
J. Appl. Comput. Mech., 8(1) (2022) 232-244
DOI: 10.22055/JACM.2021.38021.3132

ISSN: 2383-4536
jacm.scu.ac.ir

Published online: October 16 2021

Shahid Chamran

University of Ahvaz

 Journal of

 Applied and Computational Mechanics

Research Paper

Development of an Educational Code of Deriving Equations of

Motion and Analyzing Dynamic Characteristics of Multibody

Closed Chain Systems using GNU Octave for a Beginner

Yonghui Park

Department of Mechanical Engineering, Yuhan University, 590, Gyeongin-ro, Bucheon-si, Gyeonggi-do, Republic of Korea

Received July 19 2021; Revised October 13 2021; Accepted for publication October 13 2021.

Corresponding author: Y. Park (yonghuipark216@gmail.com)

© 2022 Published by Shahid Chamran University of Ahvaz

Abstract. In this study, an automatic GNU Octave code, a free high-level language, for the educational purposes was developed to
derive equations of motion and constrain equations of a multibody closed chain system and to calculate the response of the
system. The code for calculating the dynamic response was developed by formulating several equations in symbolic expression
and extracting differential-algebraic equations in matrix form. The code has a similar structure to the previous code for the open
chained system, but it deals with the constraint equation and different numerical integration. The examples of closed chain
systems provide an additional procedure to derive the constraint equations by using Lagrangian multiplication theory and to
solve the differential-algebraic equations using the Runge-Kutta method. The code was made to understand the theory of
analysis and the structure of calculation easily. In addition, the code has an automatic process of the derivation of the Lagrange
equation and the constraint equations in matrix form after inputting the number of symbolic information such as position and
velocity coordinates and design variables of the system that the user wants to review. The code was validated by comparing the
dynamic response of the four-bar linkage with the same design variables and initial conditions of the previous work. By using the
code, the reader's ability to exchange information such as symbols and matrices will be expected to be improved.

Keywords: GNU Octave, Multi-body dynamics, Closed chain, Lagrange multiplier, Differential Algebraic Equation, Automation.

1. Introduction

Multibody dynamics analysis deals with the dynamic characteristics of a multibody system. It has been developed mainly in
machinery, aerospace, and robots. The mechanical field dealing with closed-chain systems has attracted much interest in deriving
the optimal design through the sensitivity analysis between design variables and dynamic characteristics in the design process.
In comparison, the aerospace field dealing with open-chain systems focuses on research on the safety of the system due to its
enlarged range of motion [1]. Research on multibody dynamics analysis has focused on improving the deriving equations of
motion, expanding the range of analysis, deriving efficient computational algorithms by improving hardware computational
performance, and improving the software for user convenience. About the kind of multibody dynamics software, overseas
software such as ADAMS, MESA VERDE, and NEWEUL have been commercialized, and RecurDyn and DAFUL programs have been
commercialized in Korea [2]. In this way, multibody dynamics has become an essential discipline for the design process by
calculating dynamic characteristics such as velocity, acceleration, and other essential physical quantities to check the system has
on proper operating condition as we designed. Even though the activity is considered as an essential process in the design
process from system-level in large companies dealing with system development and assembling, small and medium-sized parts
manufacturers that manufacture mechanical elements and parts only conduct at the level of simple strength and stiffness
evaluation without checking the dynamic characteristics. It has not been able to accumulate engineering capabilities from the
system level. In other words, there were not enough opportunities for learning multibody dynamics analysis, and they could not
set up the application direction on how to use the analysis in their engineering work. In particular, in a situation where it is
difficult to secure a market continuously by selling a product from the element-level in the large companies due to an extreme
competition among lots of the small and medium-sized companies, product development in relying on the specific large
companies, can no longer be competitive. Based on engineering skill-up, they need to expand the market by giving sufficient
engineering information on how the product can be effective in your assembled product. From this point of view, multibody
dynamics can play a very good role in enhancing the ability to look at the design from the system’s point of view. Accordingly, it is
necessary to develop a free program that can be partially used by small and medium-sized parts makers and prospective workers
to understand the basic theory of multibody dynamics and apply the analysis in production activities.

Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic Characteristics of …

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

233

Fig. 1. The concept of the automatic code

However, several commercial software that can automatically induce equations of motion and calculate dynamics has already

been developed [3], and a theoretical study on how to derive dynamics models for efficient control in the robot industry [4-7] has
been conducted, so the necessity of program development is somewhat ambiguous. In particular, recently, a MATLAB package
program was developed that automatically derives the linear equation of motion of a robot and calculates the dynamic
characteristics using the TMT method [8-9]. Moreover, the educational MATLAB software was already provided for graduate and
undergraduate students by exercising a closed-chain 3D robot and McPherson car suspension system [10]. The students in
courses of 12 hours of theory and 15 hours of personal work acquired usage skills to solve several real exam exercises. However,
we need the free-software with sufficient explanations such as how to derive an equation, how to apply the equation to a code’s
function, how to convert a symbolic expression to numeric expression, for engineers for small businesses and students that have
no idea of dynamics. The previous work developed a dynamics analysis GNU Octave code for multibody dynamics analysis, so
various part manufacturers that produce traditional mechanical elements such as fastening, power transmission, and shafts can
cultivate design capabilities from a system perspective [11]. Using the GNU Octave program and the symbolic package, the code
for deriving the equation of motion and transforming the matrix of the multi-DOF system was developed, and the code for
deriving a numerical solution using the Newmark integration method was combined. The definition of the Lagrangian equation,
derivation of the equation of motion, and the process of extracting the mass-damping-stiffness matrix and force vector were
shown in the code to induce an understanding of the mechanism of dynamic analysis. This code cannot apply a multibody open
chain system only, therefore a range of applications should be expanded.

In this study, an automatic GNU Octave code for the educational purposes was developed to derive an equation of motion and
a constraint equation of a multibody closed chain system and to calculate the response of the system (Fig. 1). The code for
calculating the dynamic response was developed by extracting the differential-algebraic equation in the form of a matrix. Unlike
the existing open system mechanical system dynamic characteristics analysis code [11], the matrix derivation process by adding
a constraint equation is presented as a code. In addition, after inputting the symbolic coordinates and design variables of the
system to be reviewed by the user, a code was developed to automatically process the Lagrange equation and the constraint
equation in matrix form.

2. Theoretical Background

2.1 Differential-algebraic Equation

The coordinates of the objects constituting the open system mechanical system are independent variables, and the
Lagrangian (Eq. (1)) is defined in consideration of the kinetic energy of the system and the conserved or non-conserved energy
according to the relative motion between the coordinates. Eq. (2) is based on the principle that an object passes through a path
where the integral value of the time difference between kinetic energy and potential energy is the minimum among all paths
when an object is confined for a specific time and moves from one point to another. With Eq. (2), the translational-rotational
equation of motion (Eq. (3-4)) is in the form of a second-order differential equation [12].

 L T V= − (1)

() ()T V T Vd L L d

Q
dt q q dt q q

∂ − ∂ −∂ ∂
− = − =

∂ ∂ ∂ ∂ɺ ɺ
 (2)

 F Mx Cx Kx= + +ɺɺ ɺ (3)

 t tT I C Kθ θ θ= + +ɺɺ ɺ (4)

However, in a closed chain system that repeatedly performs a certain motion, it must be considered when calculating the
response as a constraint exists between objects and mutually affects the motion (Eq. (5)). In other words, it is necessary to extract
the optimal value that satisfies the constraint condition from the response candidates for each hour in Eqs. (3-4) [13]. The

 Y.H. Park, Vol. 8, No. 1, 2022

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

234

Lagrange multiplier method finds the extreme value of a multivariate function when there is a constraint. It finds the extreme
value that satisfies both the multivariate function and the constraint. The tangent of the two functions is parallel [14]. In defining
the equation of motion (Eq. (6)), the virtual work due to the virtual displacement δq in the state where no actual motion has
occurred can be defined as in Eq. (7). The partial differentiation of the constraint equation Φ concerning the virtual displacement
and the virtual displacement must satisfy Eq. (8). The equation of motion in which the Lagrangian multiplication theory is
introduced can be derived as in Eqs. (9-10).

 0Φ = (5)

 0
d L L

Q
dt q q

∂ ∂
− − =

∂ ∂ɺ
 (6)

 0Td L L
Q q

dt q q
δ

 ∂ ∂  − − =   ∂ ∂ ɺ
 (7)

 0q qδΦ = (8)

 0T
q

d L L
Q q q

dt q q
δ λ δ

 ∂ ∂  − − − Φ =   ∂ ∂ ɺ
 (9)

 T
q

d L L
Q

dt q q
λ

∂ ∂
− = +Φ

∂ ∂ɺ
 (10)

By deriving the equation of motion from Eq. (10) and applying the Lagrangian multiplier by obtaining the acceleration analysis

equation from the constraint equation, we can get the differential-algebraic equation (Eq. (11)). To satisfy the reliability of

solutions, the constraint violation stabilization method, coordinate partitioning method, the hybrid method can be used by

changing () 2
q qt ttq
q q q− Φ − Φ −Φɺ ɺ ɺ . However, this issue is the kind of selecting a numerical method that gives a numerical solution

more accurately, we just consider the fundamental formulation of the equation of motion, Eq. (11).

() 20

T
q

q qt ttq q

QM q

q q qλ

    Φ      =      − Φ − Φ −ΦΦ        

ɺɺ

ɺ ɺ ɺ
 (11)

In this way, we need much effort to understand the Lagrangian multipliers and other theories underlying Lagrange mechanics.
However, there is no great difficulty in understanding the process of mechanically inducing the equations of motion by using
them. The developed code contains contents that can automatically process the equations of motion and constrained equations
using the above equations. Just given the system, if we have the number of degrees of freedom and the generalized coordinate
system, and the kinetic energy, potential energy, and constraint equation can be extracted and entered into the code, we derive
the differential-algebraic equation easily.

Fig. 2. Flow of the numerical integration

Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic Characteristics of …

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

235

2.2 Numerical integration

To calculate the response of a closed chain system, we need a numerical integration for solving differential-algebraic
equations for generalized coordinates. In the open-chain system mechanical system response, the previous work uses the
Newmark numerical integration method to calculate the displacement, velocity, and acceleration of each time when a specific
unit time passes sequentially based on the assumptions about the time integration method, such as the average acceleration
method and the constant acceleration method [11]. However, the Newmark numerical integration method cannot be used as a
solver because we need additional iterative calculations to derive an optimal solution that satisfies the algebraic equation,
including the Lagrangian multiplier in the differential equation. Accordingly, we chose the ode solver in GNU Octave to get the
response. The ode45 solver is based on the Runge-Kutta method to reduce the cutting error by considering the higher-order term
of the Taylor series used for calculating the differential value. During iterative calculations, the code tries to find the optimal
solution by discriminating the elements by the algebraic equation [15-16].

Since the whole equations in the form of a matrix are applied to the solver through the calculation procedure in Fig. 2, it is not
a big problem in applying the numerical integration method. However, it is essential to understand the analysis process. Suppose
user can define the number of degrees of freedom, the coordinates that are required to express the system response of a closed
chain system, and the equations of motion and the constraint equations; In that case, the code prepares them as a function,
matrix, and vector to formulate them in the ode45 solver.

3. Code

3.1 System definition

Fig. 3 is a single pendulum selected to explain the use of the automatic calculation code. One end is placed on pin support and
is under gravity. To present the motion of a single pendulum with mass m and length l in the two-dimensional plane, there must
be three coordinates xG, yG, G in the Cartesian coordinate system to express translational and rotational motion, and the degree of
freedom is three. In Fig. 3, the rotational displacement  of the single pendulum supported by the pin can be expressed as a
relative motion according to the rotational motion coordinate G at the center. If the system does not have pin support, the
Lagrangian L can be easily obtained after deriving kinetic energy (Eq. 12) and potential energy (Eq. 13) without any constraints.

 2 2 2 21 1 1 1

2 2 2 12G GT mx my ml θ= + + ɺɺ ɺ (12)

 gV mgy= (13)

However, dependent coordinates occur in the closed chain system, not independent coordinates, interrelating with
movements between objects or coordinates within objects. The constraint equation is to organize the correlation between these
coordinates, and the remaining independent coordinates, excluding all dependent coordinates, are referred to as generalized
coordinates. The xG and yG coordinates depend on θ through the constraint equations (Eqs. (14-15)) in the single pendulum.

 cos
2G

l
x θ= (14)

 sin
2G

l
y θ=− (15)

Regarding the generalized coordinates, there is no need to go through an intermediate process if anyone defines the
independent generalized coordinates of the closed chain system at once. However, it is not easy to omit them in practice.
Accordingly, we need to deduce the kinetic energy and potential energy for all coordinates by considering the closed chain system
as an open-chain system. We then additionally derive the constraint equations between each coordinate. Lastly, we need to derive
it as the differential-algebraic equations in Eq. (11).

Fig. 3. Single pendulum

 Y.H. Park, Vol. 8, No. 1, 2022

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

236

clc
clear all
close all

pkg load symbolic

%Part 1--%
%% Derivation of the constraint equation
% Number of degree of freedom and constraint equation
ND=3;
NC=2;
unconservation_MakingEquation
save temp_dtuc.mat NC ND dtuc Tvar
clear all
load('temp_dtuc.mat')
MakingEquation

% Mass matrix and force vector
[M]=mmass(Eq,ND,Tvar);
[Generalized1]=mstiff(Eq,ND,Tvar);
% Gravity force vector
Gravityterms
[Gravity]=mgravity(dgv,ND,Tvar);
save Matrix.mat M Generalized1 Gravity

%Part 2--%
%% Derivation of the constraint equation
ConstraintEquation
[Gamma,Qq]=mconst(Qq,Gamma,ND,Tvar);

%Part 3--%
%% Numerical integration
Numerical_analysis_DAE

Fig. 4. msain_script

pkg load symbolic

% Symbolic expression about coordinates, velocities, and
% design variables (User define)
for i=1:1:ND
eval(['syms q',num2str(i),' dq',num2str(i)])
end
% Previous code
% syms q1 q2 q3 ... % coordinates
% dq1 dq2 dq3 ... % velocities
syms m l ... % mass, length
t g ... % time, gravity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Tvar=[time, coordinates, velocities, the others]
% for defining all functions regarding 'Tvar'

automatically
% and for using ode45 solver
Tvar=[t];
for i=1:1:ND
eval(['Tvar=[Tvar q',num2str(i),'];'])
end
for i=1:1:ND
eval(['Tvar=[Tvar dq',num2str(i),'];'])
end
Tvar=[Tvar m l g];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define temporary coordinates with the time variable
for i=1:1:ND
eval(['tmp',num2str(i),'=[char(q',num2str(i),')

''(t)''];'])
end
%Previous
%tmp1=[char(q1) '(t)']; %
%tmp2=[char(q2) '(t)']; %
%tmp3=[char(q3) '(t)']; %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define temporary velocities with the time variable
for i=1:1:ND
eval(['tmp',num2str(10000+i),'=[char(dq',num2str(i),')''

(t)''];'])
end
%Previous code
%tmp10001=[char(dq1) '(t)']; %
%tmp10002=[char(dq2) '(t)']; %
%tmp10003=[char(dq3) '(t)']; %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Substitute the temporary coordinates into the

coordinates
% and differentiate it regarding the time variable
for i=1:1:ND
eval(['q',num2str(i),'=subs(q',num2str(i),',q',num2str(i

),',tmp',num2str(i),');'])
eval(['dq',num2str(i),'=diff(q',num2str(i),',''t'');'])
end
% Previous
% q1=subs(q1,q1,tmp1);
% dq1=diff(q1,'t');
% q2=subs(q2,q2,tmp2);
% dq2=diff(q2,'t');
% q3=subs(q3,q3,tmp3);
% dq3=diff(q3,'t');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Lagrangian
% Kinetic Energy (User define)
T=(1/2)*(m)*(dq1^2)+(1/2)*(m)*(dq2^2)+(1/2)*(1/12*m*l^2)

*(dq3^2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Change diff(qi(t),t) to dqi in T for the next partial

derivative
for i=1:1:ND
eval(['T=subs(T,''diff(q',num2str(i),'(t),t)'',''dq',num

2str(i),''');'])
end
% Previous
% T=subs(T,'diff(q1(t),t)','dq1');
% T=subs(T,'diff(q2(t),t)','dq2');
% T=subs(T,'diff(q3(t),t)','dq3');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Change qi(t) to qi in T for the next partial

derivative
for i=1:1:ND
eval(['T=subs(T,''q',num2str(i),'(t)'',''q',num2str(i),'

'');'])
end
% Previous
% T=subs(T,'q1(t)','q1');
% T=subs(T,'q2(t)','q2');
% T=subs(T,'q3(t)','q3');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Partial derivate of T regarding each coordinate
for i=1:1:ND
eval(['dtuc(',num2str(i),')=diff(T,''q',num2str(i),''');

'])
end
% Previous
% dtuc(1)=diff(T,'q1');
% dtuc(2)=diff(T,'q2');
% dtuc(3)=diff(T,'q3');

for i=1:1:length(dtuc);
for j=1:1:ND
eval(['dtuc(',num2str(i),')=subs(dtuc(',num2str(i),'),''

diff(dq',num2str(j),'(t),t)'',''ddq',num2str(j),'(t)'');'])
eval(['dtuc(',num2str(i),')=subs(dtuc(',num2str(i),'),''

dq',num2str(j),''',''dq',num2str(j),'(t)'');'])
eval(['dtuc(',num2str(i),')=subs(dtuc(',num2str(i),'),''

q',num2str(j),''',''q',num2str(j),'(t)'');'])
% Previous
% dtuc(i)=subs(dtuc(i),'diff(dq1(t),t)','ddq1(t)');
% dtuc(i)=subs(dtuc(i),'dq1','dq1(t)');
% dtuc(i)=subs(dtuc(i),'q1','q1(t)');
 end
 end

Fig. 5. unconservation_MakingEquation : Eqs. (11-12), (16)

Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic Characteristics of …

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

237

pkg load symbolic

% Symbolic expression about coordinates, velocities, and
% design variables (User define)
for i=1:1:ND
eval(['syms q',num2str(i),' dq',num2str(i)])
end
syms m l ... % mass, length
t g ... % time, gravity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Tvar=[time, coordinates, velocities, the others]
% for defining all functions regarding 'Tvar'

automatically
% and for using ode45 solver
Tvar=[t];
for i=1:1:ND
eval(['Tvar=[Tvar q',num2str(i),'];'])
end
for i=1:1:ND
eval(['Tvar=[Tvar dq',num2str(i),'];'])
end
Tvar=[Tvar m l g];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define temporary coordinates with the time variable
for i=1:1:ND
eval(['tmp',num2str(i),'=[char(q',num2str(i),')

''(t)''];'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define temporary velocities with the time variable
for i=1:1:ND
eval(['tmp',num2str(10000+i),'=[char(dq',num2str(i),')

''(t)''];'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Substitute the temporary coordinates into the

coordinates
% and differentiate it regarding the time variable
for i=1:1:ND
eval(['q',num2str(i),'=subs(q',num2str(i),',q',num2str(i

),',tmp',num2str(i),');'])
eval(['dq',num2str(i),'=diff(q',num2str(i),',''t'');'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Lagrangian
% Kinetic Energy (User define)
T=(1/2)*(m)*(dq1^2)+(1/2)*(m)*(dq2^2)+(1/2)*(1/12*m*l^2)

*(dq3^2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Change diff(qi(t),t) to dqi in T for the next partial

derivative
for i=1:1:ND
eval(['T=subs(T,''diff(q',num2str(i),'(t),t)'',''dq',num

2str(i),''');'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define partial derivative of T regarding each velocity
for i=1:1:ND
eval(['tt(',num2str(i),')=diff(T,''dq',num2str(i),''');'

])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define temporary velocities with the time variable
again

for i=1:1:ND
eval(['tmp',num2str(10000+i),'=[char(dq',num2str(i),')

''(t)''];'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Change qi and dqi to qi(t) and dqi(t) respectively in

tt(i)
for i=1:1:length(tt)
for j=1:1:ND;
eval(['tt(i)=subs(tt(i),''dq',num2str(j),''',''aaa',num2

str(j),''');'])
eval(['tt(i)=subs(tt(i),''q',num2str(j),''',''q',num2str

(j),'(t)'');'])
eval(['tt(i)=subs(tt(i),''dq',num2str(j),''',''dq',num2s

tr(j),'(t)'');'])
eval(['tt(i)=subs(tt(i),''aaa',num2str(j),''',''dq',num2

str(j),'(t)'');'])
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define time derivate of tt
for i=1:1:length(tt);
dtt(i)=diff(tt(i),'t');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Potential energy term
V=sym(0);

% Change qi(t) to qi in V
for i=1:1:ND
eval(['V=subs(V,''q',num2str(i),'(t)'',''q',num2str(i),'

'');'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Partial derivate of V regarding each coordinate
for i=1:1:ND
eval(['dv(i)=diff(V,''q',num2str(i),''');'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Change qi to qi(t) in dv(i) for the next time

derivative
for i=1:1:length(dv)
for j=1:1:ND;
eval(['dv(i)=subs(dv(i),''q',num2str(j),''',''q',num2str

(j),'(t)'');'])
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Final Equation : Lagrangian regarding each coordinate
for i=1:1:length(tt);
Eq(i)=dtt(i)-dtuc(i)+dv(i);
end

% Change 'diff' and 'diff(diff)' to 'd' and 'dd'

respectively
for i=1:1:length(Eq)
for j=1:1:ND;
eval(['Eq(i)=subs(Eq(i),''diff(dq',num2str(j),'(t),t)'',

''ddq',num2str(j),'(t)'');'])
eval(['Eq(i)=subs(Eq(i),''diff(q',num2str(j),'(t),t)'','

'dq',num2str(j),'(t)'');'])
eval(['Eq(i)=subs(Eq(i),''q',num2str(j),'(t)'',''q',num2

str(j),'(t)'');'])
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Expand Lagrangian
for i=1:1:length(Eq);
Eq(i)=expand(Eq(i));
end

Fig. 6. MakingEquation : Eqs. (11-13), (17-18)

3.2 Derivation of the equations of motion and the gravity vector

This section deals with deriving equations of motion with three degrees of freedom into GNU Octave based on Eqs. (12-13)
derived from the system definition. Although the contents of the previous study [11] are similar to each other, in the linear study,
to use the development code to handle other systems, all codes had to be customized. The difference is that the process is
automated. Fig. 4 is a single pendulum dynamics analysis main_script, consisting of three parts: derivation of equations of motion,
derivation of constrained equation, and numerical analysis. The difference between the existing development code and the

 Y.H. Park, Vol. 8, No. 1, 2022

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

238

previous code is that the damping matrix and stiffness matrix are transposed to external force vector terms rather than
organizing a matrix regarding velocity and displacement coordinates because it needs to be summarized in Eq. (11), suitable for
the application of the ode45 solver.

In the first code unconservation_MakingEquation that composes the derivation of the equation of motion - Part 1, coordinates q1,
q2, q3, coordinates dq1, dq2, dq3 and system variables m, l, k, t, and g are defined as symbolic variables (Fig. 5). Here, the coordinates
q1, q2, and q3 represent xG, yG, and , respectively. One thing to note is that, unlike other variables, coordinates and speeds change
over time, so (t) add a time component and differentiate the displacement coordinates concerning time to redefine the speed.
When the essential variables are defined, the total kinetic energy T in the system is calculated. In the case of previous among the
comments in the code, it indicates the past method that the user manually entered according to the system’s coordinates. The
existing development code receives the number of coordinates and speeds based on the number of coordinates ND given in the
problem. It automatically declares variables, partial derivatives, and variable substitution. That is, the parts that the user should
define are design variables and kinetic energy.

function [MM]=mmass(Eq,ND,Tvar)
S=Eq;

for i=1:1:length(S);
for j=1:1:ND
eval(['S(i)=subs(S(i),''ddq',num2str(j),'(t)'',''ddq',nu

m2str(j),''');'])
eval(['S(i)=subs(S(i),''dq',num2str(j),'(t)'',''dq',num2

str(j),''');'])
eval(['S(i)=subs(S(i),''cos(q',num2str(j),'(t))'',''cos(

disp',num2str(j),')'');'])
eval(['S(i)=subs(S(i),''sin(q',num2str(j),'(t))'',''sin(

disp',num2str(j),')'');'])
eval(['S(i)=subs(S(i),''cos(q',num2str(j),'(t))'',''cos(

disp',num2str(j),')'');'])
eval(['S(i)=subs(S(i),''cos(q',num2str(j),'(t))^2'',''co

s(disp',num2str(j),')^2'');'])
eval(['S(i)=subs(S(i),''sin(q',num2str(j),'(t))^2'',''si

n(disp',num2str(j),')^2'');'])
eval(['S(i)=subs(S(i),''sin(q',num2str(j),'(t))'',''sin(

disp',num2str(j),')'');'])
eval(['S(i)=subs(S(i),''q',num2str(j),'(t)^2'',''disp',n

um2str(j),'^2'');'])
eval(['S(i)=subs(S(i),''q',num2str(j),'(t)'',''q',num2st

r(j),''');'])
end
end
%Previous
%S(i)=subs(S(i),'ddq1(t)','ddq1');
%S(i)=subs(S(i),'ddq2(t)','ddq2');
%S(i)=subs(S(i),'ddq3(t)','ddq3');

%S(i)=subs(S(i),'dq1(t)','dq1');
%S(i)=subs(S(i),'dq2(t)','dq2');
%S(i)=subs(S(i),'dq3(t)','dq3');

%S(i)=subs(S(i),'cos(q1(t))','cos(disp1)');
%S(i)=subs(S(i),'cos(q2(t))','cos(disp2)');
%S(i)=subs(S(i),'cos(q3(t))','cos(disp3)');

%S(i)=subs(S(i),'sin(q1(t))','sin(disp1)');
%S(i)=subs(S(i),'sin(q2(t))','sin(disp2)');
%S(i)=subs(S(i),'sin(q3(t))','sin(disp3)');

%S(i)=subs(S(i),'cos(q1(t))','cos(disp1)');
%S(i)=subs(S(i),'cos(q2(t))','cos(disp2)');
%S(i)=subs(S(i),'cos(q3(t))','cos(disp3)');

%S(i)=subs(S(i),'cos(q1(t))^2','cos(disp1)^2');
%S(i)=subs(S(i),'cos(q2(t))^2','cos(disp2)^2');
%S(i)=subs(S(i),'cos(q3(t))^2','cos(disp3)^2');

%S(i)=subs(S(i),'sin(q1(t))^2','sin(disp1)^2');
%S(i)=subs(S(i),'sin(q2(t))^2','sin(disp2)^2');
%S(i)=subs(S(i),'sin(q3(t))^2','sin(disp3)^2');

%S(i)=subs(S(i),'sin(q1(t))','sin(disp1)');
%S(i)=subs(S(i),'sin(q2(t))','sin(disp2)');
%S(i)=subs(S(i),'sin(q3(t))','sin(disp3)');

%S(i)=subs(S(i),'q1(t)^2','disp1^2');
%S(i)=subs(S(i),'q2(t)^2','disp2^2');
%S(i)=subs(S(i),'q3(t)^2','disp3^2');

%S(i)=subs(S(i),'q1(t)','q1');
%S(i)=subs(S(i),'q2(t)','q2');
%S(i)=subs(S(i),'q3(t)','q3');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Constant=S;
for i=1:1:length(Constant);
for j=1:1:ND
eval(['Constant(i)=subs(Constant(i),''ddq',num2str(j),''

',''0'');'])
end
end
%Previous
%Constant(i)=subs(Constant(i),'ddq1','0');
%Constant(i)=subs(Constant(i),'ddq2','0');
%Constant(i)=subs(Constant(i),'ddq3','0');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S=S-Constant;

for i=1:1:length(S);
S(i)=expand(S(i));
end

for i=1:1:length(S);
 mS(i)=S(i);
end

for i=1:1:length(Constant);
 CConstant(i)=Constant(i);
end

for j=1:1:length(mS);
mM=mS;
clear UUU
UUU=zeros(length(mS),1);
UUU(j,1)=1;
for jj=1:1:ND
eval(['aaa',num2str(jj),'=UUU(',num2str(jj),',1);'])
%Previous
%aaa1=UUU(1,1);
%aaa2=UUU(2,1);
%aaa3=UUU(3,1);
end

for i=1:1:length(mS);
for ii=1:1:ND
eval(['mM(i)=subs(mM(i),''ddq',num2str(ii),''',aaa',num2

str(ii),');'])
%Previous
%mM(i)=subs(mM(i),'ddq1',aaa1);
%mM(i)=subs(mM(i),'ddq2',aaa2);
%mM(i)=subs(mM(i),'ddq3',aaa3);
MM(i,j)=mM(i);
end
end
end

%Define the function regarding Tvar
function_handle(MM,'vars',Tvar,'file','Mass')

for i=1:1:ND
eval(['MM=subs(MM,''ddq',num2str(i),''',''accl',num2str(

i),''');'])
eval(['MM=subs(MM,''dq',num2str(i),''',''vel',num2str(i)

,''');'])
eval(['MM=subs(MM,''q',num2str(i),''',''disp',num2str(i)

,''');'])
end

Fig. 7. mmass : Eq. (19)

Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic Characteristics of …

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

239

function [CConstant]=mstiff(Eq,ND,Tvar)
S=Eq;

for i=1:1:length(S);
for j=1:1:ND
eval(['S(i)=subs(S(i),''ddq',num2str(j),'(t)'',''0'');']

)
eval(['S(i)=subs(S(i),''dq',num2str(j),'(t)'',''vel',num

2str(j),''');'])
eval(['S(i)=subs(S(i),''q',num2str(j),'(t)'',''disp',num

2str(j),''');'])
eval(['S(i)=subs(S(i),''cos(q',num2str(j),'(t))'',''cos(

disp',num2str(j),')'');'])
eval(['S(i)=subs(S(i),''sin(q',num2str(j),'(t))'',''sin(

disp',num2str(j),')'');'])
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:1:length(S);
S(i)=expand(S(i));
end

Constant=transpose(S);
CConstant=Constant;

%Define the function regarding Tvar
function_handle(CConstant,'vars',Tvar,'file','Generalize

d1')

for i=1:1:length(CConstant)
for j=1:1:ND
eval(['CConstant(i)=subs(CConstant(i),''ddq',num2str(j),

''',''accl',num2str(j),''');'])
eval(['CConstant(i)=subs(CConstant(i),''dq',num2str(j),'

'',''vel',num2str(j),''');'])
eval(['CConstant(i)=subs(CConstant(i),''q',num2str(j),''

',''disp',num2str(j),''');'])
end
end

function [dgvv]=mgravity(dgv,ND,Tvar)
S=dgv;

for i=1:1:length(S);
for j=1:1:ND;
eval(['S(i)=subs(S(i),''q',num2str(j),'(t)'',''disp',num

2str(j),''');'])
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:1:length(S)
dgvv(i)=S(i);
end
dgvv=transpose(dgvv);

%Define the function regarding Tvar
function_handle(dgvv,'vars',Tvar,'file','Gravity')

for i=1:1:ND
eval(['dgvv=subs(dgvv,''ddq',num2str(i),''',''accl',num2

str(i),''');'])
eval(['dgvv=subs(dgvv,''dq',num2str(i),''',''vel',num2st

r(i),''');'])
eval(['dgvv=subs(dgvv,''q',num2str(i),''',''disp',num2st

r(i),''');'])
end

Fig. 8. mstiff & mgravity : Eq. (19)

Through this code, we can calculate the box mark term in Eq. (16), and it is declared as a dtuc vector and saved as a temporary

file through sequential calculation of the main script. For details of the code, please refer to the previous study [11].

 T
q

d T V T V
Q

dt q q q q
λ

   ∂ ∂ ∂ ∂ − − − = +Φ     ∂ ∂ ∂ ∂    ɺ ɺ
 (16)

The second code, MakingEquation code, is the process of deriving the equation of motion. The code from the definition of the
symbolic variable to the total kinetic energy T is the same as unconservation_MakingEquation. The explanation is omitted as the
partial differential process in Eqs. (17-18) is not different from the previous code. (Fig. 6) As the unconservation_MakingEquation
defined above, if the user defines only the degrees of freedom, kinetic energy, and potential energy, it can be seen that the kinetic
energy equation, including symbolic variables, is automatically derived. The Gravityterms code that is not shown in the paper and
calculates the gravitational term from the potential energy caused by gravity should be derived by following a derivation process
similar to that of MakingEquation code. The Jacobian matrix Φq and the Lagrange multiplier λ based on the constraint equation are
dealt with separately in Section 3.4.

 T
q

d T d V T V
Q

dt q dt q q q
λ

 ∂ ∂ ∂ ∂  − − − = +Φ  ∂ ∂ ∂ ∂ ɺ ɺ
 (17)

 T
q

d T d V T V
Q

dt q dt q q q
λ

 ∂ ∂ ∂ ∂ − − − = +Φ  ∂ ∂ ∂ ∂  ɺ ɺ
 (18)

3.3 Matrix-vectorization from the equations of motion

To correctly apply the equation of motion and gravity in the form of symbolic expression derived in Section 3.2 to the ode45
solver, it is necessary to convert the M mass matrix and the external force Q vector in Eq. (19). In main_script-Part 1, mmass derives
the M matrix (Fig. 7) in the equation of motion, mstiff derives the Q vector (Fig. 8) in the equation of motion, and mgravity derives
the code that functions the gravity applied in the Q vector. In detail, mmass code removes all terms other than the acceleration
vector. It extracts the mass matrix by expressing the remaining terms as (mass matrix)×(acceleration vector). mstiff and mgravity
calculate the remaining external force terms excluding (mass matrix)×(acceleration vector).

At this time, Tvar, including time, coordinates, speed, and design variables introduced in Section 3.2, is used as input variables
in the three codes in earnest. Tvar is used to automatically organize the process necessary for automatic response calculation by
accepting the degrees of freedom defined by the user in inputting information on the closed chain system. For example, the
gravitational acceleration g is not used to function the M matrix but is used to function the gravitational term in the Q vector.
That is because g can be selectively used as an input variable or not, a function of a different structure can appear. In this case,
the user has to change the code from time to time, creating an effective variable processing flow chart. If Tvar is equally applied
as an input variable and unnecessary variables in functionalization are treated with a dummy.

 Y.H. Park, Vol. 8, No. 1, 2022

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

240

() 20

T
q

q qt ttq q

QqM

q q qλ

    Φ      =      − Φ − Φ −ΦΦ         

ɺɺ

ɺ ɺ ɺ
 (19)

3.4 Derivation of constraint equations and matrix-vectorization

In this section, in main_script-Part 2, we derive the introduced acceleration analysis γ vector from the constraint equation to
find the optimal solution that satisfies both the equation of motion and the constraint equation using the Jacobian Φq matrix and
the Lagrangian multiplier method (Eq. 20). Defining the constraints and partial differentiation are processed in the
ConstraintEquation code samely as the previously derivation equations of motion and matrix-vectorization. mconst code preforms
functionalization (Fig. 9-10). As two constraint equations and three coordinates are derived in the single pendulum, Φq becomes a
two by three matrix, and γ becomes a three by one vector.

() 20

T
q

q qt ttqq

QM q

q q qλ

   Φ     
   =  
   − Φ − Φ −Φ Φ       

ɺɺ

ɺ ɺ ɺ
 (20)

pkg load symbolic

% Symbolic expression about coordinates, velocities, and
% design variables (User define)
for i=1:1:ND
eval(['syms q',num2str(i),' dq',num2str(i)])
end
syms m l ... % mass, length
t g ... % time, gravity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Tvar=[time, coordinates, velocities, the others]
% for defining all functions regarding 'Tvar'

automatically
% and for using ode45 solver
Tvar=[t];
for i=1:1:ND
eval(['Tvar=[Tvar q',num2str(i),'];'])
end
for i=1:1:ND
eval(['Tvar=[Tvar dq',num2str(i),'];'])
end
Tvar=[Tvar m l g];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define temporary coordinates with the time variable
for i=1:1:ND
eval(['tmp',num2str(i),'=[char(q',num2str(i),')

''(t)''];'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define temporary velocities with the time variable
for i=1:1:ND
eval(['tmp',num2str(10000+i),'=[char(dq',num2str(i),')

''(t)''];'])
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constraint Equation (User define with NC)
Q(1,1)=q1-(l/2)*sin(q3);
Q(2,1)=q2+(l/2)*cos(q3);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Partial derivative of Q : Qq_dq_q_dq(1st term)
% 1st stage
for i=1:1:NC
for j=1:1:ND
eval(['Qq(i,j)=diff(Q(i),''q',num2str(j),''');'])
end
end
dq=[dq1;dq2;dq3];

% 2nd stage
Qq_dq=Qq*dq;
% 3rd stage
for i=1:1:NC
for j=1:1:ND
eval(['Qq_dq_q(i,j)=diff(Qq_dq(i),''q',num2str(j),''');'])
end
end
% 4th stage
Qq_dq_q_dq=Qq_dq_q*dq;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Partial derivative of Q : 2Qq_t_dq(2nd term)
% 1st stage
for i=1:1:NC
for j=1:1:ND
Qq_t(i,j)=diff(Qq(i,j),'t');
end
end
% 2nd stage
Qq_t_dq=Qq_t*dq;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Partial derivative of Q : Qtt(3rd term)
% 1st stage
for i=1:1:NC
Qt(i,1)=diff(Q(i,1),'t');
end

% 2nd stage
for i=1:1:NC
Qtt(i,1)=diff(Qt(i,1),'t');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define Gamma
Gamma=Qq_dq_q_dq+Qq_t_dq+Qtt;

Fig. 9. ConstraintEquation : Eqs.(14-15), (20)

function [S,H]=mconst(Qq,Gamma,ND,Tvar)
S=Gamma;
H=Qq;

% Define the function regarding Tvar
function_handle(S,'vars',Tvar,'file','Gamma')
function_handle(H,'vars',Tvar,'file','Qq')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fig. 10. mconst : Eq.(20)

Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic Characteristics of …

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

241

clc
close all;
clear all;
pkg load symbolic
% load the saved mat file to extract Tvar
load('temp_dtuc.mat')

% Set the parameters
Tspan = 0.0:0.001:3; % Time interval
m = 1.0; % Mass
l = 10; % Length
g = 9.81; % Gravity acceleration
theta1 = 45/180*pi; % Initial angle

% Substitute values in Tvar to input it into 'pendulum'

function
Tvar=subs(Tvar,'m',m);
Tvar=subs(Tvar,'l',l);
Tvar=subs(Tvar,'g',g);
Tvar_num=Tvar(2*ND+1+1:end);
Tvar_num=double(Tvar_num);
Tvar_num_cell=num2cell(Tvar_num);

% Determine the initial conditions
q = zeros(3,1);
q(1) = l/2*sin(theta1);
q(2) = -l/2*cos(theta1);
q(3) = theta1;
qdot = zeros(3,1); % All initial velocities are zero

Z0 = [q' qdot']'; % Initial Condition Vector
options = odeset('RelTol',1.0e-9,'AbsTol',1.0e-6);
[Tout,Z] = ode45('pendulum',Tspan,Z0,Tvar_num_cell{:},

ND,NC,options);

x1 = Z(:,1);
y1 = Z(:,2);
Theta1= Z(:,3);
figure(1);
plot(x1,y1);
grid on;
xlabel('x-position(m)','fontsize',20);
ylabel('y-position(m)','fontsize',20);
hold on
plot(x1(1),y1(1),'k*')
plot(x1(end),y1(end),'r*')
h=legend('Path','Initial coordinate','Final

coordinate',
"location","north");

set(h,"fontsize",18)
xlim([-5 5])
ylim([-5 5])
axis square

figure(2);
plot(Tout, Theta1, 'k');
grid;
title('Angle of Crank');
xlabel('Time - seconds');
ylabel('Anlge - radians');
x1dot = Z(:,1+9);
y1dot = Z(:,2+9);
Theta1dot = Z(:,3+9);
figure(3);
plot(Tout, x1dot, 'k', Tout, y1dot, 'k--', Tout,

Theta1dot, 'k-');
grid;
title('Velocities of Crank');
xlabel('Time - seconds');
ylabel('Velocities - meters/s and angular velocity -

rad/sec.');
legend('Horizontal Velocity','Vertical

Velocity','Angular Velocity');

Fig. 11. Numerical_analysis_DAE

function zdot = pendulum(t,z,m,l,g,ND,NC)

% Separate cooridnates and velocities
q = z(1:ND); % coordinate data
qdot = z(ND+1:end); % velocity data

% Arrange 'Tvar'
Tvar=[t transpose(z) m l g];
Tvar_cell=num2cell(Tvar);

% Define 'Mass' matrix
M=Mass(Tvar_cell{:});

% Define 'Gravity' and 'Generalized force' vector
Gravity1=-Gravity(Tvar_cell{:});
Generalized=-Generalized1(Tvar_cell{:});
Q=Gravity1+Generalized;

% Define 'Qq' matrix
Qq1=Qq(Tvar_cell{:});

% Define 'Gamma' vector
Gamma1=-Gamma(Tvar_cell{:});
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Build the left side of matrix
C=[M Qq1'; Qq1 zeros(NC,NC)];
D=inv(C);

% Build the right side of vector
R=[Q;Gamma1];

% Calculate the solution
ACC=C\R;
qdd=ACC(1:ND);

% Determine the time derivative of the state vector
zdot=[qdot' qdd']';

Fig. 12. Pendulum

3.5 Calculation of the dynamic response

By executing the code introduced in Sections 3.1 to 3.4, all matrices and vectors shown in Eq. (11) can be called from the pre-
defined functions. This information is called from the pendulum function to calculate acceleration and Lagrange multipliers based
on the current response and velocity. Then, the Runge-Kutta method of the ode45 solver uses the information to calculate the
response such as displacement and velocity (Fig. 11-12).

Table 1 shows the initial response and design variables. When the result of ode45 is derived, the single pendulum performs
parabolic motion by gravity. (Fig. 13).

Table 1. Design variable and simulation condition

Design variable Value Simulation condition Value

m 1 kg t 0 ~ 3 sec

l 10 m Δt 0.001 sec

g 9.81 m/s2 Relative Tolerance 1×10-9

ini 45° Absolute Tolerance 1×10-6

 Y.H. Park, Vol. 8, No. 1, 2022

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

242

Fig. 13. x-y coordinates of the single pendulum

Fig. 14. 4-bar linkage

4. Code Application

4.1 System definition

In this section, we reviewed whether a user can use the code easily by using the derivation of the equations of motion and the
response calculation code when an arbitrary system is given. Fig. 14 is the 4-bar linkage, and the initial posture, speed, and
external force were applied by reference in previous studies using Simulink [17].

Before manipulating the code, a user must define the number of coordinates, design variables, kinetic energy, potential energy,
external force, and constraint equations. Regarding the system coordinates, as there are three links with three x, y,  coordinates,
it consists of a total of 9 coordinates (x2, y2, 2, x3, y3, θ3, x4, y4, 4). The kinetic energy of each link is as shown in Eq. (21), and there is
no potential energy by the spring that provides conserved energy in the system. Eq. (22) is the gravitational force due to the mass
of each link, and it is summarized as a gravity vector through mgravity. Finally, a total of eight constraint equations were derived
through the location analysis based on the geometric relationship review between each coordinate system (Eq. (23)).

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 3 3 3 3 3 3 3

2 2 2 2
4 4 4 4 4 4 4

1 1 1 1 1 1 1 1

2 2 2 12 2 2 2 12

1 1 1 1

2 2 2 12

T m x m y m L m x m y m L

m x m y m L

θ θ

θ

     = + + + + +       

 + + +   

ɺ ɺɺ ɺ ɺ ɺ

ɺɺ ɺ

 (21)

 2 2 3 3 4 4V m gy m gy m gy= + + (22)

Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic Characteristics of …

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

243

Fig. 15. Angular displacements (Theta) and velocities (dTheta) of the 4-bar linkage

()

()

2
2 2

2
2 2

3
3 2 2 3

3
3 2 2 3

1 2 2 3 3
4

2 2 3 3
4

2 2 3 3 1 4 4

2 2 3 3 4 4

cos 1
2

sin 2
2

cos cos 3
2

sin sin 4
2

cos cos
5

2

0 sin sin
6

2
cos cos cos 7

sin sin 0 sin 8

L
x

L
y

L
x L

L
y L

L L L
x

L L
y

L L L L

L L L

θ

θ

θ θ

θ θ

θ θ

θ θ

θ θ θ

θ θ θ

=

=

= +

= +

+ +
=

+ +
=

+ = +

+ = +

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

 (23)

Before using the code, it is necessary to follow the guidelines below as equations are automatically processed according to the

number of coordinates.
-To apply the standardized coordinates, the coordinates (x2, y2, 2, x3, y3, 3, x4, y4, 4) are used in Eqs. (21-23), are converted to (q1,

q2, q3, q4, q5, q6, q7, q8, q9)
-Update the number of coordinates and constraint equations in main_script
-Kinetic energy, potential energy, external force, and constraint equation update

4.2 Response calculation

The results obtained from deriving the equations of motion and the constraint equations, and matrix transformation code,
and the results of substituting the design variables, initial condition Case 1 from suggested in the previous study [17] into the
numerical analysis code show responses in Fig. 15. The response result is the extraction of the time history for the same physical
quantity as the time history of angular displacement and velocity in the case of 1 in the previous study. As the two results are the
same, the derivation of the system equation and response calculation is correctly performed. The previous study used
MATLAB/Simulink which is a commercial software, to obtain the system response, so this code has the same quality to solve a
numerical problem compared to MATLAB/Simulink. However, the previous study derived the equations of motion and the
differential-algebraic equations by hand and modeled the block diagram regarding the equations of motion and the differential-
algebraic equation manually, this code has the strength to understand the whole process of dynamics analysis for a closed chain
system.

5. Conclusion

This paper developed the dynamic analysis code for a closed chain system that improved the previous derivation of an
equation of motion and response calculation code for an open-chain system. The GNU Octave code was developed to derive
equations of motion using Lagrange mechanics and apply the ode45 numerical integration method so that users unfamiliar with

 Y.H. Park, Vol. 8, No. 1, 2022

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 232-244

244

multibody dynamics can easily calculate system dynamics. The target system was selected to validate the code, and the system
equations and responses were calculated correctly. Moreover, the user's understanding was induced by introducing the basics,
procedures, and application-related explanations necessary for using the code. Through a series of processes, a user can easily
derive a response by mechanically approaching the system definition, such as energy calculation and variable selection, to the
matrix transformation problem that occurs in deriving the equation of motion of a more complex mechanical system. In the
future, this code will be applied in an undergraduate class or major club to check the goods and find out the weakness. In
addition, it is planned to expand to a GUI-based program to develop a free code that can quickly prepare dynamics analysis in the
3D modeling stage to increase its usability in the industry and to use it as educational materials for university dynamics and
vibrations.

Acknowledgments

This work was supported by Yuhan University.

Conflict of Interest

The author declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The author received no financial support for the research, authorship and publication of this article.

Data Availability Statements

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable
request.

References

[1] Yoo, W. S., Park, S. J., Dmitrochenko, O., Pogorelov, D., Verification of Absolute Nodal Coordinate Formulation in Flexible
Multibody Dynamics via Physical Experiments of Large Deformation Problems, Journal of Computational and Nonlinear Dynamics, 1(1),
2006, 81-93.
[2] Yoo, W. S., Kim, T. Y., Jung, S., History and Future of Multi-body Dynamics, Transactions of the Korean Society of Mechanical
Engineers - A, 43(7), 2019, 483-491.
[3] Munro, N., Symbolic methods in control system analysis and design, Institution of Engineering and Technology, Stevenage, 1999.
[4] Van Khang, N., Kronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multi-body
systems, Mechanics Research Communications, 38(4), 2011, 294-299.
[5] Negrut, D., Dyer, A., ADAMS/Solver Primer, MSC Software Documentation, Ann Arbor, 2004.
[6] Bonev, I. A., Geometric analysis of parallel mechanisms, Université Laval, Qubec City, 2002.
[7] vander Linde, R. Q., Schwab, A. L., Lecture Notes Multi-body Dynamics B, Delft University, Delft, 1998.
[8] Sadati, S. M. H., Naghibi, S. E., Naraghi, M., An automatic algorithm to derive linear vector form of Lagrangian equation of
motion with collision and constraint, Procedia Computer Science, 76, 2015, 217-222.
[9] Sadati, S. M. H., Naghibi, S. E., Shiva, A., Zschaler, S., Hauser, H., Walker, I., Althoefer, K., Nanayakkara, T., AutoTMTDyn: A Matlab
software package to drive TMT Lagrange dynamics of series rigid-and continuum-link mechanisms, IROS 2018 Workshop on Soft
Robotic Modeling and Control: Bringing Together Articulated Soft Robots and Soft-Bodied Robots, Madrid, Spain, 2018.
[10] de Jalón, J. G., Callejo, A., A straight methodology to include multibody dynamics in graduate and undergraduate subjects,
Mechanism and Machine Theory, 46(2), 2011, 168-182.
[11] Park, Y. H., An Automatic Program of Generation of Equation of Motion and Dynamic Analysis for Multi-body Mechanical
System Using GNU Octave, Journal of Applied and Computational Mechanics, 7(3), 2021, 1687-1697.
[12] Yoo, H. H., Kane's methodology for derivation of equation of motion, Journal of KSNVE, 14(4), 2004, 40-47.
[13] Yang, K. D., Bae, D. S., Yang, S. M., Choi, C. K., An Index 2 Differential-Algebraic Equation Formulation for Multibody System
Dynamics, Transactions of the Korean Society of Mechanical Engineers, 19(11), 1995, 2769-2775.
[14] Lee, D. C., Lee, S. H., Han, C. S., A Formulation of the Differential Equation on the Equations of motion and Dynamic Analysis
for the Constrained Multibody Systems, Transaction of the Korean Society of Automotive Engineers, 5(1), 1997, 154-161.
[15] Eaton, J. W., Bateman, D., Hauberg, S., Gnu octave, London: Network theory, London, 1997.
[16] Ateş, A., Yeroğlu, C. Two degrees of freedom FOPID control loop design via SMDO algorithm, Pamukkale University Journal of
Engineering Sciences, 22(8), 2016, 671-676.
[17] Arda, M., Dynamic analysis of a four-bar linkage mechanism, Machines. Technologies. Materials, 14(5), 2020, 186-190.

ORCID iD

Yonghui Park https://orcid.org/0000-0001-6716-6935

© 2022 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0
license) (http://creativecommons.org/licenses/by-nc/4.0/).

How to cite this article: Park Y.H. Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic
Characteristics of Multibody Closed Chain Systems using GNU Octave for a Beginner, J. Appl. Comput. Mech., 8(1), 20222, 232–244.
https://doi.org/10.22055/JACM.2021.38021.3132

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

