Abstract. The flow mechanism and entropy production of a bi-convective, magnetized, radiative nano-liquid flow for an inverted cone considering temperature-sensitive water properties is accomplished numerically. The functional nanomaterial comprises Copper, Alumina in the base liquid, water. The mathematical equations representing the system’s physical characteristics are solved numerically by adopting a robust numerical approach for indulging non-similar solutions to understand numerous parameters’ effect on temperature, velocity, salient gradients, and entropy production. The investigation summarizes that buoyancy force and injection heighten the velocity, and suction, particle percentage, radiation elevate the heat transfer. At the same time, the radiation and Brinkman number enhance the entropy generation. It is also detected from this investigation that the magnetic effect shows dual behaviour in entropy generation.

Keywords: Bi-convection, Water-based nanofluid flows, Temperature-sensitive, Linearization technique, Entropy production.

1. Introduction

The studies of convective heat transport and flow analysis for a vertical right circular cone attract researchers due to diverse applications in static heat exchangers, nuclear waste extraction, geothermal reservoirs, and various cooling systems. Wang [1] studied the boundary layer flows for a rotating cone with a concentrated heat source. Yih [2] presented a study in porous media for a cone while the surface is maintained either as non-constant surface temperature or non-constant heat flux. Ravindran et al. [3] discussed the injection/suction effects on steady combined convection flow for an inverted cone. Some more significant researches in this regard are quoted in Refs. [4, 5]. Nanofluid (NF) flow for an inverted right circular cone finds several applications in real-life situations like energy storage systems, astrophysics and health care systems. Chamkha and Rashad [6] investigated NFs free convective flow in porous media for an inverted right circular cone. Nadeem et al. [7, 8] presented a theoretical study of third-grade fluid flow from an inverted revolving cone utilizing HAM. Ghalambaz et al. [9] addressed the size (i.e., diameter) and amount (i.e., vol. %) effect of nanoparticles (NPs) on free convection flow considering the thermal conductivity of NF as temperature-dependent. Reddy et al. [10] deliberated a comprehensive analysis of MHD dusty NF flow with heat sink/source and chemical reaction for an inverted cone. Sandeep and Reddy [11] considered the convective transport of magnetohydrodynamic (MHD) NF flow for vertical wedge/cone considering radiation effects. Prabhavathi and others [12] studied the convective heat and mass transport phenomena of water-hosted NF flow using SWCNTs and MWCNTs. They noticed that the increment of heat transport characteristics improves with the rise of NP vol. % and the enhancement pronounced more for SWCNTs. Most recently, Hanif et al. [13] prescribed a numerical study of MHD-hybrid NF flow using the same geometry utilizing Cu-Fe3O4-water NF. There are many notable works on this subject and a few of them are cited in [14-19].

There are several real-life applications in applied physical science, biomedicine, and modern devices like MHD-motors, MHD-generators, MHD-pumps, and MHD-sensors, where electrically conducting fluid flow pass through a magnetic field. In such cases, the flow features get affected by the employed magnetic field and the influence depends on the strength and aspect of the field. Reddy and Chamkha [20] presented a numerical study of MHD NFs flow with radiation and chemical effects. They observed that the improvement of the strength of the magnetic and radiation parameter elevate the temperature profile. In contrast, velocity distribution decreases for the first one and increases for the second parameter mentioned above. Raju and others [21] studied unsteady MHD NF flow considering variable viscosity. They used Ti and Ti-alloy (Ti-6Al-4V: 90% Ti, 6% Al, 4% Vanadium) NPs to suspend in water and concluded that Ti-alloy NPs are fruitful for cooling systems. Noor et al. [22] considered MHD and heat source impacts on the NF flow owing to an inclined isothermal plate. Dogonchi et al. [23] deliberated an analysis of Fe3O4-water NF flow considering magnetic field-controlled viscosity and discovered that the imposed field is working as a control element.
Some other important works in this field are available in [24–29]. Furthermore, radiation affects the attribution of convective heat transport. Chamkha et al. [30] presented an analysis of radiation effects on NF flow filled with porous media. They found that the local heat transport coefficient increases with increased operational parameters such as buoyancy, thermophoresis, radiation, surface temperature, etc. Harun et al. [31] addressed radiative NF flow in porous media for a stretching sheet.

According to thermodynamics, irreversibility occurs in every thermal process. Irreversibility in any thermo-hydrodynamic system occurs due to friction, heat transfer, thermal radiation, dissipation, electrical resistance, chemical reactions, etc. Entropy generation (EG) is a useful tool for examining system irreversibility. Irreversibility in any thermodynamical system increases the amount of lost work and consequently reduces the system’s efficiency. To achieve optimum work efficiency in any thermal process, it is essential to minimize the irreversibility, i.e., entropy generation. In this regard, the vital factors have to be found, so that their effect on the entropy generation can be minimized to attain maximum available work. Currently, EG acquires much attention due to its versatile applications in technical and industrial applications as mentioned in the following texts [14, 32]. Rashid et al. [32] displayed the EG minimization in Fe-Os NF flow by a nonlinearly stretching sheet. Nonlinear radiation was taken into account for this study, and they observed that EG rate improves with the increase of Brinkman number (Br) and nanomaterial volume fraction (φ), whereas the reverse behaviour of Bejan number (Be) holds. Pordanjani et al. [33] studied the radiation effect on EG and heat transport characteristics of MHD NF flow in a diagonal rectangular chamber. They noticed that by increasing the Ra number (Ra) and radiation parameter (R), the Nusselt number (Nu) and EG increase. Simultaneously, the same effect is observed in the decrease of Hartman number and angle of the magnetic field. Mahian et al. [34] deliberated the EG in a solar collector plate considering the roughness effect, particle size, and various thermophysical models. Their result shows that the increase in φ increases the outlet temperature, but the size effect is insignificant, while the case is precisely the opposite for the Nusselt number (Nu). EG increases for the tube roughness but decreases with an increase of φ. They also found that using the different models for thermodynamical properties has less effect on EG. Khan et al. [35] presented the EG minimization in radiative MHD casson NF flow from a stretched surface. A numerical study on EG minimization for the nonlinear radiative MHD flow due to moving needle in NF is carried out by Khan et al. [36]. The built-in-shooting technique is employed in this study. Ibáñez et al. [37] analyzed EG in a porous microchannel filled with NF considering the hydromagnetic and radiation effects. There are numerous studies on EG considering radiation and MHD effects and a few of them are cited in [38–42].

Naturally, nanofluid physical characteristics will enjoy the combined effect of host fluid and nanomaterials’ physical properties. If the host fluid properties would vary in temperature, then it will not be a misstep to expect that those properties of the NF are also variable in temperature. From Table 1, which is showing the experimental data for water [43], it can be easily observed that viscosity and Prandtl numbers are varying sufficiently in just 10°C temperature difference. So, for water-based nanoliquids, conductivity is intensely sensitive in temperature, and the physical properties are definitely a function of temperature. Work by Das et al. [44] shows that there is only about 2% increase in thermal conductivity of Al₂O₃-water NF at 21°C while the increment is 10.8% at 51°C using only 1% NPs. Moreover, most of the works, till date, are done considering the constant characteristics of water [11-13]. According to the best of authors’ knowledge, it is the first project on the evaluation of nanofluid flow characteristics by considering the temperature-sensitive physical characteristics of water. So, by taking into account the physical properties of water, one step forward, this project’s primary intent is to analyze the MHD NF flow mechanism, entropy generation and convective heat transport phenomena over an inverted right circular cone with radiation effect. The combined convection effect and surface mass disposal have considered so that the analysis includes a wide range of practical applications. Besides, local entropy generation behaviour is analyzed utilizing Bejan number (Be) and nondimensional local entropy generation (S_c).

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>ρ (g. cm⁻³)</th>
<th>Cₚ (J. kg⁻¹.K⁻¹)</th>
<th>k (erg.cm⁻¹.s⁻¹.K⁻¹)</th>
<th>μ (g. cm⁻¹.s⁻¹)</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00228</td>
<td>4.2176</td>
<td>0.5610</td>
<td>1.7930</td>
<td>13.48</td>
</tr>
<tr>
<td>10</td>
<td>0.99970</td>
<td>4.1921</td>
<td>0.5800</td>
<td>1.3070</td>
<td>9.45</td>
</tr>
<tr>
<td>20</td>
<td>0.99821</td>
<td>4.1818</td>
<td>0.5984</td>
<td>1.0060</td>
<td>7.03</td>
</tr>
<tr>
<td>30</td>
<td>0.99565</td>
<td>4.1784</td>
<td>0.6154</td>
<td>0.7977</td>
<td>5.12</td>
</tr>
<tr>
<td>40</td>
<td>0.99222</td>
<td>4.1785</td>
<td>0.6305</td>
<td>0.6532</td>
<td>4.32</td>
</tr>
<tr>
<td>50</td>
<td>0.98803</td>
<td>4.1806</td>
<td>0.6435</td>
<td>0.5470</td>
<td>3.55</td>
</tr>
</tbody>
</table>
Table 2. Nanoparticle and water thermophysical properties [54].

<table>
<thead>
<tr>
<th>Properties</th>
<th>Water</th>
<th>Copper</th>
<th>Alumina</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_p (J kg$^{-1}$K$^{-1}$)</td>
<td>4179</td>
<td>385</td>
<td>765</td>
</tr>
<tr>
<td>ρ (kg m$^{-3}$)</td>
<td>997.1</td>
<td>8933</td>
<td>3970</td>
</tr>
<tr>
<td>k (W m$^{-1}$K$^{-1}$)</td>
<td>0.613</td>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>$\beta \times 10^{-3}$ K$^{-1}$</td>
<td>21</td>
<td>1.67</td>
<td>0.85</td>
</tr>
</tbody>
</table>

2. Mathematical Formulation

Consider a 2D, steady laminar bi-convective NF flow over an inverted cone where the flow is along the cone generator with $u_\infty = u_\infty x^n$. The x-axis is considered along with the cone generator in flow direction and y-axis is its perpendicular through which surface mass disposal is considered (see Figure 1). The variation in temperature (T) between the wall and fluid is deemed moderate ($< 40^\circ C$), and the fluid motion is regarded as medium velocity. Depending on the data of Table 1, μ (viscosity) and Pr (Prandtl No.) are modeled as below [45]

$$\mu_f(T) = \frac{1}{b_1 + b_2 T}$$

$$Pr(T) = \frac{1}{c_1 + c_2 T}$$

with

$$(b_1, b_2, c_1, c_2) = (53.41, 2.43, 0.068, 0.004)$$

The conventional fluid-nanofluid relations for various physical properties, which are valid only for the dilute suspension of fine spherical nanoparticles, given by [46, 47]

$$\rho_{nf}(T, \phi) = \frac{\rho_f(T)}{(1 - \phi)^{\alpha}}$$

$$\rho_{nf}(T, \phi) = (1 - \phi) + \frac{\rho_s(T)}{\rho_f(T)} \phi$$

$$\left(\frac{C_p \rho_f(T)}{C_p \rho_f(T)} \right) = (1 - \phi) + \left(\frac{C_p \rho_f(T)}{C_p \rho_f(T)} \right) \phi$$

$$\frac{\beta \rho_f(T)}{\beta \rho_f(T)} = (1 - \phi) + \left(\frac{\beta \rho_f(T)}{\beta \rho_f(T)} \right) \phi$$

$$\frac{k_f(T)}{k_f(T)} = 1 + \frac{3}{2} \left(\frac{k_f(T)}{k_f(T)} - 1 \phi \right)$$

$$\frac{\sigma_{nf}(T, \phi)}{\sigma_f(T)} = 1 + \frac{3}{2} \left(\frac{\sigma_{nf}(T, \phi)}{\sigma_f(T)} - 1 \phi \right)$$

where the terms β, μ_f, μ_s, ρ_f, ρ_s, $(C_p)_f$, $(C_p)_s$, $(C_v)_f$, $(C_v)_s$, k_f, k_s, σ_f, σ_s, σ_{nf} are all given in the appendix.

One can easily observe from Table 1 that the variation of ρ and C_p of water in temperature within the moderate temperature difference ($< 40^\circ C$) are less than 1%. A similar consequence can be verified through the correlations listed above for nanofluid too. Suppose $\rho_{f1} - \rho_{f2}$ and $\rho_{nf1} - \rho_{nf2}$ be the densities of water and nanofluids at two different temperature $T_1 < T_2$, respectively, both lies within the range $(0 – 50^\circ C)$ and $(T_1 – T_2)$ $\leq 40^\circ C$.

Clearly,

$$\frac{\rho_{f1}(T) - \rho_{f2}(T)}{\rho_{f1}(T)} \leq 0.01$$

Again,

$$\rho_{nf1}(T, \phi) = \rho_{f1}(T)(1 - \phi) + \rho_s \phi$$

$$\rho_{nf1}(T, \phi) = \rho_{f1}(T)(1 - \phi) + \rho_s \phi$$
Therefore
\[
\frac{\rho_{nf}(T, \phi) - \rho_{nf}(T, 0)}{\rho_{nf}(T, 0)} = \frac{(1 - \phi)(\rho_{nf} - \rho_{f})}{\rho_{nf}} = \frac{\rho_{nf}(T) - \rho_{nf}(T)}{1 + \phi} \leq \frac{0.01}{1 + \phi} \leq 0.01
\]

Since \(0 < \phi < 1\) \(\Rightarrow \phi / (1 - \phi) > 0\) and therefore \(1 + \phi / (1 - \phi) \geq 1\). This proves that the variation in nanofluid density is less than 1% in the said temperature range and in a similar way, using the same type of simple calculations, it can be shown that variation in \((C_p)_{nf}\) is less than 1% too and therefore \((\rho)_{nf}\) and \((C_p)_{nf}\) both can be treated as constant (Values are given in Table 2).

But contrary to the above, \(\mu\) and \(Pr\) of nanofluid are non-constant properties i.e., variable in temperature since there are significant variations in \(\mu\) and \(Pr\) for water.

The governing flow equations are as follows [2-3, 48]:

\[
\vec{v} \cdot \vec{q} = 0 \quad : \quad \vec{q} = (u, v)
\]

\[
\vec{q} \cdot \vec{u} = u \frac{\partial u}{\partial x} + \frac{1}{\rho_{nf}} \left[\frac{\partial}{\partial y} \left(\rho_{nf} \frac{\partial u}{\partial y} \right) \right] + \frac{g(\rho_{nf}B^2)_{nf}}{\rho_{nf}} \left[T - T_e \right] - \frac{\sigma_{nf}B^2_{nf}}{\rho_{nf}} (u - u_s)
\]

\[
\vec{q} \cdot \vec{T} = \frac{1}{(\rho_{nf}C_p)_{nf}} \left[\frac{\partial T}{\partial y} \right] - \frac{1}{(\rho_{nf}C_p)_{nf}} \frac{\partial \phi}{\partial y}
\]

where

\[
q_e = -\frac{4\sigma^* \partial T^4}{3k^*}
\]

and the constraints:

\[T = T_w; \quad u = 0, \quad v = u_s \quad \text{at} \quad y = 0\]

\[T \to T_e; \quad u \to u_s; \quad \text{as} \quad y \to \infty\]

Utilizing the following congenial transformations:

\[
\xi = \frac{1}{L} \left(\frac{2}{(m + 1)} \right) \frac{\nu_{nf}^2}{u_s^2} \quad ; \quad \eta = \frac{1}{(m + 1)} \frac{u_s^2}{2 \nu_{nf}^2} \left((1 + f) + (1 - m) \left(\frac{\xi}{\nu_{nf}^2} - \eta \right) \right)
\]

\[
\psi(x, y) = (m + 1) \nu_{nf}^2 u_s \eta^2 f
\]

\[
\frac{\partial \psi}{\partial x} = -\nu_{nf}^2 \frac{\partial \psi}{\partial y} = u, \quad f = F
\]

\[
u = u_F, \quad u = \frac{1}{(m + 1)} \frac{u_s^2}{2 \nu_{nf}^2} \left((1 + f) + (1 - m) \left(\frac{\xi}{\nu_{nf}^2} - \eta \right) \right)
\]

Eqs. (10)-(11) reduces to the following nondimensional forms:

\[
\frac{\partial}{\partial \eta} \left(NF \right) + S = \frac{2 \lambda G}{(1 + m)} - K_S S M a^2 \xi^2 (1 - f) + S \left(\frac{2m}{(1 + m)} (1 - F) \right) + f F - \left(\frac{1 - m}{1 + m} \right) \left(\xi (f F - f f F) \right) = 0
\]

\[
\frac{N}{Pr} \left(\frac{F}{F} + \frac{P_G}{P_G} \right) + R \left(\frac{G}{G} + \frac{\partial}{\partial \eta} \right) \left(\frac{N}{Pr} \right) \frac{G}{G} + S = \frac{f F - \frac{1 - m}{1 + m} \xi (F G - f G)} = 0
\]

and

\[
\begin{bmatrix}
F \\
G_{\eta = 0} \\
F \\
G_{\eta \to \infty} \end{bmatrix} = \begin{bmatrix}
1 \\
0 \\
1 \\
0 \end{bmatrix}
\]

Here \(\lambda = g \beta_{nf} \cos \gamma \Delta T x / u_s^2\), \(Ma = \sigma_{nf} B^2 / \rho_{nf} \nu_{nf}^2\) and \(R = 16 \sigma^* T_e^4 / 3k_f\) are the dimensionless parameters \(P_f, P_f, P_f, P_f\) and \(K_S, S, S, S, S\) are constant coefficients, which are defined in appendix.

The surface mass disposal is defined in the following form:

\[
u_s = \frac{\nu_{nf}}{L} \left[f_s + \frac{1 - m}{1 + m} \xi (f g) \right]
\]
\[f_\omega + \frac{1-m}{1+m} \zeta(f_\omega) = -\frac{\nu_L}{\nu_\infty} \zeta = A_\zeta \]

where \(A = -\nu_L / \nu_\infty \) is the dimensionless surface mass disposal parameter.

The gradients of physical interest are:

1. Skin friction:

\[
C_{f_x} = \frac{\mu_f}{2 \rho_f u'_x} = \frac{2}{(1-\theta)^{1/3}} \sqrt{\frac{m+1}{2}} Re_x \frac{1}{\nu_\infty} F_\zeta(\zeta,0) \\
\therefore Re_x^2 C_{f_x} = \frac{2}{(1-\theta)^{1/3}} \sqrt{\frac{m+1}{2}} F_\zeta(\zeta,0)
\]

2. Heat transfer (Nusselt No.):

\[
Nu_x = \frac{xk_f}{k_f (T_x - T_\infty)} = \sqrt{\frac{m+1}{2}} Re_x \frac{1}{\nu_\infty} \frac{P_f + P_i}{P_f + P_i} G_\zeta(\zeta,0) \\
\therefore Re_x^2 Nu_x = \frac{m+1}{2} \frac{P_f + P_i}{P_f + P_i} G_\zeta(\zeta,0)
\]

3. Entropy Generation

The entropy model for hydromagnetic NF flow with radiation effect can be written as [49-51]:

\[
S_{gen} = \frac{1}{T_a} \left[k_f \left(\frac{\partial T}{\partial y} \right)_x + 16T^4 \frac{\partial T}{\partial y} \right] + \frac{\mu_f}{T} \frac{\partial u}{\partial y} + \frac{\nu_\infty B_t^2}{T}
\]

HTI (heat transfer irreversibility) is the local entropy generation due to heat transfer and the entropy generation due to Joule effect and fluid friction are summed up as FFI (fluid friction irreversibility). The local entropy generation \(S_{gen} \) is made non-dimensional \((S_{gen}) \) using the characteristic entropy rate \(S_\omega = \Delta T k_f / L T_a \) i.e., \(S_\omega = S_{gen} / S_\omega = N_1 + N_2 \) where

\[
N_1 = HTI S_\omega \frac{P_f + P_i G}{P_f + P_i} \frac{R}{G_\zeta} \frac{G_\zeta}{(1 + \Omega G)} \\
N_2 = FFI S_\omega \frac{P_f^2}{(1-\theta)^{1/3} (1 + a_f G)} + \frac{\zeta^{1/2} (Ma)^{1/2} F^4}{\zeta^{1/2} \Omega (1 + \Omega G)} \frac{Br}{\zeta^{1/2} \Omega (1 + \Omega G)}
\]

where \(\Omega = \Delta T / T_\infty \) and \(Br = \mu_\infty u'_x / k_f \Delta T \) is Brinkman number. Bejan number is a useful tool to calculate the energy distribution and is defined by

\[
Be = \frac{N_1}{N_1 + N_2}
\]

Be lies in the range \(0 \leq Be \leq 1 \). \(Be = 0 \) suggests that HTI is beaten by FFI and \(Be = 1 \) implies that FFI is dominant by HTI. The equal contribution of both the irreversibilities due to heat transform and fluid friction refers to \(Be = 0.5 \).

4. Numerical Methods

To solve the transformed Eqs. (14) to (16), the following order of numerical approaches have been employed: (i) Quasilinearization [52], (ii) Finite difference, (iii) Varga algorithm [53]. In this procedure, step-(i) produces

\[
A_1^{(k)} F^{(k)} + A_2^{(k)} G^{(k)} + A_3^{(k)} F^{(k)} + A_4^{(k)} F^{(k)} + A_5^{(k)} G^{(k)} + A_6^{(k)} G^{(k)} = A_7^{(k)}
\]

\[
M_1^{(k)} G^{(k)} + M_2^{(k)} G^{(k)} + M_3^{(k)} G^{(k)} + M_4^{(k)} F^{(k)} + M_5^{(k)} G^{(k)} = M_6^{(k)}
\]
At first, the nonlinear coupled partial differential equations were replaced by an iterative sequence of linear partial differential equations following quasilinearization technique. The resulting sequence of linear partial differential equations is expressed as difference equations using stable finite difference scheme to produce convergent numerical solutions. The linear system (17)-(18) is displayed for the unknown with superscript (k+1). All the coefficients $A_1, M_1, A_2, M_2, A_3, M_3, A_4, M_4, A_5, M_5$ are defined in Appendix. Step-(ii) is being used to convert Eqs. (17-18) into the Block matrix system, and finally, the resultant structure has been solved using Step-(iii). A proficient convergence criterion has been employed throughout the calculations to get numerically feasible solutions. Here m, the exponent power of the outer flow field is considered $\frac{1}{2}$ to get λ as a constant. Assigning $\phi = 0$, $Ma = 0$, $R = 0$, the transformed Eqs. (14-15) become similar with those in Ravindran et al. [3].

5. Results with Discussion

The numerical results presented through sketches depict various operational parameters of concern on the common profiles. To check the preciseness of this present numerical scheme, graphical comparisons have been made with Ravindran et al. [3] for $\phi = 0$, $m = 0$, $\lambda = 0$, $Ma = 0$, $R = 0$, and $A = 0$, and displayed in Fig. 2, and they are in a friendly match up. Al$_2$O$_3$ and Cu NPs are taken as working nanoparticle.
Buoyancy creates an additive pressure force, and increased buoyancy force increases the flow velocity. The flow velocity is affected conspicuously in the variation of λ as shown graphically in Fig. 3. Even one can observe from the specific graph (Fig. 3) that there is an overshoot in F for some higher $\lambda(2,4)$. As the buoyancy force’s strength rises, the free convection starts to dominate the forced convection. In such cases, the velocity near the vicinity of the wall becomes higher, and overshoot occurs. Accordingly, for large λ the flow speed increases sufficiently near the surface, the flow quickly attained its free flow velocity and finally, the momentum boundary layer (BL) becomes thinner.

Figure 4 elucidates the magnetic parameter (Ma) on F. Visual evidence in Fig. 4 shows that F decreases with Ma. The physical reason behind this is that an increase in Ma creates a force, named Lorentz force, which has the characteristics to restrict the fluid movement within the BL. Since the parameter Ma appears on momentum equation, the effects of Ma on temperature profile is less and temperature profile vary within 5% due to the increase of Ma from 0 to 4. The graph is not displayed to brief the manuscript.

Figure 5 characterizes the influence of mass disposal at the surface on both the profiles F and G. Results show that the velocity field is of smaller magnitude for suction ($A>0$) and higher for injection ($A<0$), but its gradient near the wall is higher for $A>0$. This is because suction takes away the slowed down fluids flowing in the cone wall’s vicinity, and the flow tries to sustain the same velocity level near the surface. Moreover, blowing fluids into the BL region increases the liquid’s mass density, and as a result, the flow slows down. In the temperature profile, the curves representing suction ($A>0$) are stiffer than those for injection ($A<0$).
The coefficient of skin friction increases with \(Ma \), but the heat transfer coefficient decreases as displayed in Figs. 6-7. The magnetic field works as an external force to attract the NPs, which leads to faster motion. Consequently, \(C_f \) becomes higher due to the faster moving fluids for higher \(Ma \). Moreover, this increased friction produces significant heat and enhances the adjacent fluid temperature, interrupting heat convection.

The graphical evidences presented through Figs. 8-9 indicate that both \(C_f \) and \(Nu \) increase when suction is present and the result is reverse when injection is present in the flow field. At \(\xi = 1 \), \(C_f \) increases by 12%, 15% when \(A \) rises from 0 to 0.5 and decreases by 12%, 14% when \(A \) decedes from 0 to −0.5 for \(Al_2O_3/H_2O \) and \(Cu/ H_2O \), respectively. Similarly, at \(\xi = 1 \), \(Re^{-1/2}Nu \) increases by 29%, 28% when \(A \) rises from 0 to 0.5 and decreases by 24%, 24% when \(A \) decedes from 0 to −0.5 for \(Al_2O_3/H_2O \) and \(Cu/ H_2O \), respectively.

Figures 10-11 highlight the features of \(C_f \) and \(Re^{-1/2}Nu \) against \(\phi \). It is clear from the graphs that both the coefficients increase in the enhancement of the particle volume percentage (\(\phi \)). It is quite predictive because the main motto of suspending NPs was to enrich the conductivity (thermal). Current results show that the conductivity (thermal) presented through \(Re^{-1/2}Nu \) increases with a higher percentage of \(\phi \). But, the suspended NPs enhance the fluid mass density too, which strengthening the wall friction. When the NP concentration percentage (\(\phi \)) rises from 0% to 2.5% and 5%, it is observed that at \(\xi = 1 \) the increments in \(C_f \) are 4% and 9%, respectively, for \(Cu \) NPs. Also, at \(\xi = 1 \) the percentages of increment for \(Re^{-1/2}Nu \) are almost 4% and 8% when \(\phi \) rises from 0% to 3.5%, and 5%, respectively.

Figures 12-13 depict the impact of \(R \) on \(C_f \). Figure 12 shows that \(C_f \) improves with the increment of \(R \). Basically, an increment in \(R \) enhances the system’s internal energy and as a result, \(C_f \) increases. In contrast, \(Re^{-1/2}Nu \) is diminished for higher \(R \) because the enhanced internal energy improves the system’s temperature, as portrayed in Fig. 13.
Overall, quantitative results in compact form are presented in Table 3 for better understanding of the variations of numerical results as displayed in Figs. 6–13. This section presents results with Cu as working nanoparticle.

Figures 14–18 are plotted to characterize the effects of different parameters Ma, φ, R, Br on S_G and Be. The impact of the Magnetic parameter Ma on S_G is shown through Fig. 14. It depicts that S_G has a higher value for the higher magnitude of Ma within the range $0 \leq \eta < 0.5$, but the graph sharply drops for $\eta > 0.5$, and S_G shows lower magnitudes for higher Ma. The significance of magnetic fields' presence in a flow is that the dissipative heat energy is forced to convert into thermal diffusion. So, when the strength of Ma rises, the heat energy due to the friction at the surface gets transferred into the fluid as thermal diffusion near the wall. In explicit form, it can be described as; HTI overtakes FFI and Be remains almost unit near the wall as depicted in Fig. 15. But away from the surface, increment in Ma rises the share of FFI in total S_G and as a result, Be shows lower magnitude. Figures 16–17 have sketched to visualize the variation of nonlinear thermal radiation (R) on S_G and Be. The radiation effect R added some external energy to the internal energy of the system of the concerned flow field and the total energy grows up, as shown in Fig. 16. Being enriched by the external energy, HTI beats FFI, and the impact is more prominent for the high magnitude of R as evidenced in Fig. 17. Figure 18 characterizes the impact of $Br\Omega^{-1}$ on Be. Near the cone wall, viscous heating is less compared to heat transferred due to conduction of molecules. For higher Br, i.e., for viscous heating, the heat transfer component HTI takes over FFI. On the contrary, the heat transfer component HTI gets reduced in the flow away from the cone surface, as supported by Fig. 18 which shows that Be lines are lifted for lower $Br\Omega^{-1}$.
Table 3. Quantitative representation of numerical results.

<table>
<thead>
<tr>
<th></th>
<th>Re$^{-1/2}$Nux</th>
<th>Re$^{-1/2}$Nu$_{Cu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al$_2$O$_3$</td>
<td>Cu</td>
</tr>
<tr>
<td>Ma = 0</td>
<td>7.1040 7.3008 0.5843 0.6003</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.1333 7.3386 0.5821 0.5980</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.2561 7.4898 0.5772 0.5929</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.5123 7.7955 0.5726 0.5882</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.8978 8.2440 0.5692 0.5849</td>
<td></td>
</tr>
<tr>
<td>A = -1.0</td>
<td>3.8248 3.8263 0.3425 0.3517</td>
<td></td>
</tr>
<tr>
<td>-0.5</td>
<td>4.0874 4.1338 0.3891 0.3999</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>4.3603 4.4593 0.4111 0.4538</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>4.6389 4.7969 0.4980 0.5125</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>4.9215 5.1432 0.5604 0.5767</td>
<td></td>
</tr>
<tr>
<td>φ = 0.0</td>
<td>7.1655 7.1655 0.5598 0.5598</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>7.2213 7.3651 0.5707 0.5804</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>7.2798 7.5750 0.5815 0.5887</td>
<td></td>
</tr>
<tr>
<td>R = 0.0</td>
<td>6.0766 6.3366 0.6773 0.6941</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>6.5025 6.7274 0.4637 0.4778</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>6.7073 6.9179 0.3813 0.3935</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>6.8318 7.0326 0.3360 0.3467</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>6.9149 7.1087 0.3069 0.3168</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 18. Br effect on Be

6. Conclusions

The sway of emerging parameters in this study brought the following conclusive remarks:

i. Velocity increases for positive λ. The higher intensity of λ causes a stiffer boundary layer. With the increase of λ, overshoot increases and maximum velocity comes close to the surface. For $\lambda=2,4$, Cu/H$_2$O NF flow have maximum overshoots by 20% and 43% which take place, respectively, at $\eta=1.2,0.9$.

ii. About 19% reduction is detected in flow velocity for Al$_2$O$_3$/H$_2$O NFs flow field at $\eta=0.9$ with hydro-magnetic parameter Ma of strength 4, compared with the flow field without any magnetic effect.

iii. It is also observed that increasing Ma from 0 to 4 diminish Re$_x^{-1/2}$Nu$_x$ by about 4% whereas it rises Rex_1C$_{f,x}$ by about 37%.

iv. Uniform suction ($A>0$) at the surface absorbs slowed down fluids of low momentum. Consequently, this leads to an increment in the fluid motion adjacent to the wall.

v. The suction effect of strength $A=0.5$ enhances the heat transfer coefficient as well as friction coefficient by about 28% and 12%, respectively. On the other hand, injecting fluids within the flow ($A=-0.5$) decreases both the coefficients C$_{f,x}$Re$_x$ and Re$_x^{-1/2}$Nu$_x$ by about 12% and 24%, respectively.

vi. Increase in ϕ enhances Re$_x^{-1/2}$Nu$_x$. Even in particular, at $\xi=1.0$, mixing only 5% Cu-NP improves the coefficient heat transfer by about 8%, while Al$_2$O$_3$-NPs could hardly enhance Re$_x^{-1/2}$Nu$_x$ by only 4.2%.

vii. Increment in Ma, R, ϕ and Br generates more entropy, especially within the cone wall’s vicinity.

viii. S_ϕ shows dual behavior for Ma. The increase in Ma displays higher S_ϕ within the range $0 \leq \eta < 0.5$, but the graph sharply drops near $\eta = 0.5$, and S_ϕ shows lower magnitudes for higher Ma.

ix. An increment in R from 0–2 and 0–4 elevates S_ϕ by nearly 43% and 70%, respectively, at $\eta = 0.5$.

Author Contributions

All authors are equally contributed.

Acknowledgments

Not applicable.

Conflict of Interest

The authors declared no potential conflicts of interest concerning the research, authorship, and publication of this article.

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Data Availability Statements

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Nomenclature

- B_m: Magnetic parameter
- C_p: Specific Heat capacitance
- f, F: Non-dimensional stream function and velocity, respectively
- g: Gravity
- G: Non-dimensional temperature
- k: Conductivity (thermal)
- L: Reference length
- m: Non-dimensional pressure gradient
- M_a: Non-dimensional magnetic parameter
- R: Non-dimensional radiation parameter
- Re: Reynolds number
- u, v: Velocity components in the y and x direction
- β: Volumetric expansion coefficient (thermal)
- λ: Buoyancy
- ξ: Stream-wise coordinate
- η: Perpendicular coordinate to ξ
- ρ: Density
- σ: Conductivity (electrical)
- ϕ: Nanoparticle percentage in NF
- ψ: Stream function
- e: Conditions at the edge of BL
- w, ∞: Conditions at the surface and infinity, respectively
- nf: Nanofluid
- s: Solid
- k: Iteration number
- NF: Nanofluid
- NP: Nanoparticles
- MHD: Magnetohydrodynamics
- CNT: Carbon nanotubes
- BL: Boundary layer

Greek Symbols

- α: Viscosity
- Ω: Angular velocity
- Ω_0: Angular velocity of the earth
- ρ: Density
- ρ_f: Density of fluid
- ρ_p: Density of particles
- ρ_m: Density of the mixture
- ρ_{nf}: Density of nanofluid
- μ: Dynamic viscosity
- μ_f: Dynamic viscosity of fluid
- μ_p: Dynamic viscosity of particles
- μ_{nf}: Dynamic viscosity of nanofluid
- μ_m: Dynamic viscosity of the mixture
- μ_{nf}: Dynamic viscosity of nanofluid
- λ: Thermal conductivity
- λ_f: Thermal conductivity of fluid
- λ_p: Thermal conductivity of particles
- λ_{nf}: Thermal conductivity of nanofluid
- λ_m: Thermal conductivity of the mixture
- κ: Thermal diffusivity
- κ_f: Thermal diffusivity of fluid
- κ_p: Thermal diffusivity of particles
- κ_{nf}: Thermal diffusivity of nanofluid
- κ_m: Thermal diffusivity of the mixture
- Θ: Non-dimensional temperature
- Θ_e: Non-dimensional temperature at the edge of BL
- Θ_{nf}: Non-dimensional temperature of nanofluid
- Θ_m: Non-dimensional temperature of the mixture
- Θ_0: Non-dimensional temperature of the earth
- Θ_{0f}: Non-dimensional temperature of the fluid
- Θ_{0p}: Non-dimensional temperature of the particles
- Θ_{0nf}: Non-dimensional temperature of the nanofluid
- Θ_{0m}: Non-dimensional temperature of the mixture
- Γ: Radiation parameter
- Γ_{nf}: Radiation parameter of nanofluid
- Γ_m: Radiation parameter of the mixture
- Γ_{0f}: Radiation parameter of the fluid
- Γ_{0p}: Radiation parameter of the particles
- Γ_{0nf}: Radiation parameter of the nanofluid
- Γ_{0m}: Radiation parameter of the mixture
- Θ_{nf}: Non-dimensional temperature of nanofluid
- Θ_m: Non-dimensional temperature of the mixture
- Θ_{0f}: Non-dimensional temperature of the fluid
- Θ_{0p}: Non-dimensional temperature of the particles
- Θ_{0nf}: Non-dimensional temperature of the nanofluid
- Θ_{0m}: Non-dimensional temperature of the mixture
- Θ_{nf}: Non-dimensional temperature of nanofluid
- Θ_m: Non-dimensional temperature of the mixture
- Θ_{0f}: Non-dimensional temperature of the fluid
- Θ_{0p}: Non-dimensional temperature of the particles
- Θ_{0nf}: Non-dimensional temperature of the nanofluid
- Θ_{0m}: Non-dimensional temperature of the mixture
- Θ_{nf}: Non-dimensional temperature of nanofluid
- Θ_m: Non-dimensional temperature of the mixture
- Θ_{0f}: Non-dimensional temperature of the fluid
- Θ_{0p}: Non-dimensional temperature of the particles
- Θ_{0nf}: Non-dimensional temperature of the nanofluid
- Θ_{0m}: Non-dimensional temperature of the mixture
- Θ_{nf}: Non-dimensional temperature of nanofluid
- Θ_m: Non-dimensional temperature of the mixture
- Θ_{0f}: Non-dimensional temperature of the fluid
- Θ_{0p}: Non-dimensional temperature of the particles
- Θ_{0nf}: Non-dimensional temperature of the nanofluid
- Θ_{0m}: Non-dimensional temperature of the mixture
- Θ_{nf}: Non-dimensional temperature of nanofluid
- Θ_m: Non-dimensional temperature of the mixture
- Θ_{0f}: Non-dimensional temperature of the fluid
- Θ_{0p}: Non-dimensional temperature of the particles

Abbreviations

- NF: Nanofluid
- NP: Nanoparticles
- MHD: Magnetohydrodynamics
- CNT: Carbon nanotubes
- BL: Boundary layer

References

Appendix

\[a_i = \frac{b_i \Delta T}{b_i + b_j T_i}, \quad a_s = a_i, \quad d_1 = c_1 + c_2 T_i, \quad d_2 = c_2 \Delta T \]

\[P_i = a_i k_i + 2C_i d_i - 2\phi(C_i d_i - a_i k_i), \quad P_s = a_s k_i + 2C_s d_i + \phi(C_s d_i - a_s k_i), \quad P_F = a_F k_i + 2C_F d_i + \phi(C_F d_i - a_F k_i) \]

\[N = \frac{1}{1 + a_i G}, \quad Pr = \frac{D}{d + d_i G} \]

\[P_i = \frac{P_i + P_G}{P_i + P_f}; \quad P_s = \frac{a_s - a_i d_i}{1 + a_i G} \gamma; \quad P_f = \frac{P_f - P_i}{P_f + P_i} \gamma; \quad P_F = \frac{P_F - P_i - P_f}{P_f + P_i} \gamma \]

\[S_i = \left[1 - \frac{1}{1 + (\beta_1 \phi)} \right] \sqrt{(1 - \phi)}, \quad S_s = \left[1 - \frac{1}{1 + (\beta_2 \phi)} \right] \sqrt{(1 - \phi)}, \quad S_F = \left[1 - \frac{1}{1 - (\beta_3 \phi)} \right] \sqrt{(1 - \phi)} \]

\[K_i = \frac{\sigma_i^2 + 2\phi - \phi(\sigma_i^2 - \sigma_i)}{\sigma_i^2 + 2\phi + \phi(\sigma_i^2 - \sigma_i)} \sqrt{(1 - \phi)} \]

\[A_i = a_i F_i N_i^2 + S_i f \left[\frac{1-m}{1+m} \right], \quad A_s = -S_s f \left[\frac{1-m}{1+m} \right]/4F_i + \frac{1-m}{1+m} f \left(F_i + \zeta (\gamma) \right); \quad K_i \]

\[A_F = -a_i F_i^2 N_i^2 + 2\alpha_i F_i G_i N_i + S_i f \left[\frac{1-m}{1+m} \right], \quad A_s = -S_s f \left[\frac{1-m}{1+m} \right], \quad A_i = a_i F_i N_i + 2\alpha_i F_i G_i N_i^2 + 2\alpha_i F_i G_i + 2a_i F_i G_i N_i^3 \]

\[M_i = \frac{N}{Pr} (P_i + R_i); \quad M_s = 2G_i (P_i + N \frac{Pr}{Pr} + R_i); \quad M_s = -S_s f \left[\frac{1-m}{1+m} \right]; \quad M_F = G_i (P_i + R_i + N \frac{Pr}{Pr} + 2G_i (P_i + R_i + N \frac{Pr}{Pr} + R_i); \quad M_s = -S_s G_i (1 \frac{1-m}{1+m}) \]

\[M_F = G_i (P_i + N \frac{Pr}{Pr} + G_i (P_i + R_i + R_i); \quad M_s = -S_s G_i - S_s (G_i (1 \frac{1-m}{1+m})) \]

ORCID ID

Tapas Barman https://orcid.org/0000-0001-9733-9163

S. Roy https://orcid.org/0000-0002-7083-0822

Ali J. Chamkha https://orcid.org/0000-0002-8335-3121

© 2021 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license (http://creativecommons.org/licenses/by-nc/4.0/).

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.