frequency at which the trajectories
intersect ΣD , the hypersurface of phase space where the system jacobian determinant vanishes. Of course, if the trajectories do not
cross ΣD , the system, although nonlinear, will not exhibit chaotic behavior. On the contrary, if trajectories continuously intersect
ΣD , the chaotic behavior is observed and the state variables fluctuate with a rapidity expressed by the bifurcation rate. Specifically,
the present analysis considers two kinds of bifurcation rates: the bifurcation rate associated with Navier–Stokes equations and that
relative to fluid displacement equation.

Although many works were written regarding the homogeneous isotropic turbulence and the closures of correlation equations
[4, 5, 6, 7, 8] [10, 11, 12, 13, 14, 15, 16], to the author’s knowledge an analysis based on both the aspects of bifurcation rates and motion
descriptions has not received due attention. Therefore, the aim of the this work is to study homogeneous isotropic turbulence by
means of a proper hypothesis of fully developed chaos, using both Euler and Lagrange points of view and the bifurcation rate of
nonlinear systems.
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Fig. 1. Scheme of fluid displacement and velocity field.

This work first recall the fundamentals of continuum fluid kinematics useful for the present analysis [9], thereafter, to formulate
the Liouville theorem for both Eulerian and Lagrangian points of view, mass, momentum and heat equations are considered together
to the displacement evolution equation. The obtained set of differential equations is first reduced to the symbolic form of operators.
This allows to define Navier–Stokes bifurcations and kinematic bifurcations as in the case of ordinary differential equations, and
leads to study different aspects of fully developed turbulence some of which ones are just analyzed by the author in previous works
[17, 18, 19, 20, 21]. The novelty of the present work with respect to such articles consists in the following items:

(i) The orders of magnitude of bifurcation rates are estimated by means of a specific analysis which uses the velocity correlation
equation and exploits the properties of bifurcations effects on velocity fields and trajectories. The kinematic bifurcation rate is
shown to be much greater than Navier–Stokes bifurcation rate and this justifies the proposed hypothesis of fully developed chaos
following which velocity field (Eulerian element) and trajectories in physical space (Lagrangian element) are statistically uncorrelated
in fully developed turbulence.

(ii) Through the equivalence between Lagrange and Euler standpoints, kinetic and thermal energy cascade are shown to be
arising from the same transport term of Liouville equation.

(iii) Based on (i) and statistical homogeneity, a specific ergodic property is proposed, which allows to relate the statistics of
Lagrangian description to that of Eulerian point of view.

(iv) A detailed mathematical analysis of separation rate based on the previous items is presented, which leads to estimate the
range of longitudinal velocity component along the material separation vector and the corresponding statistics.

The closures of von Kármán–Howarth equation and Corrsin equation are then achieved through the previous items. These
closures, here derived using the Liouville theorem, coincide with those just obtained by the author in previous articles [17, 18,
19, 20, 21]. These formulas, of nondiffusive type, represent a kind of correlations propagation phenomenon along the separation
distance r, and allow to adequately describe the energy cascade, providing values of skewness of longitudinal velocity derivative
and temperature derivative equal to -3/7 and -1/5, respectively.

2. Background: Kinematics of Continuum Fluids

To study some of the statistical properties of fully developed turbulence, the fundamentals of continuum fluid kinematics are
first renewed according to the classical theoretical formulation [9]. Such fundamentals, regarding the motion representations, will
be useful for present analysis.

In particular, this background (a) remarks that the displacement effects, although incorporated in Euler standpoint, could not
be adequately expressed for the purposes of turbulence representation through correlations, and (b) provides plausible arguments
that displacement fluctuations can be much more rapid than velocity and temperature fields in fully developed turbulence.

To analyze this, the following map is now considered (see schemes of Figs. 1 and 2) [9]

χ(t, .) : X → x(t) (1)

This expresses the referential motion representation which gives the displacement at current time t ̸= t0 of a fluid particle placed
in X (referential positions) at t=t0. Thus, X plays also the role of a label which uniquely identifies a particle that at t=t0 is placed
on X. More in general, the referential configuration is the shape that the fluid occupies at t=t0 or could occupy. Viceversa, X can be
formally expressed in terms of x, through the inverse map χ−1 [9]

x = χ(t,X)

X = χ−1(t,x)
(2)

The velocity of X is then defined as

ẋ ≡ χ̇ ≡
∂χ

∂t
(t,X) (3)

Journal of Applied and Computational Mechanics, Vol. 7, No. 4, (2021), 2221-2237



Turbulent energy cascade through equivalence of Euler and Lagrange motion descriptions and bifurcation rates 2223

Fig. 2. Scheme of fluid displacement and temperature field.

and the temperature of X is written as

ϑm = ϑm(t,X) (4)

Equations (3)–(4) give Lagrangian or referential representation of fluid motion, being χ̇(t,X) and ϑm(t,X) velocity and temperature
variations along the trajectory of X.

Following the Eulerian view point, velocity and temperature fields, u(t,x) and ϑ(t,x), are defined according to the schemes of
Figs. 1 and 2, by means of χ̇, ϑm and the map χ−1

u(t,x) =
∂χ

∂t

(
t,χ−1(t,x)

)
ϑ(t,x) = ϑm

(
t,χ−1(t,x)

) (5)

It is worth to remark that such Eulerian fields are not directly defined as functions of t and x. These are defined starting from
Eqs. (3)–(4), as restrictions of χ̇(t,X) and ϑm(t,X) on the motion χ(t,X) [9]. Although the two representations are equivalent with
each other, and the Eulerian description incorporates the informations of fluid displacement through Eq. (5), unlike the referential
standpoint, the Euler point of view does not express such informations in explicit way as χ(t,X) is implicitly incorporated in u(t,x)
and ϑ(t,x). As the result, the transport effects of χ, very important in turbulence, could not be adequately represented through the
sole knowledge of Eulerian fields, at least for the turbulence description in terms of correlations. Such effects are calculated through
velocity and temperature fields as

χ̇(t,X) = u (t,χ(t,X)) ,

ϑm(t,X) = ϑ (t,χ(t,X))
(6)

Hence, Lagrangian and Eulerian fields are defined in the functions spaces {χ̇(t,X)}×{ϑm(t,X)} and {u(t,x)}×{ϑ(t,x)}, respectively.
At this stage of present analysis, the following should be noted

Remark. As the result of previous definitions, for an assigned motion, there are many different referential descriptions, equally valid, depending
on the referential displacement, whereas the corresponding Eulerian fields u(t,x) and ϑ(t,x) are unique [9].

Remark. Due to huge level of chaos and mixing observed in developed turbulence, according to Eqs. (5)–(6), the various fieldsχ(t,X) are expected
to be much faster than u(t,x). If u(t,x) is a slow growing function of t, then χ(t,X) could exponentially vary with respect to time. Accordingly,
also ϑ(t,x) can be much slower than χ(t,X) and ϑm(t,X).

For sake of our convenience, the ratio between elemental volumes of functions spaces {χ̇(t,X)} × {ϑm(t,X)} and {u(t,x)} ×
{ϑ(t,x)} is now calculated when χ is assigned and x = χ(t,X). This ratio is the absolute value of the determinant of the jacobian J

J =
(

δ (u, ϑ)
δ (χ̇, ϑm)

)
χ

≡ I, (7)

where δ()/δ() stands for functional derivatives defined in the corresponding functions spaces, and the subscript χ here indicates
that J is calculated for χ given and x = χ(t,X). According to Eq. (5) or (6), J identically equals the identity operator I, therefore its
determinant is

det J = det
(

δ (u, ϑ)
δ (χ̇, ϑm)

)
χ

≡ 1, (8)

More in detail, the following functional derivatives, also computed in the same conditions(
δu
δχ̇

)
χ

≡ I,
(

δϑ

δϑm

)
χ

≡ I (9)
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correspond to identity operators, each defined in the relative function space.
The considerations about the fluid temperature apply also to any passive scalar.
Such background gives the starting elements of present analysis regarding some of the statistical properties of developed tur-

bulence, useful for this study.

3. Background: Evolution equations, phase space and motion descriptions

The aim of this section is to define the set of the evolution equations of fluid state variables and the corresponding phase spaces.
To this end, these equations are expressed in infinite domain for both the representations, where the fluid motion is expressed with
respect to an assigned inertial frame R.

The Eulerian representation describes the motion by means of fluid properties functions of t and x. In this case, mass, momen-
tum equations (Navier–Stokes equations) and heat equation are

∇x · u = 0,

u̇ ≡
∂u
∂t

= −∇xu u−
∇xp

ρ
+ ν∇2

xu
(10)

ϑ̇ ≡
∂ϑ

∂t
= −u · ∇xϑ+ κ∇2

xϑ, (11)

Thus, u(t,x) and ϑ(t,x) are the fluid state variables associated with this description. According to Eq. (5), u(t,x) and ϑ(t,x) are linked
to χ(t,X), where this latter does not influence Eqs. (10) and (11), thus χ(t,X) is not a state variable and its evolution is implicitly
included in Eqs. (10).

For Lagrangian point of view, material properties are calculated by tracking fluid particles during the motion. In this case, the
evolution equations can be written in the following way

tr
(
(∇Xχ̇) (∇Xχ)−1

)
= 0,

χ̇(1) ≡ χ̈ ≡
Du
Dt

≡
∂u
∂t

+∇xu u =
1

ρ
∇X · T

(12)

ϑ̇m ≡
Dϑ

Dt
≡

∂ϑ

∂t
+ u · ∇xϑ =

1

ρCp
∇X · q (13)

χ̇ ≡ u (t,χ) = χ(1) (14)

where T and q are stress tensor and heat flux density respectively. In this formulation, Eq. (14) is the evolution equation of fluid
placement, thus χ is a state variable of Lagrangian point of view.

The state variables for Lagrange standpoint are χ̇(t,X), χ(t,X) and ϑm(t,X), whereas those associated with Eulerian representa-
tion are given by u(t,x) and ϑ(t,x), thus the corresponding phase spaces are E and L, being

E = {u(t,x)} × {ϑ(t,x)} ,

L = {χ(t,X)} × {χ̇(t,X)} × {ϑm(t,X)}
(15)

Here, for sake of convenience, E and X ≡ {χ(t,X)} are called Eulerian and Lagrangian sets respectively, and the corresponding sets
of solutions are Euler and Lagrange ensembles.

Observe that, according to Eq. (15) and to remarks of previous section, there is no one–to–one correspondence between the points
of L and those of E . One point of E corresponds to infinite points of L which are all equally valid for the motion description. This
determines a high level of uncertainty of displacement effects which may be unacceptable for the purposes of turbulence description
in terms of correlations. Here, in order to obtain a one–to–one correspondence between E and L which formally preserves all the
informations of fluid displacement, the phase space E is suitably augmented with X , introducing χ̂, the fluid displacement frozen
at current time, whose evolution equation is

˙̂χ = 0 (16)

For what concerns the various quantities which appear in Eqs. (10) and (11), p=p(t,x), ν and κ=k/ρCp are pressure, kinematic
viscosity and thermal diffusivity, respectively, being ρ =const, k and Cp density, fluid thermal conductivity and specific heat at
constant pressure. Here, ν and κ are supposed to be independent of temperature, thus for both the representations, momentum
equations are autonomous with respect to heat equation, whereas the solutions of Eqs. (11) and (13) will depend on Eqs. (10) and (12),
respectively. p is first eliminated through continuity equation, and the momentum equation is given in terms of velocity for both
the representations. Specifically, p is reduced to be a functional of u(t,x) through continuity equation. This makes the momentum
equations integro–differential equations, where p exerts a nonlocal effect [22] on fluid motion.
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4. Bifurcations of Navier–Stokes equations

The bifurcations of evolution equations are now defined as in the case of ordinary differential equations. As Eulerian and
Lagrangian descriptions are equivalent representations, the bifurcations are here considered only for Eqs. (10)–(11). To this end, in
line with Refs. [19, 20], such equations are first reduced to the symbolic form of operators as

u̇ = N(u; ν), (17)

ϑ̇ = M(u, ϑ;κ) (18)

N is a quadratic operator including, among the other terms, the integral nonlinear operator which gives ∇xp as functional of u, i.e.

N = Lu+
1

2
Cu u (19)

First and second terms of Eq. (19) formally represent viscous forces and the contribution of both inertia and pressure forces, respec-
tively, being L and C proper operators. As for Eq. (18), it represents the evolution equation of ϑ, where M linearly acts on ϑ, and
depends on u and κ.

According to Ref. [23], Eqs (17) and (18) are here analyzed supposing that the infinite dimensional phase space E (thus also {u}
and {ϑ}) can be dealt with as a finite-–dimensional manifold. This method of analysis, considered to be valid in the limits of the
formulation of Ref. [23], allows to formally apply the classical bifurcation theory of ordinary differential equations [23, 24, 25] to Eqs.
(17) and (18).

As M is a linear operator, transition and turbulence are caused by the bifurcations of Eq. (17), where ν−1 plays the role of control
parameter. Such bifurcations occur in the points of {u} where the Jacobian ∇uN exhibits at least an eigenvalue with zero real part
(NS–bifurcations), and this occurs when

Σu : DNS ≡ det(∇uN) = 0. (20)

where A ≡ ∇uN is linear with respect to u, i.e.

A ≡ ∇uN = L+ Csu (21)

and Cs u is the symmetrical part of C u, properly defined. The form (20) is a kind of secular equation, representing a hypersurface
Σu ⊂ {u}, where DNS is an infinite Taylor series of u expressed accounting for Eq. (21). As the result, Σu is expected to be a smooth
hypersurface which moves in velocity field set.

4.1 Estimating Navier–Stokes bifurcation rate

During the turbulent motion, the continuous vanishing of DNS corresponds to velocity field fluctuations whose rapidly directly
arises from the rate at which the Navier–Stokes bifurcations happen. This rate, defined by

SNS = lim
T→∞

1

T

∫ T

0
δ(DNS)|

dDNS

dt
| dt (22)

is the average frequency at which the phase trajectories intersect Σu ⊂ {u}, where

dDNS

dt
= DNS tr

(
A−1 dA

dt

)
,

dA
dt

= ∇uA u̇

(23)

in which tr (◦) stands for the trace of ◦. To estimate SNS in homogeneous isotropic turbulence, observe that, the order of magnitude
of the fluctuations of u can be written in terms of SNS as follows

u · u ∼
u · u̇
SNS

(24)

and this leads to estimate SNS as follows

SNS ∽ |
d

dt
lnu|, (25)

being u =
√

⟨u · u⟩E/3, where ⟨◦⟩E denotes the average of ◦ computed over the Eulerian ensamble. On the other hand, the evolution
equation of velocity standard deviation in homogeneous isotropic turbulence [1], allows SNS to be expressed in function of kinematic
viscosity and velocity correlation length

SNS ∽ ν

λ2
T

=
u

λT

1

RT
,

RT =
uλT

ν

(26)

where λT and RT are, respectively, velocity correlation length (Taylor scale), and Taylor scale Reynolds number.

Remark. We conclude this section observing that the NS–bifurcations regard the entire velocity field: these produce a global effect on motion
which influences all points of fluid domain.
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5. Kinematic analysis

The Navier–Stokes bifurcations produce velocity and temperature fields doubling in the sense that all the properties associated
with these fields are doubled, with particular reference to their characteristic scales ℓq and times τq , q = 1, 2,... [20] where q stands
for the number of encountered NS bifurcations when ν →0 plays the role of control parameter of Eq. (17). In detail, consider now a
velocity field at a given time. When ν decreases, after the occurrence of several bifurcations, the velocity field will be represented
by a function of the kind

u (t,x) = u
(

t

τ1
,
t

τ2
, ...,

t

τq
;

x
ℓ1

,
x
ℓ2

, ...,
x
ℓq

)
, (27)

where, according to the theory [23, 26, 27, 24], the turbulence starts when q ≳ 3, 4, thereafter q diverges while ℓk and τk are continu-
ously distributed.

In fully developed turbulence, the minimum of such scales, say ℓmin = min {ℓk, k = 1, 2, ...} ≡ ℓm, is identified with the condition
that inertia and viscosity forces are locally balanced with each other, i.e.

ukℓmin

ν
≈ 1,

ℓmin = uk τm,

λT = u τm.

(28)

Combining Eqs. (28) and eliminating τm, one obtains the relation

λT

ℓmin
≈

u

uk
≈
√

RT (29)

which establishes that ℓmin and uk identify, respectively, Kolmogorov scale and the corresponding velocity. Accordingly, the trajec-
tory of an arbitrary fluid particle, X, calculated following Eq. (27)

χ̇ (t,X) = u
(

t

τ1
,
t

τ2
, ...,

t

τq
;
χ (t,X)

ℓ1
,
χ (t,X)

ℓ2
, ...,

χ (t,X)
ℓq

)
, (30)

is expected to be much more rapid and irregular with respect to velocity field fluctuations.

5.1 Trajectories bifurcations in physical space. Kinematic bifurcation rate

One point of the physical space is of bifurcation for a fluid particle trajectory if ∇xu(t,x) has at least an eigenvalue with zero
real part, and this occurs when its determinant vanishes, i.e.

ΣK : DK ≡ det (∇xu(t,x)) = 0. (31)

Such bifurcations, here called kinematic bifurcations or trajectories bifurcations, directly cause the divergence between contiguous
trajectories in the physical space. Equation (31) defines the surface ΣK in the physical space. Due to analytical structure (27), which
includes many arguments, ΣK is expected to be a non–smooth surface which moves in physical space.

Along one particle trajectory, the kinematic bifurcations happen with a rate, SK , defined by

SK = lim
T→∞

1

T

∫ T

0
δ(DK)|

DDK

Dt
| dt,

where
D◦
Dt

=
∂◦
∂t

+∇x ◦ ·u =
∑
k

(
∂◦
∂t̂k

1

τk
+

∂◦
∂x̂k

·
u
ℓk

)
,

t̂k =
t

τk
, x̂k =

x
ℓk

(32)

and

DDK

Dt
= DK tr

(
(∇xu)−1 D∇xu

Dt

)
,

|
∂DK

∂x̂k
| ≈ |

∂DK

∂x̂h
|, ∀h, k,

(33)

Specifically, SK gives the frequency at which a fluid particle trajectory intersect ΣK . Now, from Eq. (29) and taking into account that
RTmin ≈10 [28], we expect that

|
∂DK

∂t
| <<< |∇xDK · u| (34)

Thus, through Eq. (26), we deduce that, in fully developed turbulence, SK >>> SNS . In fact, taking into account Eqs. (32)–(34) and
that τk and ℓk are both continuously distributed, SK is of the order

SK ∽ u

ℓmin
(35)
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Therefore, comparing this latter with SNS , one obtains

SK

SNS
∽ R

3/2
T (36)

Now, the minimum value of RT in homogeneous isotropic turbulence is of the order of 10 ([28] and references therein), thus

SK

SNS
>>> 1,

inf
{

SK

SNS

}
∽ 40 for RT ∽ 10

(37)

Following Eqs. (37)–(36), the velocity fluctuations observed along particle trajectories are much more rapid than the fluctuations of
velocity field.

Remark. Unlike the NS–bifurcations that exert a global effect on velocity field, the kinematic bifurcations give a local influence on the particles
trajectories that only acts in close proximity of those points of physical domain which satisfy Eq. (31). On the contrary, one Navier–Stokes
bifurcation, determining a doubling of velocity field, also causes a doubling of χ according to Eq. (5). Therefore, such doubling of χ is image of
the corresponding Navier–Stokes bifurcation in the physical space. This agrees with the analysis of Ref. [29], where the energy cascade is studied
by means of a specific bifurcation analysis.

6. Statistical Analysis

The first part of this section deals with the analysis of energy cascade following the Liouville theorem. Such phenomenon is
here identified exploiting the equivalence between Eulerian and Lagrangian standpoints. The statistics of displacement, velocity
and temperature fields is then studied through the previous analysis, and an ergodic property is proposed, which is based on fully
developed chaos and statistical homogeneity.

6.1 Equivalence of Euler and Lagrange descriptions. Liouville theorem. Energy cascade.

The statistical description of motion is given by fluid state variables distribution function, which changes following the Liouville
theorem. For each motion description, this theorem is properly formulated through the equations of motion[30].

The distribution function associated with the Lagrangian standpoint is

PL = P (t, χ̇, ϑm,χ) (38)

whereas the PDF relative to Euler point of view can be obtained from Eq. (38), (7) and (16), considering the equivalence of the two
descriptions, putting x = χ(t,X) in χ̇ and ϑm with χ̂ = χ. This gives

PE = P (t,u, ϑ,χ) (39)

Hence, P satisfies the Liouville theorem associated with the motion equations for both the representations.
In case of Euler representation, the Liouville equation arises from Eqs. (10)–(11) and (16), and reads as follows [30]

∂P

∂t
+

δ

δu
· (P u̇) +

δ

δϑ
·
(
Pϑ̇
)
= 0 (40)

where δ/δu and δ/δϑ are functional derivatives with respect to u and ϑ respectively, being δ/δ · ◦ the divergence of ◦ in the proper
functions space. Second and third term of Eq. (40) provide the contribution of stress tensor and heat flux to ∂P/∂t, and the effect
kinetic and thermal energy cascade. These latter are here expressed by H, being

H = −
δ

δu
· (P∇x uu)−

δ

δϑ
· (P∇x ϑ · u) (41)

where first and second terms give, respectively, kinetic and thermal energy cascade contribution to rate of P .
On the other hand, the Liouville equation written in the Lagrangian framework derives form Eqs. (12)–(13) and (14), and is

expressed as

∂P

∂t
+

δ

δχ̇
· (P χ̈) +

δ

δϑm
·
(
Pϑ̇m

)
+

δ

δχ
· (P χ̇) = 0 (42)

where, the terms appearing in Eq. (40) are linked to those of Eq. (42) through

δ

δχ̇
(◦) =

δ

δu
(◦)
(
δu
δχ̇

)
δ

δϑm
(◦) =

δ

δϑ
(◦)
(

δϑ

δϑm

) (43)

Due to equivalence of the two motion descriptions, Eq. (42) is equivalent to Eq. (40) if x = χ(t,X) in Eq. (43). From Eq. (9) (δu/δχ̇)χ
and (δϑ/δϑm)χ are both identity operators, thus combining Eqs. (42) and (40) with Eqs. (41), one obtains H in terms of derivatives
with respect to χ, i.e.

H =
δ

δχ
· (P χ̇) (44)
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As δ/δχ · (P χ̇) expresses the transport of P in physical space and provides both kinetic and thermal energy cascade, these latter
consist in a transport phenomenon, where the following vector

P


∇xuu

∇xϑ · u

χ̇

 , (45)

being a solenoidal field in E × X , does not modify ∂P/∂t, in particular does not influence neither the kinetic energy rate nor the
thermal energy rate.

It is worth to remark that this formulation, Eqs. (40)–(42) and (44) hold, in particular, for the temperature. More in general, such
analysis applies, without lack of generality, to any passive scalar which exhibits diffusivity.

6.2 Statistical independence of fluid displacement and velocity field.

At this stage of the present study, we can say that, in fully developed turbulence, the fluid displacement fluctuations are indepen-
dent of velocity field. To justify this, consider now the trajectory of a single particle X. Following Eq. (37), the fluctuations of χ(t,X)
are much faster than velocity field. In detail, during the motion of X, the time interval between two contiguous NS–bifurcations
will contain a statistically significant number of kinematic bifurcations, expecially when RT is very high. Hence, the velocity field
variations are expected to be substantially irrelevant on the statistics of fluctuations of χ, where the distribution of the latter does
not depend on the particular realization of u(t,x). Viceversa, the time variations of χ(t,X) does not influence neither u(t,x) nor
ϑ(t,x) by definition. Thus the fluctuations of χ are supposed to be statistically independent of velocity and temperature fields and
this suggests that P (t,u, ϑ,χ) can be factorized as follows

P (t,u, ϑ,χ) = F (t,u, ϑ)Pχ(t,χ) (46)

Equations (46) and (44) represent important elements of this study. Specifically, Eq (46) represents the hypothesis of fully developed
chaos of this analysis, and Eq. (44) describes the energy cascade phenomenon. Pχ, F and P are really functionals of the correspond-
ing fields, defined in the functions spaces X , E and E × X , respectively. F , defining the Eulerian ensemble, provides the statistics of
velocity and temperature fields, whereas Pχ expresses the statistics of fluid displacement (Lagrangian ensemble).

For what concerns Eq. (46), it is supported by the results of Refs. [31, 32] (and references therein), where it is observed the that:
a) χ̇ = u(t,χ) produce chaotic trajectories also for relatively simple mathematical structure of u(t,x) (also for steady fields!). b) The
flows represented by u(t,χ) stretch and fold continuously and rapidly generating a significant level of particles trajectories mixing.

6.3 Ergodic property.

Based on previous analysis, an ergodic property relating F and Pχ is here presented.
Although χ(t,X) is statistically independent of the statistics of u(t,x) and ϑ(t,x), Pχ is linked to F . This arises from fully

developed chaos, statistical homogeneity and from SK/SNS >>1. To formalize this, consider now the following quantity

Υ(t,x1,x2, ...,xn) = Υ (u(t,x1), ...,u(t,xp);ϑ(t,xp+1), ..., ϑ(t,xn)) , (47)

The average of Υ calculated for x1 + χ, ..., xn + χ as follows

⟨Υχ⟩ = lim
T→∞

1

T

∫ T

0
Υχ dt,

Υχ ≡ Υ(t,x1 + χ, ...,xn + χ),

χ = χ(t,X), ∀X ∈ {X} ,

(48)

can be also expressed in terms of Pχ and F by means of the Birkhoff ergodic theorem

⟨Υχ⟩ ≡
∫
E

∫
X

PχFΥ(t,x1 + χ, ...,xn + χ)dXdE (49)

being
∫
X and

∫
E functional integrals, and dX and dE the corresponding elemental volumes in the function spaces X and E . Because

of fully developed chaos and taking into account that SK/SNS >>> 1, the average of Υχ calculated over X

⟨Υχ⟩X =

∫
X

PχΥ(t,x1 + χ, ...,xn + χ)dX (50)

is supposed to be independent of the specific realization of u and ϑ. This implies that ⟨Υχ⟩=⟨Υχ⟩X . On the other hand, due to
homogeneity, the average of Υχ calculated over E ,

⟨Υχ⟩E =

∫
E
F Υ(t,x1 + χ, ...,xn + χ) dE, (51)

does not depend on χ, therefore ⟨Υχ⟩=⟨Υχ⟩E .
Hence, the link between the two ensembles consists in a kind of ergodic property where

⟨Υχ⟩E = ⟨Υχ⟩X , (52)
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While Eq. (46) statistically separates Eulerian and Lagrangian ensembles, Eq. (52) gives the link between F and Pχ in case of
homogeneous turbulence.

In particular, the statistics of velocity fluctuations along a fluid particle trajectory χ̇ ≡ u(t,χ) is independent of F and follows
Pχ. In fact, such statistics can be expressed by means of F and Pχ, through the Frobenius–Perron equation

Pχ̇(t, χ̇) =

∫
X

∫
E
F (t,u, ϑ)Pχ(t,χ)δ(χ̇− u(t,χ))dXdE (53)

Due to fully developed turbulence, the integral over X of Eq. (53) is expected to be independent of the particular realization of velocity
field, thus Pχ̇(t, χ̇) is estimated as

Pχ̇(t, χ̇) =

∫
X

Pχ(t,χ)δ(χ̇− u(t,χ))dX (54)

Hence, χ̇(t,X) and u(t,x) are statistically independent variables related to Pχ and F , respectively.

7. Trajectories divergence in fully developed turbulence.

Due to very frequent kinematic bifurcations and fluid incompressibility, contiguous particles trajectories diverge with each other,
exhibit a huge level of chaos showing a continuous relative velocity distribution. The trajectories separation evolution is given by
the following equations

χ̇ = u(t,χ),

ξ̇ = u(t,χ+ ξ)− u(t,χ),

(55)

where χ(t,X) and χ(t,X′) = χ(t,X)+ξ(t,X′,X) represent two trajectories associated with the particles X and X′, being ξ their relative
separation vector. The trajectories separation rate is quantified by the radial velocity component calculated for |ξ| = r as

ξ̇ξ =
ξ̇ · ξ
ξ · ξ

r = (u(t,χ+ ξ)− u(t,χ)) ·
ξ

|ξ|
(56)

Now, fluid incompressibility and kinematic bifurcations have significant implications on the interval of variations of ξ̇ξ and on the
statistics of the latter. To analyse this, consider now the representation of ξ in a proper frame and statistical isotropy

ξ =
3∑

k=1

ξkek ≡
3∑

k=1

ζk eφk(t)ek,

φk(0) = 0, k = 1, 2, 3

(57)

where E ≡ (e1, e2, e3) is an orthogonal unit vectors system which rotates with respect to the inertial frame R with angular velocity
ω depending on the local fluid motion, being ξk ≡ ζke

φk the coordinates of ξ in E. Specifically, E is chosen in such a way that e1 is
the direction of the local maximum growth rate –φ1– of ln |ξ|, whereas e2, e3 are associated with φ2 and φ3, respectively. ζk=ζk(t)
and φk=φk(t), k=1, 2, 3 are slow growing functions of t. The fluid incompressibility provides

3∑
k=1

φ̇k(t) = 0, (58)

Next, the statistical isotropy, gives a condition over φk compatible with the incompressibility Eq. (58). This is analytically written as

φk(t) = φ(t) cos(β +
2

3
π(k − 1)), k = 1, 2, 3 (59)

As ξ is the separation vector between two fluid particles, φ(t) is a Lipschitz monotone differentiable function of t such that

∀t ∈ (−∞,∞) , 0 < φ̇(t) ≤ L < ∞

lim
t→±∞

φ(t) = ±∞,

lim
t→±∞

inf φ̇ = 0,

lim
t→±∞

sup φ̇ = L < +∞,

(60)

Furthermore, as e1 corresponds to the maximal rising rate direction of ln |ξ|, φ1 is maximum following Eq. (59), and this gives β = 0
for φ > 0, i.e.

φ1(t) = φ(t),

φ2(t) = φ3(t) = −
φ(t)

2

(61)
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Now, to identify the interval of ξ̇ξ, this latter is first expressed in terms of ζk and φk as follows

ξ̇ξ =
ξ̇ · ξ
ξ · ξ

r =

3∑
k=1

(
ζ̇kζk + ζk

2φ̇k

)
e2φk

3∑
k=1

ζk
2e2φk

r (62)

The interval endpoints of ξ̇ξ are estimated through the limits for t → ±∞ of Eq. (62) taking into account that φ and ζk are slow
growth functions of t, being φ also monotonic. These are

inf
{
ξ̇ξ

}
= lim

t→−∞
inf ξ̇ξ = −

L r

2
,

sup
{
ξ̇ξ

}
= lim

t→+∞
sup ξ̇ξ = L r

(63)

Therefore

ξ̇ξ ∈
(
−
M

2
,M

)
,

M = r L

(64)

Based on previous analysis, these endpoints are independent of the particular realization of velocity field, and such limits can be
also obtained by supposing that the velocity field is frozen at a given instant.

Moreover, from Eq. (57), ξ tends to align e1, the maximum rising rate direction of ln |ξ|. For this reason, the relative velocity is
usefully expressed in the following form

ξ̇ =
ξM − ξ

τ
+ ω × ξ,

ξM = ξ + τ

3∑
k=1

ekζkeφk

(
ζ̇k

ζk
+ φ̇k

)
≈ ζ1e1eφ,

τ =
1

sup φ̇
=

1

L

(65)

Accordingly, ξ̇ξ is related to r and ξM through the following equation

ξ̇ξ −
ξM

τ
cosα+

r

τ
= 0,

where α = ξ̂ξM ,

(66)

Equation (65) is the extention of the alignment property of the classical Lyapunov vectors presented in [33] which is here applied
to finite–scale separation vectors ξ where the variations of this latter are given by φ, a monotonic Lipschitz function of t. This will
contribute to describe the turbulent energy cascade, quantifying such phenomenon.

It is worth to remark that the two radial components of velocity difference

∆ur = (u(t,x+ r)− u(t,x)) ·
r
r
= u′

r − ur,

ξ̇ξ = (u(t,χ+ ξ)− u(t,χ)) ·
ξ

r
= u′

ξ − uξ

(67)

are two different quantities described by two different statistics: while ∆ur varies according to the Navier–Stokes equations, ξ̇ξ
changes following the alignment property of ξ, therefore ∆ur and ξ̇ξ are represented by F and Pχ, respectively. In other words, ∆ur

is described by Eulerian ensemble, whereas ξ̇ξ follows the Lagrangian point of view. Nevertheless, in isotropic turbulence, the mean
square of ∆ur and ξ̇ξ are the same. This can be shown taking into account that the velocity correlation tensor is [1, 28]

⟨Rij⟩ ≡
⟨
u⊗ u′⟩

E ≡
⟨
uiu

′
j

⟩
E = u2

[
−

1

2r
f ′rirj +

(
f +

r

2
f ′
)
δij

]
(68)

and the separation vector ξ can be expressed in terms of r through its canonical representation (57)

ξ = Qr (69)

being Q a fluctuating orthogonal matrix giving the orientation of ξ with respect to R following Eq. (57), f(t, r) = ⟨uru′
r⟩E/u2 is the pair

correlations of velocity longitudinal components, and u ≡
√

⟨u · u⟩E/3. Therefore, accounting for isotropic hypothesis, combining
Eq. (52) with Υ = u · u′ and Eqs. (68), (69) and (67), one obtains⟨

(ξ̇ξ)
2
⟩
X

=
⟨
(∆ur)

2
⟩
E ≡ 2u2 (1− f) (70)
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This gives the property that, in isotropic turbulence, the relative average kinetic energy between parts of fluid is not influenced
by motion description. Although ξ̇ξ and ∆ur satisfy Eq. (70), these velocity components are distributed following very different
distribution functions, in particular their averages are ⟨

ξ̇ξ

⟩
X

> 0,

⟨∆ur⟩E = 0

(71)

where the first equation of (71) expresses that contiguous trajectories continuously diverge with each other, whereas the second
one establishes that the relative average velocity between two fixed points of space vanishes in homogeneous turbulence.

8. Statistics of separation rate.

In this section, the distribution function of ξ̇ξ, say Pξ̇ξ
, is achieved by means of the previous analysis. To this purpose, we start

from the definition of ξ̇ξ

Σ : Ψ(χ, ξ̇ξ) ≡ ξ̇ξ −
ξ̇ · ξ
ξ · ξ

r = 0 (72)

Equation (72) defines a hypersurface Σ ⊂ {X} whose measure m (Σ) is independent of ξ̇ξ due to the hypothesis of fully developed
chaos. In order to obtain Pξ̇ξ

, observe that ξ̇ξ is not linked to F (t,u, ϑ) and its PDF, related to Pχ, can be expressed using Frobenius–

Perron equation [30] and alignment property (66), i.e.

Pξ̇ξ
(ξ̇ξ) =

∫
X

Pχ δ
(
Ψ(χ, ξ̇ξ)

)
dχ

≡
∫
X

Pχ δ

(
ξ̇ξ −

ξM

τ
cosα+

ξ

τ

)
dχ

(73)

where δ stands for Dirac’s delta. Because of homogeneity, Pξ̇ξ
does not depend on x, and the idea that there are no privileged

directions in isotropic turbulence, suggests that ξ̇ξ can be uniformely distributed in its interval. To proof this, observe that the
integral of Eq. (73) can be expressed as the layer integral over Σ, i.e [34].

Pξ̇ξ
(ξ̇ξ) =

∫
Σ

Pχ

|∇χΨ|
dΣ (74)

As Pχ, ∇χΨ and m(Σ) do not depend on ξ̇ξ, Pξ̇ξ
is constant in the interval of variation of ξ̇ξ, being

Pξ̇ξ
(ξ̇ξ) =


2

3

1

M
, if ξ̇ξ ∈

(
−
M

2
,M

)

0 elsewhere

(75)

Another equivalent way to proof Eq. (75) exploits the statistical hypothesis of isotropy starting from

Pξ̇ξ
(ξ̇ξ) =

∫
X

Pχ δ

(
ξ̇ξ −

ξM

τ
cosα+

ξ

τ

)
dχ (76)

wherein ξM is considered to be given. Due to isotropy, all the directions of ξ are equiprobable, therefore the elemental probability
Pχ dX1, calculated near Σ (Ψ = 0), is relative to all those vectors ξ such that ξ̂ξM ∈ (α, α + dα), thus the corresponding elemental

volume is dX1 = {χ ⊂ X | ξ̂ξM ∈ (α, α + dα)}. This probability depends on α, being proportional to the elemental surface dS(ξ)
according to Fig. 3

Pχ dX1 =
dS(ξ)

4πξ2
=

2πξ2 sinαdα

4πξ2
= −

d cosα
2

, α ∈ (0, π) , (77)

Combining Eqs. (77), (73) and (66), Pξ̇ξ
(ξ̇ξ) is reduced to be an integral over cosα, where ξM is assigned. This leads to obtain Pξ̇ξ

(ξ̇ξ)

in terms of ξ̇ξ

Pξ̇ξ
(ξ̇ξ) =

1

2

∫ 1

−1
δ

(
−
ξ̇ξτ

ξM
− q + cosα

)
d cosα

=
1

2

(
H

(
1−

ξ̇ξτ

ξM
− q

)
−H

(
−1−

ξ̇ξτ

ξM
− q

))
,

q =
r

ξM

(78)

where H indicates the Heaveside function. Therefore, ξ̇ξ is uniformely distributed in the set given by (64), according to Eq. (75).
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Fig. 3. Scheme of separation vector and direction of maximum rise of ξ.

Such PDF gives ⟨ξ̇ξ⟩X > 0 and provides the link between its statistical moments. In particular, the relation between ⟨ξ̇ξ⟩X and
⟨ξ̇2ξ ⟩X , useful for this analysis, leads to write ⟨ξ̇ξ⟩X in terms of pair velocity correlation according to Eq.(70)

⟨
ξ̇ξ

⟩
X

=
1

2

√⟨
ξ̇2ξ

⟩
X

≡ u

√
1− f

2
(79)

In conclusion, the PDF (75) is consequence of the alignment property of ξ and of the two following hypotheses: fully developed
isotropic turbulence and fluid incompressibility. The first one, in conjunction with very frequent kinematic bifurcations, generates
continuous trajectories divergence, and the combined effect of this latter and fluid incompressibility gives the interval of ξ̇ξ: the
trajectories divergence, representing instability, generates regions wherein ξ̇ξ >0, whereas the incompressibility acts in opposite
sense preserving material volume, giving intervals where ξ̇ξ <0. As for isotropy, it gives no privileged directions and generates an
uniform PDF in the range of ξ̇ξ. These results are in agreement with those observed in Ref. [35], where, the author, adopting the
Lyapunov theory, shows that the finite scale Lyapunov exponent associated with Eq. (55) results to be uniformely distributed in its
interval.

9. Closure of von Kármán–Howarth and Corrsin equations

Here, the closures of correlation equations are proposed by means of the analysis seen in the previous sections. To this purpose,
for sake of reader convenience, von Kármán–Howarth and Corrsin equations are first renewed. These equations, obtained from the
Navier–Stokes and heat equations written in two points of space, x and x′ = x+ r, are

∂f

∂t
=

K

u2
+ 2ν

(
∂2f

∂r2
+

4

r

∂f

∂r

)
+

10ν

λ2
T

f,

∂fθ

∂t
=

G

θ2
+ 2κ

(
∂2fθ

∂r2
+

2

r

∂fθ

∂r

)
+

12κ

λ2
θ

fθ,

(80)

wherein f = ⟨uru′
r⟩E/u2 and fθ = ⟨ϑϑ′⟩E/θ2 are correlations of velocity radial components and of temperature, u ≡

√
⟨u2

r⟩E , θ ≡√
⟨ϑ2⟩E , being λT ≡

√
−1/f ′′(0) and λθ ≡

√
−2/f ′′

θ (0) Taylor and Corrsin microscales, respectively. K and G, providing the turbulent

energy cascade, are linked to k and m∗, where the latter are, respectively, longitudinal triple velocity correlation and triple correlation
between ur and ϑ, i.e.

K(r) = u3

(
∂

∂r
+

4

r

)
k(r), where k(r) =

⟨u2
ru

′
r⟩E

u3
,

G(r) = 2uθ2
(

∂

∂r
+

2

r

)
m∗(r), where m∗(r) =

⟨urϑϑ′⟩E
θ2u

,

(81)

Equations (80) are closed if K and G are both in terms of f and fθ . Now, if such correlations were calculated following the classical
approaches [1, 2, 3] as averages over E (i.e. through F (t,u, ϑ)), K and G will remain unknown quantities unless we assume particular
hypotheses about their analytical structures [1, 2, 3]. Here, to obtainK andG, the correlation equations (80) are first formally obtained
by means of the Liouville theorem, then K and G are properly identified through the equivalence between Eulerian and Lagrangian
motion descriptions. For this purpose, von Kármán–Howarth equation and Corrsin equation are here achieved by multiplying the
Liouville equation (40) by uru′

r and ϑϑ′, respectively, and integrating the so obtained equations over E × X , i.e.∫
E

∫
X

uru
′
r

(
∂P

∂t
+

δ

δu
· (P u̇) +

δ

δϑ
·
(
Pϑ̇
))

dXdE = 0,

∫
E

∫
X

ϑϑ′
(
∂P

∂t
+

δ

δu
· (P u̇) +

δ

δϑ
·
(
Pϑ̇
))

dXdE = 0,

(82)
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where second and third addends incorporate H which provides the turbulent energy cascade. The integrals of H arising from Eqs.
(82) represent transport terms that do not modify the rates of kinetic and thermal energies [28, 2], and identify K and G according
to

K = −
∫
E

∫
X

H uru
′
r dXdE = −

∫
E

∫
X

δ

δχ
·
(
F Pχ χ̇

)
uru

′
r dXdE,

G = −
∫
E

∫
X

H ϑϑ′ dXdE = −
∫
E

∫
X

δ

δχ
·
(
F Pχ χ̇

)
ϑϑ′ dXdE,

(83)

As for the remaining terms of Eqs. (82), these identify the other ones appearing in Eqs. (80). Integrating by parts Eqs. (83) with
respect to χ and taking into account that P=0, ∀χ ∈ ∂X , K and G are so reduced

K =

∫
E

∫
X

F Pχ

(
∂uru′

r

∂x
· χ̇+

∂uru′
r

∂x′ · χ̇′
)

dXdE,

G =

∫
E

∫
X

F Pχ

(
∂ϑϑ′

∂x
· χ̇+

∂ϑϑ′

∂x′ · χ̇′
)

dXdE,

(84)

where F gives the average of uru′
r and ϑϑ′, whereas Pχ statistically describes χ̇. Next, in homogeneous isotropic turbulence, the

following equations hold [1, 2, 3]

∂

∂x′ ⟨◦⟩E = −
∂

∂x
⟨◦⟩E =

∂

∂ξ
⟨◦⟩E =

∂

∂r
⟨◦⟩E

ξ

ξ
(85)

where ◦ = uru′
r , ϑϑ′, and ξ̇ = χ̇′–χ̇, being x′ = χ(t,X′), x = χ(t,X), χ̇′ ≡ χ̇(t,X′), χ̇ ≡ χ̇(t,X), therefore K and G read as

K = u2 ∂f

∂r

⟨
ξ̇ξ

⟩
X

,

G = θ2
∂fθ

∂r

⟨
ξ̇ξ

⟩
X

,

(86)

where
⟨
ξ̇ξ

⟩
X

is linked to f by means of Eq. (79). This leads to the following closure formulas

K(r) = u3

√
1− f

2

∂f

∂r
,

G(r) = uθ2
√

1− f

2

∂fθ

∂r
,

(87)

These equations do not exhibit second order derivatives of autocorrelations, thus Eqs. (87) are not closures of diffusive type. These
are the result of contiguous trajectories divergence in fully developed chaos. Following Eqs. (87), the energy cascade is a sort

of propagation phenomenon along r which happens with a propagation speed
⟨
ξ̇ξ

⟩
X

depending on r and u. The main asset of

Eqs. (87) with respect to the other closures is that such equations are not the result of phenomenological assumptions. These are
achieved through the equivalence of Lagrangian and Eulerian points of view and the statistical independence of ξ and u. This latter
allows to analytically express K and G separating the effects of the trajectories divergence (Lagrangian element) from velocity field
fluctuations (Eulerian element). Due to their theoretical foundation, Eqs. (87) do not exhibit free model parameters which have to
be identified.

These closures coincide with those just obtained by the author in the previous works [17, 18, 19, 20], where the formulas are
achieved using, among the other things, the finite–scale Lyapunov analysis. Here, unlike such articles, Eqs. (87) are obtained only
using the equivalence between Lagrangian and Eulerian motion representations, the bifurcations rates and the hypothesis of fully
developed chaos.

The novelty of this work with respect to [17, 18, 19, 20, 21] consists in to identify the energy cascade by means of the equivalence
between the two motion representations, and in the estimation of ratio (NS–bifurcations rate)/(kinematic bifurcation rate) which
leads to the statistical independence of velocity field and fluid displacement. Further elements of novelty are the statistical analysis
of separation rate and the proposed ergodic property, two elements which lead to Eqs. (87).

As regards the results obtained with Eqs. (87), the reader is referred to the data given in [17, 36, 18, 19, 20]. In brief, we recall that
Refs. [17, 18, 19] and [36] show that Eqs. (87) adequately describe the energy cascade phenomenon, reproducing negative values of
skewness of velocity and temperature difference

Hu3(r) ≡
⟨(∆ur)3⟩

⟨(∆ur)2⟩3/2
=

6k(r)

(2(1− f(r)))3/2

Hθ3(r) ≡
⟨(∆ϑ)2∆ur⟩

⟨(∆ϑ)2⟩⟨(∆ur)2⟩1/2
=

4m∗

2(1− fθ(r))(2(1− f(r)))1/2

(88)

and in particular

Hu3(0) = lim
r→0

Hu3(r) = −
3

7
,

Hθ3(0) = lim
r→0

Hθ3(r) = −
1

5
,

(89)

in agreement with the litarature [37, 38, 39, 40, 41, 42], the Kolmogorov law and temperature spectra in line with the theoretical
argumentation of Kolmogorov, Obukhov–Corrsin and Batchelor [43, 44, 45], with experimental results [46, 47], and with numerical
data [48, 49]. Furthermore, Ref [20] shows that the proposed closure formulas give a Kolmogorov constant of about 2, and produce
correlations self-–similarity in proper interval of r, directly caused by the continuous fluid particles trajectories divergence.
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10. Results

For sake of reader convenience, some of the results just obtained in [18, 36] are here reported using the closures (87) and self–
similarity expressed by f = f(r/λT ), fθ = fθ(r/λθ). The fully developed solutions of the correlation equations are obtained for
dλT /dt = dλθ/dt = 0. Accordingly, von Kármán–Howarth and Corrsin equations are reduced to be ordinary differential equations
with initial conditions f(0) = 1, f ′′(0) = −1/λ2

T and fθ(0) = 1, f ′′
θ (0) = −2/λ2

θ , where the apex indicates here the differentiation with
respect to r. The solutions were numerically obtained using a fourth order Runge–Kutta method with adaptive step size.

Figs. 4 and 5 show fully developed velocity correlations and the relative spectra E(κ), T (κ) numerically calculated for RT =100,
200, 300, 400, 500, 600, being  E(κ)

T (κ)

 =
1

π

∫ ∞

0

 u2f(r)

K(r)

κ2r2
(

sinκr

κr
− cosκr

)
dr (90)

where the average kinetic energy is the same for each case. From such results, the integral scale of f results to be a rising function

Fig. 4. Longitudinal velocity correlations (left) and energy spectra (right) at different Taylor scale Reynolds numbers RT =100, 200, 300, 400, 500, 600.

Fig. 5. Triple longitudinal velocity correlations (left) and the corresponding spectra (right) at different Taylor scale Reynolds numbers RT =100, 200, 300,
400, 500, 600.

of RT , k maintains negative and exhibits a minimum of about -0.04 for values of r/λT which rise with RT . E(κ) ≈ κ4 near the origin,
then exhibits a maximum and thereafter is about parallel to the dashed line κ−5/3 in a given interval of the wavenumbers. The size
of this latter gives the Kolmogorov inertial range and rises as RT increases. For higher values of κ, which correspond to scales less
than the Kolmogorov length, E(κ) decreases much more rapidly than in the inertial range. K does not modify the kinetic energy,
and the proposed closure gives

∫∞
0 T (κ)dκ ≡ 0.

Next, Fig. 6 provides the temperature spectra Θ(κ) and the transfer function Γ(κ) calculated as follows [50] Θ(κ)

Γ(κ)

 =
2

π

∫ ∞

0

 θ2fθ(r)

G(r)

κr sinκr dr (91)

in such a way that ∫ ∞

0
Θ(κ) dκ = θ2,

∫ ∞

0
Γ(κ) dκ = 0 (92)

Θ(κ) varies with respect to RT and Pr in a quite peculiar way. Specifically, Θ(κ) exhibits different scaling laws Θ(κ) ≈ κn depending
on wavenumber interval. Following the proposed closures, n ≃ 2 as κ → 0 in any case. For Pr = 0.001, when RT ranges from 50
to 300, the temperature spectrum essentially exhibits two regions: one in proximity of the origin where n ≃ 2, and the other one,
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Fig. 6. Spectra for Pr= 10−3, 10−2, 0.1, 1.0 and 10, at different Reynolds numbers. Top: kinetic energy spectrum E(κ) (dashed line) and temperature
spectra Θ(κ) (solid lines). Bottom: velocity transfer function T (κ) (dashed line) and temperature transfer function Γ(κ) (solid line).

at higher values of κ, where −17/3 < n < −11/3, (value very close to −13/3). The value of n ≈ −13/3, here obtained in an interval
around to r̂ ≈1, is in between the exponent proposed by [44] (−17/3) and the value determined by [48] (−11/3) by means of numerical
simulations. Increasing κ, n significantly diminishes, and Θ(κ) does not show scaling law. When Pr =0.01, an interval near r̂ ≈ 1
where −17/3 < n < −13/3 appears, and this agrees with [44]. For Pr =0.1, the previous scaling law vanishes, whereas for RT = 50
and 100, n changes with κ, and Θ(κ) does not express clear scaling laws. When RT = 300, the birth of a small region is observed,
where n ≈ −5/3 has an inflection point. For Pr = 0.7 and 1, with RT = 300, the width of this region is increased, whereas at Pr =
10, and RT = 300, two regions are observed: one interval where n has a local minimum with n ≃ −5/3, and the other one where n
exhibits a relative maximum, with n ≃ −1. For larger κ, n diminishes and the scaling laws disappear. The presence of the scaling
law n ≃ −5/3 agrees with the theoretical arguments of [3, 45] (see also [47, 49] and references therein). Figure 6 also reports (on the
bottom) the spectra Γ(κ) (solid lines) and T (κ) (dashed lines) which describe the energy cascade mechanism.

We conclude this study by observing the limits of the proposed closures. These limits directly derive from the hypotheses under
which Eqs. (87) are obtained: Eqs. (87) are valid only in regime of fully developed chaos where the turbulence exhibit homogene-
ity and isotropy. Otherwise, during the transition through intermediate stages of turbulence, or in more complex situations with
particular boundary conditions, for instance in the presence of wall, Eqs. (87) cannot be applied. In this regard, note that, with-
out the hypotheses of statistical isotropy and homogeneity, the energy cascade is however identifiable through H and Liouville
theorem, whereas the determination of separation rate statistics, closures of correlation equations and other correlations such as
pressure–velocity, remains a very difficult task depending on the particular problem.

11. Conclusion

The energy cascade in isotropic homogeneous turbulence is studied through Euler and Lagrange points of view using the bi-
furcation rates. The order of magnitude of such rates justifies that velocity field (Eulerian element) and trajectories (Lagrangian
element) are statistically uncorrelated, and the turbulent energy cascade is identified by exploiting the equivalence of Eulerian and
Lagrangian motion descriptions through Liouville theorem. A specific ergodic property is then proposed, which relates the statistics
of both the descriptions, and a detailed analysis of separation rate is presented, which leads to the statistics of radial velocity com-
ponent. Finally, the closures of von Kármán–Howarth equation and Corrsin equation are determined. These coincide with those just
determined by the author in previous articles [17, 18, 19, 20, 21], corroborating the previous works. These formulas, of nondiffusive
nature, allow to adequately describe the phenomenon of energy cascade.
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