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Abstract. This paper describes the computational aspects of the beam Finite Element formulation recently developed by the 
authors to simulate the nonlinear response of structural members subjected to shear and torsion, accounting for cross-section 
warping. The paper focuses on an efficient consistent solution algorithm that by-passes the iterative procedure required in force-
based and mixed Finite Elements and makes the model easy to be implemented in a standard code. Moreover, it proposes a new 
non-iterative technique to condense out the stress components derived by the three-dimensional constitutive response and not 
directly included in the fiber section formulation. The efficiency and accuracy of the proposed numerical model are validated by 
simulating the response of steel and reinforced concrete structural members. 

Keywords: Mixed Finite Element, Enhanced beam formulation, Warping, Nonlinear analysis, Damage. 

1. Introduction 

The adoption of beam Finite Elements (FE) is the most common and convenient approach for the analysis of large-scale 
framed structures (Fig. 1), as these result computationally more efficient than the more sophisticated plate/shell and three-
dimensional (3D) models [1, 2]. Indeed, although these latter usually offer higher accuracy and permit a more detailed description 
of plasticity, fracture, damage and bond phenomena, typically occurring in frame structures, they are often too computationally 
demanding so that their use is limited to the analysis of single members or very small structures. 

Among the different beam models, force-based and mixed formulations have proven superior performances than the classical 
displacement-based models under large inelastic and cyclic deformations, although the slight increase of the computational cost 
for the more involved element state determination. Indeed, with respect to the displacement-based approaches, force-based and 
two- or three-field mixed models with independent interpolation of displacements, strains and/or stresses [3-5], require coarser 
meshes to accurately reproduce the structural behavior in the nonlinear range of material response, thus involving a significant 
computational saving [6]. 

 

Fig. 1. Example of FE modeling of a framed structures 
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However, all the mentioned formulations usually assume the element cross-section as rigid and, thus, neglect the effects of 
warping. In many relevant cases, such as bridges, shear walls or thin-walled frames, these effects result essential to correctly 
describe the structural behavior. For damaging materials, such as concrete or innovative fiber reinforced composites, the 
influence of shear and torsional loads increases, making the analysis of these structures a challenging problem. 

Many authors proposed enhanced formulations which extend the Timoshenko beam model and account for the warping 
deformations of the cross-section, basing on different approaches. Among them, some recent proposals are worth to be 
mentioned and extensive reviews are given by other authors [7, 8]. Bairàn [9] proposed a generalized beam model that describes 
non-uniform shear strain/stress distributions over the beam cross-section. As assumed in this work, the model by Bairàn 
considers cross-section displacements as the composition of two contributions: one related to plane-section displacements and 
the other related to out-of-plane warping. However, as opposed to the proposed model, transverse deformations of the cross-
section are also included by ensuring the equilibrium conditions between the fibers composing the element. Thus, compatibility 
between concrete and transverse reinforcement is also included. Many refinements of this first proposal were later presented by 
Bairàn himself and co-authors, among which the models in [10, 11] deserve particular attention. The model in [10] is a simplified 
version of that in [9], where beam description is limited to 2D analysis and shear and vertical strain distributions are assumed to 
be composed by a series of polynomial shape functions. Model in [11] exploits a complementary displacement field, defined as a 
weighted sum of b-splines functions over the cross-section domain, to improve computational performances. An approach 
similar to that in [9] has been also adopted in the recent work by Kagermanov and Ceresa [12]. Saritas [13] proposed a 2-node 
force-based Timoshenko FE that assumes an assigned distribution for the shear strains over the cross-section due to shear forces. 
This distribution is computed under linear elastic material assumption and used to account for cross-section shear warping also 
under nonlinear material behavior. Ferradi et al. [14], Vieira et al. [15] and Dikaros et al. [16] described the cross-section out-of-
plane displacements through the composition of independent warping modes, which are evaluated by imposing equilibrium 
conditions at the linear stage and are used as interpolation shape functions during the entire loading process. Capdevielle et al. 
[17] followed a similar approach, thus updating the warping functions at each time step to improve the model accuracy under 
nonlinear responses. Finally, Genoese et al. [18] defined a mixed Hellinger-Reissner beam model based on an accurate description 
of the stress fields, evaluated as the sum of the exact De Saint Venant contribution and some further terms due to variable 
warping. 

This paper presents computational enhancements of the 2-node 3D four-field mixed beam FE, originally proposed by Le 
Corvec [19] for the analysis of thin-walled steel members, and later extended by Di Re et al. to reinforced concrete (RC) structures 
[20-22] and dynamic loading conditions [23]. The model accounts for the out-of-plane cross-section warping by introducing a 
specific displacement field in addition to those due to the classical displacements relying on the plane-section assumption. The 
cross-section warping is interpolated through a variable number of local degrees of freedom (DOF) added to those commonly used 
for the beam FE. The local distributions of strains and stresses are described introducing a fiber cross-section discretization that 
accounts for the coupling of axial, flexural, shear and torsional effects in terms of material response. A similar approach based on 
shape functions was proposed by Gruttmann et al. [24] and Lee et al. [25] and has been recently adopted by Yoon et al. [26] and 
Khoder et al. [27]. The latter apply the method to describe in-plane stretching of the cross-section and explicitly model transverse 
reinforcements. However, they adopt a 2D FE discretization of the element cross-sections and consider displacement-based beam 
FE formulation. 

After recalling the main issues of the 3D beam FE formulation, the paper focuses on the computational details required for the 
implementation of the model in general FE codes and provides efficient algorithms to solve the element state determination in a 
step-by-step analysis scheme. In the original proposal of the model, Le Corvec [19] defined an iterative solution algorithm to 
enforce simultaneously equilibrium and compatibility conditions at each step of the global solution scheme. By slightly extending 
the classical iterative algorithm adopted for standard force-based beam FEs [3, 28], this performs a simple updating of the section 
deformations with the inclusion of warping related terms. Although the algorithm proved to be efficiently applicable for the 
analysis of elastic and elasto-plastic beams, it is not suitable for the analysis of degrading elements, as it fails to converge when 
cross-section strength tends to vanish due to softening of the material. Following the idea proposed by Neuenhofer et al. [29] for 
standard force-based beam FEs, an enhanced procedure, with respect to that proposed by Le Corvec, is presented here. This is 
based on the evaluation of warping displacement and force increments at each iteration, which are used to correctly compute 
internal residual quantities, so that internal residual energy convergence is ensured. Moreover, by simply setting the maximum 
number of iterations to one, this works as a non-iterative scheme, i.e. permits to by-pass the iterations required at the element 
level, and significantly improves computational efficiency [30]. 

An elasto-plastic constitutive law based on the classical J2 plasticity [31] is adopted to simulate the steel frame structural 
response, while the 3D plastic-damage constitutive relationship proposed by Di Re et al. [21] is used to simulate the response of 
concrete and investigate the effects of section warping on the degrading behavior of RC frames. The model formulation is 
reviewed, and an efficient predictor-corrector solution procedure is proposed to perform the material state determination. Finally, 
to condense out the stress components derived by the 3D constitutive response and not directly included in the fiber section 
formulation, an iterative technique is often adopted [32-34], which results much time consuming in nonlinear analysis. In this 
paper, an effective non-iterative nonlinear procedure is proposed, that takes advantage of the solution scheme at the element and 
global levels and avoids the inner loop. 

The model is implemented in a FE code and its accuracy and numerical efficiency is shown by performing numerical 
simulations of RC and steel structures under coupled multi-axial strain and stress states. Two types of RC specimens are 
considered: a U-shaped shear wall under cyclic horizontal loading and a series of prismatic beams under monotonic torsional 
loads. For both applications, discussion focuses on the interaction of cross-section warping and damaging process evolution. 
Moreover, the response of a steel frame is reproduced to investigate the performance of the proposed model in capturing the 
warping transmission at the beam-column connection joint. 

2. Description of the 3D Beam FE 

2.1 Element kinematics 

The 3D beam element kinematics is described in the local basic reference system ( , , )x y z  that removes the rigid body motions, 
according to the equilibrated approach [5, 28, 35]. The x -axis is parallel to the direction going from element node i to node j, while 
y  and z  are the cross-section principal axes (Fig. 2a). 
L is the undeformed element length, corresponding to the distance between the two end nodes. Vector v  collects the element 
basic displacements, resulting as: 
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Fig. 2. Basic element displacement in the local reference system and example of warping displacement interpolation scheme. 

 { }Txj zi zj xj yi yju θ θ θ θ θ=v  (1) 

where xju  is the translation of node j  parallel to x , /zi jθ  and /yi jθ  are the rotations at node /i j  about the z - and y -axis, 
respectively, and xjθ  is the rotation at node j  about the x -axis. These are derived from the twelve nodal DOFs, i.e., the three 
translations and three rotations at each node listed in the displacement vector u , according to the following expression: 

   g=v a u  (2) 

where ga  is the compatibility matrix [28]. 
The displacement fields at the cross-section material point m , namely ( ), ,mu x y z , ( ), ,mv x y z  and ( ), ,mw x y z  along the axes x , 

y  and z , respectively, are collected in the vector ( , , )m x y zu , defined as: 

 ( ) ( ) ( ) ( ) ( ) ( ), ,   , ,   , ,  ,   , ,m r w s s wx y z x y z x y z y z x x y z= + = +u u u a u u  (3) 

Term ( , , )r x y zu  in Eq. (3) is the contribution of the plane-section motions, which are collected in ( )s xu , being ( ),s y za  the section 
compatibility matrix. The contribution of the cross-section warping is, then, added, as in [9]. Assuming the cross-section as rigid 
in its plane, ( ), ,w x y zu  contains only the out-of-plane displacement field, i.e., ( ) { }, , ( , , ) 0 0

T

w wx y z u x y z=u . 
The warping displacement field ( , , )wu x y z  is interpolated according to the classical approach based on the use of shape 

functions, independently considering the variation along the element x -axis and that over the cross-section [19-20]. wn  
interpolation points are located along the x -axis, corresponding to controlling cross-sections. wm  warping DOFs are, then, 
introduced on each cross-section to represent ( , , )wu x y z  (Fig. 2b), using either two-dimensional (2D) Lagrange or Hermite 
interpolation polynomials M ( )j x . Thus, the warping displacement field at the i -th interpolation point results as: 

 , , ,
1

( , , ) ( , ) ( , )
wm

w i i j w ij w i
j

u x y z M y z u y z
=

= =∑ M u  (4) 

where ,w iu  is a column vector collecting the wm  warping DOFs ,w iju  of the i -th cross-section and ( , )y zM  is a row vector 
containing the corresponding shape functions ( , )jM y z . 

Finally, one-dimensional (1D) Lagrange polynomials ( )
i

N x  associated to the wn  controlling points are used for the 
interpolation along the element axis. Field ( , , )wu x y z , thus, results as: 

 ,
1

( , , ) ( ) ( , )
wn

w i w i
i

u x y z N x y z
=

=∑ M u  (5) 

The compatible strain vector at the material point m  collects the elongation ( , , )xx x y zε  and the shear strains γ ( , , )xy x y z  and 

γ ( , , )xz x y z  in the cross-section plane, parallel to x - y   and  x - z , respectively. These result as: 

 ,
1

N ( )
( , , ) ( , ) ( ) ( , ) N ( ) ( , )

wn
yzxi

m s w wi w i
i

x
x y z y z x y z x y z

x=

 ∂ ε = + +
 ∂ 

∑a e a a u  (6) 

where ( )xe  is the generalized section strain vector, collecting the normal strain ε0( )x , the flexural curvatures χ ( )z x  and  χ ( )y x , the 
torsional curvature χ ( )x x  and the shear strains γ ( )y x  and γ ( )z x , while ( , )x

w y za  and ( , )yz
w y za  are two matrices with dimensions 

3 wm× , composed as follows: 
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 (7) 



Computational Enhancement of a Mixed 3D Beam Finite Element with Warping and Damage  
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 260-281 

263 

2.2 Element variational formulation 

The equations governing the element state determination are derived from a modified Hu-Washizu variational principle, 
defined as function of four independent fields: the plane-section displacements, the strains and stresses and the additional 
warping displacement field ( , , )wu x y z . The functional is written as: 

 ( , , , ) [ ( ) ] [ ]T T
mr m m w m m m m m m ext

V V
u dV dVΠ ε σ = σ ε −ε + ε σ ε +Π∫ ∫u u ɵ  (8) 

where the dependency of the variables from x , y  and z  is omitted. Vector ( , , )m x y zσ  collects the actual material stresses work-
conjugate to ( , , )m x y zε , while [ ]( , , )ˆm m x y zσ ε  represents the material stress vector associated to ( , , )m x y zε  that results from the 
material constitutive law. extΠ  is the external load potential and V  indicates the element volume, being V AL= , with A  the 
cross-section area. 

Eq. (8) is modified [19] and the functional Π  is expressed in terms of the generalized section displacements ( )s xu  and strains 
( )xe . The stationarity of ( , , , )ws m uΠ σu e  with respect to the four independent fields provides the following governing equations, as 

detailed in [19, 23]: 

  
0

,
0 0

( , , ) [ ( , , )]

( ) ( )

N ( )
( ) N ( ) ( )

T
g r

mm m

L
T

L L
yzxi

w ww i i

x y z x y z

x x dx

x
x dx x x dx

x

= +

σ = σ ε

=

∂
= +

∂

∫

∫ ∫

a q p p

v b e

p s s

ɵ

 (9) 

Eq. (9)1, (9)2 and (9)3 are standard for a three-field mixed beam FE formulation. Eq. (9)1 enforces the element equilibrium. This 
involves the transpose of ga  and relates the twelve nodal forces p , work-conjugate to u , and the six element basic forces q , 
work-conjugate to v . Vector rp  contains the element nodal reaction forces due the loads distributed along the element axis. 

Eq. (9)2 is the constitutive law governing the response of the material. The model discretizes the generic cross-section in a 
finite number of fibers, where the material response is evaluated and permits to use different constitutive models in case of 
composed steel-concrete or RC beams [36]. 

Eq. (9)3 states the weak form of the element compatibility. This involves matrix ( )T xb , that is the transpose of the equilibrium 
matrix [23] relating the generalized section stresses ( )xs , that are work-conjugate to ( )xe , to the basic forces q , that is: 

 ( ) ( ) ( )qx x x= +s b q s  (10) 

being ( )q xs  the contribution due to loads distributed along the element axis. The section stresses ( )xs  are defined as: 

 ( ) ( , ) ( , , )T
s m

A

x y z x y z dA= σ∫s a  (11) 

collecting the axial stress ( )N x , the bending moments ( )yM x  and ( )zM x  about the y - and z -axis, respectively, the torsional 
moment ( )xM x  and the generalized shear stresses ( )yT x  and ( )zT x  in the y - and z -direction, respectively. 

Finally, Eq. (9)4 enforces the section equilibrium condition related to the warping effects. Indeed, when the warping 
displacements are constrained at the element boundaries, an additional force field arises denoted with ( ), ,wp x y z . 
Correspondingly, the vectors ,w ip , with 1, , wi n= … , are defined collecting the warping forces acting at the i -th section work-
conjugate to ,w iu . Hence, Eq. (9)4 requires the forces ,w ip  to be in equilibrium with the generalized section stresses ( )x

w xs  and 
( )yz

w xs  due to the warping. These result from the integral of the stresses as: 

 
( , ) ( , , )( )

( )
( ) ( , ) ( , , )

x T
x w m

Aw
w yz yz T

w w m
A

y z x y z dAx
x

x y z x y z dA

  σ        = =         σ     

∫
∫

as
s

s a
 (12) 

and play the role of bi-moments and bi-shears, classically introduced in thin-walled beam theories [18,37,38]. To be noted is that, 
according to the presented formulation, the generalized section stresses ( )x

w xs  and ( )yz
w xs  are each associated to the additional 

warping DOFs defined on the cross-section, whereas resultant components for bi-moments and bi-shears are defined in the 
classical thin-walled formulations. 

2.3 Constitutive models 

The material response of steel frame members is reproduced by adopting the J2 plasticity [31], while either this or the Giuffrè-
Menegotto-Pinto model [39] is used for reinforcements in RC elements. 

Concrete material response is described through the 3D constitutive model proposed by Di Re et al. [21] that is reviewed in the 
following. This extends the model proposed by Addessi et al. [40] by including the description of the unilateral effect typically of 
concrete-like materials, due to the crack opening and reclosure. A Drucker-Prager type plastic model [41] is coupled with a two-
parameter isotropic damage model, where two scalar variables describe damage for prevailing tensile and compressive states, 
respectively. A modified version of this model was recently proposed for the analysis of masonry structures [42] yet considering a 
symmetric J2 plastic criterion. 

To be noted is that the proposed FE model considers only three strain independent variables γ γ{ , , }Tm xx xy xzεε =  and three 
work-conjugate stress components τ τ{ , , }Tm xx xy xzσσ = . Hence, the adopted 3D model requires a condensation process to remove 
the strains and stresses γ{ , , }Tc yy zz yzε εε =  and τ{ , , }Tc yy zz yzσ σσ =  and includes the 3D constitutive model in the beam formulation. 
The condensation procedure proposed in this work is described in Section 3.3. In the following, the model is recalled referring to 
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the six-component strain and stress vectors, namely ε  and σ . To simplify the notation, the dependency of the variables from x , 
y  and z  is omitted. 

The stress-strain relation is defined as: 

 2 2(1 ) ( ) (1 )p eD Dσ = − ε−ε = − εC C  (13) 

where ε , eε   and pε  are the total, elastic and plastic strain vectors, respectively, σ  is the stress vector, and C  is the 6 6×  elastic 
isotropic matrix. The scalar variable [0,1]D∈  governs the evolution of the degrading process, as detailed in the following. 

The incremental constitutive relation is deduced by differentiating Eq. (13) and results as: 

 ( ) ( )2
2 11 e

t

D
D D

 ∂
 σ = − ε ε = ε
 ∂ε

−


−C C Cɺ ɺɺ  (14) 

with tC  being the material tangent stiffness matrix and epC  the elasto-plastic tangent stiffness matrix. 
The Drucker-Prager plasticity model with linear kinematic and isotropic hardening [41, 43] governs the evolution of the 

effective stresses ( )pσ = ε−εC , with the plastic yield function defined as: 

 ( ) ( ),
2

,
3

T
y if Hα σ α µ σ+σ ζ = σ− ζ − + 1P  (15) 

In Eq. (15), the column vector 1  and the operator P  evaluates the first invariant and the deviatoric part of the effective stress σ , 
respectively. The vector ζ  is the kinematic effective back stress and α  the isotropic hardening variable. 

These quantities and the plastic strains pε  evolve according to the variation of the plastic multiplier λ  and the orientation of 
the vector ( )/ | |= σ− ζ σ− ζn P P  normal to the yield surface [21]. 

Considering the following relations [44]: 

 
2 2

,
3

c t c t
y

c t c t

σ σ σ σ
σ µ

σ σ σ σ

 −  = =   + + 
 (16) 

the material parameters required in Eq. (15) are the uniaxial tension and compression strengths, tσ  and cσ , and the isotropic and 
kinematic hardening moduli, iH  and kH . 

The damage variable D  depends on two different scalar quantities, tD  and cD , measuring the damage for prevailing tensile 
and compressive states, respectively, with the condition t cD D≥ . The loading-unloading functions that govern their evolution are 
defined as: 

 0( , ) ( ) , with ,h h h h h h h h hf Y D Y Y a Y k D h t c= − − + =  (17) 

where 0hY ,  0hk ≥  and [0,1]ha ∈  are material parameters, determining the damage strain threshold, the rate of damage growth 
and the slope of the softening branch, respectively. These can be determined from experimentally measured uniaxial stress-strain 
material response [21]. Thus, D  results as the combination of tD  and cD , in the form: 

 t t c cD D Dα α= +  (18) 

with tα  and 1c tα α= −  being weighting coefficients, expressed for ,h t c=  as: 

 
η

η
η η

2

2 2
0

, with
( )

e
h h

h h e
t c h h h h

Y

Y a Y k D
α = =

+ + +
 (19) 

The scalar quantities tY  and cY  are equivalent strain measures, defined as: 

 
3 3

2 2

1 1

,t c ki i j
i i j k

Y e Y e e e+ − − −
= = ≠

= 〈 〉 = 〈 〉 − 〈 〉 〈 〉∑ ∑ ∑β  (20) 

where the Macaulay brackets /+ −〈⋅〉  evaluate the positive/negative part of the variable and: 

 ν ν
3

1

(1 2 ) , for 1,2,3i i j
j

e iε ε
=

= − + =∑  (21) 

being iε  the principal total strains. Similarly, e
tY  and e

cY  are defined according to Eq. (20), but introducing the principal elastic 
strains e

iε . β  is a material parameter governing the shape of the limit function in compression. 
Detailed discussion of the role played by each material parameter and their influence on the element response curve is 

reported in the previous work [21] and is not reported here for brevity. 
Fig. 3a shows an example of cyclic uni-axial behavior, obtained by assuming for the material parameters the values in Table 1 

and imposing the strain history depicted in Fig. 3b-i, while Fig. 3b-ii represents the corresponding evolution of the damage 
variables. Main steps of the two cycles performed in the loading path are indicated with capital letters. 

As shown, the model can simulate the unilateral effects typical of concrete-like materials that is the crack closure-opening 
effect. Indeed, when the stress state switches from tension to compression (from step B to C and from step F to G), tensile damage 
is recovered and the response only depends on variable cD . By contrast, when the stress state switches from compression to 
tension (from step D to E), compressive damage is not recovered and the response depends on both variables tD  and cD . 
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Table 1. Material parameters for the cyclic uni-axial material response in Fig. 3. 

E  ν  t
σ  

c
σ  

k
H  

i
H  0tY  

t
k  

t
a  0cY  

c
k  

c
a  β  

30GPa  0.2  3.3MPa  30MPa  0.7E  0.001E  -57.2 10⋅  -52.0 10⋅  0.8  -43.6 10⋅  -35.0 10⋅  0.1  0.0  

3. Solution Algorithm 

The described beam FE formulation is implemented in a general FE analysis code. A step-by-step time discretization is 
adopted, as well as the iterative Newton-Raphson (N-R) algorithm for the solution of the governing nonlinear equations at each 
time step. The following sections describe the computational details of the solution algorithms developed to evaluate the model 
response. 

3.1 Element state determination 

The global solution scheme of the FE code requires the element state determination, that is the computation of the element 
stiffness matrix /= ∂ ∂k p u  and force vector p  at each N-R iteration. To this end, the governing equations are linearized and, 
after some manipulations (see Le Corvec [19]), the following set of equations is obtained: 

 

,
1

0

,

0 0

N
N

N
N

wn
yzxi

ss sw swi w i
i

L

T

L L

yzxi
w ww i i

x

dx

dx dx
x

=

∆ =∆

 ∂
 ∆ = ∆ + + ∆
 ∂ 

∆ = ∆

∂
∆ = ∆ + ∆

∂

∑

∫

∫ ∫

k u p

s k e k k u

v b e

p s s

 (22) 

together with the linearized form of the section equilibrium equation, resulting as: 

 1, with −∆ = ∆ ∆ = ∆s b q q f v  (23) 

where f  is the element basic flexibility matrix governing the incremental relation between q  and v . Symbol ∆  denotes the 
increment of the variable at each iteration. 

Eq. (22)2 is the linearized section constitutive law. This is coupled with the constitutive laws governing the evolution of the 
warping section stresses in Eq. (12), whose linearized forms result in: 

 , ,
1 1

N N
N , N

w wn n
xy yz yz yx yzx x xi i

w ws ww ww w ws ww wwi w i i w i
i ix x= =

   ∂ ∂
   ∆ = ∆ + + ∆ ∆ = ∆ + + ∆
   ∂ ∂   

∑ ∑s k e k k u s k e k k u  (24) 

Eqs. (22)2 and (24) involve two contributions: the first depends on the standard strain vector e , compatible with the cross-
section motions associated to plane-section assumption, and the second on the section strains due to the warping. The standard 
section stiffness matrix ssk  and the additional eight section warping stiffness matrices x

swk , yz
swk , x

wsk , yz
wsk , x

wwk , yz
wwk , xy

wwk  and 
yx
wwk  are defined as: 

 

 

Fig. 3. Cyclic uni-axial behavior under imposed strain history for the proposed damage model. 
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T
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Tx yz x yz x yz x yzT T
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A A

T Tx yz x yz x yz xy yx x yz yz xT T
ww w m w ww w m w

A A

dA

dA dA

dA dA

=

         = Γ = Γ            
         = Γ Γ+ Ψ = Γ Γ+ Ψ            

∫

∫ ∫

∫ ∫

k a k a

k a k a k a k a

k a k a k a k a

 (25) 

where Γ  and Ψ  are the projection and correction matrix, defined subsequently, and mk  is the consistent material stiffness 
matrix, governing the incremental material stress-strain relation, whose linearized form results as: 

 m m m∆σ = ∆εk  (26) 

The compact form of Eq. (22)4 is obtained by collecting all the warping DOFs used in Eq. (5) in a single vector wu , i.e.: 

 { },1 ,2 ,, w

TT T T T
w w w w nw i= … …u u u u u  (27) 

and the warping forces ,w ip  in the work-conjugate vector wp . Hence, Eq. (22)4 becomes: 

 w ws ww w∆ = ∆ + ∆p b q k u  (28) 

where w∆u  and w∆p  are increments of wu  and wp , respectively. Matrices wwk  and  wsb  in Eq. (28) are defined as: 

 
,1,1 ,1, ,1

, ,1 , , ,

,
w

w w w w

w w n ws

ww ws

w n w n n ws n

   …   
   = =   
   …      

k k b

k b

k k b

⋮ ⋱ ⋮ ⋮  (29) 

where: 

 

1 1
,, , , , , , ,

0 0

, ,

, ,

,

N N
N , N

N N N
N N N

L L

ss sw n ssw i n ww i n ws i ws i ws i

yz yzx xi i
ws ws sw swws i i sw i i

xy yx yzxn ni
ww n ww ww n wwww i n i

dx dx

x x

x x x

− −= − =

∂ ∂
= + = +

∂ ∂
   ∂ ∂ ∂
   = + + +
   ∂ ∂ ∂   

∫ ∫k k k k k b k k b

k k k k k k

k k k k k

 (30) 

Manipulating the governing equations gives the element flexibility matrix f  as the sum of two contributions, i.e.: 

 1 1

0

L
T

s w ss sw ww wsdx− −= + = +∫f f f b k b b k b  (31) 

where sf  is the standard flexibility matrix for the beam force formulation and wf  is the contribution due to the warping effects. 
Hence, the consistent element global stiffness matrix k  results as: 

 1T
g g

−=k a f a  (32) 

When the material stiffness matrix mk  is symmetric, wwk  is symmetric as well and T
sw ws=b b . Hence, sf , wf  and k  are 

symmetric, as well. Conversely, if mk  is non-symmetric, wwk  is non-symmetric and T
sw ws≠b b . This is the case of the plastic-

damage model adopted for concrete in this work, as it is based on the Drucker-Prager plasticity criterion. In this situation, the 
following additional expressions are required: 

 1
,1 , , ,

0
, with

w

L
T

sw sw sw n sssw i sw idx
− = … =   ∫b b b b b k k  (33) 

The plane-section and warping displacement fields in Eq. (3) are assumed to be orthogonal. The definition of redundant 
displacement fields makes matrix wwk  in Eq. (31) to be singular. Hence, the plane-section displacement fields have to be 
eliminated from the displacement field wu  by modifying the interpolation functions jM  in Eq. (4). The matrices Γ  and Ψ  in Eqs. 
(25) accomplish this task, ensuring the non-singularity of matrix wwk . This paper proposes a modification of the definition of Γ  
and Ψ , with respect to those adopted by Le Corvec [19], that improves the numerical stability. Being V  the matrix containing the 
average value and the first moments of the shape functions over the cross section, i.e.: 

 

1

A

y dA

z

     =       
∫V M  (34) 

the projection and correction matrices are defined as: 

 ˆ ˆ( ) , T
wmΓ = − =I V VΨ Ψ  (35) 

where ( )wmI  is the w wm m×  identity matrix and V̂  is the orthogonal matrix, resulting from the Gram-Schmidt 
orthonormalization [45] of V , performed assuming as linear independent vectors the rows of V . 
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Depending on the boundary conditions, warping displacement constraints can be applied at the element boundaries. This 
study considers only totally free or fully restrained warping displacements, by imposing the conditions , 0w ijp =  or , 0w iju = , 
respectively. Thus, mixed boundary conditions are not considered. Consequently, Eq. (28) is split in the part associated to the free 
and that associated to the restrained DOFs, denoted with subscript ' 'f  and ' 'r , respectively: 

 , ,, , ,

,,, ,

ww ff ww frw f ws f w f

ww rrww rfw r ws r

     ∆ ∆        = ∆ +        ∆           

k kp b u
q

k kp b 0
 (36) 

Moreover, each free warping DOF in ,w fu  and the work-conjugate force in ,w fp  can be treated in a different way. Two cases are 
distinguished: 

1. The warping DOF is considered as external variable and added to the standard twelve DOFs. 

2. The warping DOF is considered as internal variable and is condensed out with the evaluation of the element flexibility 
matrix. 

Usually, all the warping DOFs belonging to the same cross-section are considered as either internal or external variables, 
although there is no limitation in this choice. When all the warping DOFs are considered as internal, only the standard twelve 
DOFs result as actual independent element variables, otherwise the first set of Eq. (36) is modified by splitting the vector ,w fu  into 
the local and global DOFs ,w lu  and ,w gu , respectively: 

 , ,, ,,

, ,,, ,

w l w lww ll ww lgws l

w g w gww ggws g ww gl

     ∆ ∆        = ∆ +        ∆ ∆            

p uk kb
q

p uk kb
 (37) 

The global part ,w gu  is added to the standard twelve element DOFs and, thus, Eq. (2) becomes: 

 
, ,

g

g
w g w g

    ∆ ∆       ∆ = = = ∆       ∆ ∆       

v ua 0
v a u

u u0 I
ɶɶ ɶ  (38) 

with I  a properly sized identity matrix. Similarly, the linearized form of the second of Eq. (23) becomes: 

 
, ,

qq qw

w g wwq ww g

    ∆ ∆       ∆ = = = ∆       ∆ ∆        

v qf f
v f q

u pf f
ɶ ɶɶ  (39) 

with the expressions of qqf , qwf , wqf  and wwf  given by Le Corvec [19]. Finally, the global element stiffness matrix in Eq. (32) and 
force vector in Eq. (9)1 that account for the global warping DOFs result as: 

 1 ,T T
g g g r

−= = −k a f a p a q pɶɶ ɶ ɶ ɶ ɶ ɶ ɶ  (40) 

with ( )TT T
r r= p 0pɶ  and Eq. (22)1 becoming: 

 =∆ ∆k u pɶ ɶɶ  (41) 

The definition of the warping DOFs as global quantities is often required to enforce the continuity of the warping 
displacement field ( , , )wu x y z , e.g., when more than one FE discretize a single structural element or in case of frames made by 
assembling multiple members with different axis directions [23]. Indeed, when the coinciding end cross-sections of two 
contiguous elements adopt the same warping interpolation scheme, i.e., the same number and location of warping DOFs, their 
warping profiles coincide if these DOFs are treated as global quantities. By contrast, for ,w ru , it is not necessary to distinguish 
between internal and global DOFs, as the restrained DOFs can always be treated as internal variables. In this case, the warping 
displacement field continuity is automatically ensured by the condition , 0w iju =  imposed at both the coinciding end cross-
sections. 

It is worth mentioning that the recent work by the authors [23] presents a general method to derive the element governing 
equations from the stationarity of an extended four-field Lagrangian functional, which also accounts for dynamic inertia effects. 
In this case, warping DOFs are always treated as external variables and warping displacement continuity between elements is 
automatically ensured. However, in this paper, the equivalent approach as that adopted by Le Corvec [19] is followed, as described 
above. 

Relying on the above considerations, the element state determination procedure results as summarized in Table 2, where the 
superscripts ' k ' and ' 1k+ ' denote the previous and current N-R iteration, respectively. The algorithm is the generalization of that 
developed for a standard force-based beam FE [28, 30]. For a given set of total and incremental displacements u , ∆u , ,w gu  and 

,w g∆u  (step 1), the algorithm evaluates the increment of the basic element forces ∆q  from the increment of the basic element 
displacements ∆vɶ  (steps 2 and 3). The updated q  are, then, used in a nested iterative procedure (step 4), required to enforce both 
element equilibrium and compatibility conditions, as usual in force-based beam FEs. At the end of this procedure, after the 
initialization of some variables (step 5), steps 6 to 8 perform the updating of the warping quantities. Indeed, the first set of Eq. (37) 
gives the increment of the free warping DOF displacements ,w l∆u . Together with the given quantities ,w gu , these can be used in 
the second set of Eq. (36) to determine the increment of the warping forces ,w r∆p  for the restrained DOFs. Hence, the section 
strains e  are updated to comply with the section stresses s  that are in equilibrium with the last basic element forces [30] (steps 
9 and 10). Finally, the element stiffness matrix and nodal forces are evaluated. 
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Table 2. Element state determination. 

1) 1k+u , 1k+∆u , 1

,

k

w g

+u  and 1

,

k

w g

+∆u  given 

2) 1 1k k

g

+ +∆ = ∆v a uɶɶ ɶ  

3) ( ) 11 1 1 1k k k k k k−+ + + +∆ = → ∆= +∆q f v q q qɶɶ ɶ ɶ ɶɶ  

4) Element nested procedure in Table 3 to update the element state (converged iteration 1l + ) 

5) Current state 1k+  set equal to the converged state 1l +  and: 

1 1

, ,
ˆ k l

w l w l

+ +=u u ,  1 1

, ,
ˆ k l

w r w r

+ +=p p , 1 1ˆ k l+ +=e e , 1 1ˆ k l+ +=s s  

6) ( ) 11 1 1 1 1 1 1

, , , , , ,

k k k k k k k

w l ww ll w l ws l ww lg w g

−+ + + + + + +∆ = − −∆ ∆  u pk b q uk  

7) 1 1 1

, , ,
ˆk k k

w l w l w l

+ + +∆= +u u u  

8) 1 1 1 1 1 1

, , , , ,
ˆk k k k k k

w r w r ws r ww rf w f

+ + + + + += + ∆ ∆+p p ub q k  

9) 1 1 1k k k

q

+ + += +s bq s  

10) ( )
1

11 1 1 1 1 1 1

, ,
ˆ ˆ

w

k k k k k k k

ss sw i

n

i

w i

−+ + + +

=

+ + += + − − ∆
 
 
  

∑k s ke e s u  

11) ( ) 11 1k T k

g g

−+ +=k a f aɶɶ ɶ ɶ  and 1 1 1k T k k

g r

+ + += −p a q pɶ ɶ ɶ ɶ  

The details of the nested iterative procedure are summarized in Table 3, where the superscript ' l ' and ' 1l+ ' denote the 
previous and current internal iteration. In the described beam formulation, the section response is governed by three equations: 
(22)2 and (24)1-2, expressed in the compact form of Eq. (28). Hence, for given basic element forces q  the increment of the warping 
displacements wu  needs to be first determined in steps 1 and 2 and then used in the evaluation of the section strains e  in step 3. 
This observation gives rise to the similar updating performed in step 10 of Table 2. 

Step 4 performs the section state determination, that is the evaluation of the cross-section response for the updated section 
strains e , in terms of section stresses and stiffness matrices. This is described in the following Section 3.2. 

After evaluating the section response, in steps 5 and 6, the element warping stiffness matrices and forces are computed. 
Hence, as usual in force-based FEs, the equilibrated section stresses s  are evaluated on the basis of the current increment of the 
element basic forces q  (step 7) and are used to determine the increment of the section strains e  (step 10). These are, then, 
integrated along the element axis and compared with the given element basic displacements v  (step 11). However, similarly to 
step 3, the residual of the warping displacements wu  is required in step 10 for determining the residual of the section strains. wu  
derives from the residual wp  of the warping forces, determined in steps 8 and 9 by considering that zero values are expected for 
the components related to the free local DOFs. Finally, the resulting residual is used to correct the basic element forces q  for the 
next iteration (steps 12 and 13). 

The non-iterative version of this algorithm results by simply setting the maximum number of iterations 1maxI = , as in the 
algorithm proposed in [30] for the standard element. In this way, the residual element basic displacements are included in the 
basic element forces, which are, then, used to determine the end forces p  in the global reference system at the end of the 
element state determination in Table 2. Hence, the error associated to the element residual forces is included in the equilibrium 
equations solved at the global level and is iteratively driven to zero. The main advantages of the non-iterative approach are 
discussed in [46], where it was first proposed for standard elements. Moreover, this results particularly convenient when softening 
occurs at the element level. Indeed, the adoption of non-iterative algorithm can help in by-passing convergence issues at the local 
level, as it is possible to count on the better path-following performance of the global solution strategy. To be noted is that small 
issues can occur in situations where local element residual is relevant. However, these are usually limited to a reduction of the 
convergence rate. 

To perform the integrals along the element axis, the Gauss-Lobatto integration scheme is adopted in this work, as this places 
quadrature points at the ends of the beams, where stresses often attain their maximum values, e.g for frames subjected to 
horizontal loadings, but any integration scheme can be in general utilized. Hence, the evaluation of the section quantities is 
performed at the quadrature points, whose number and location are completely independent from those used for the warping 
interpolation.  The quadrature integration rule, properly modified, is also exploited to regularize the response of the beam 
element that is to avoid mesh dependency of the results and localization issues for softening material responses. In force-based 
and mixed beam FEs, strain-damage localization occurs at the quadrature cross-section where strains reach their maximum 
values and is affected by the weighting length associated to them by the quadrature rule. Hence, the approach proposed by 
Addessi et al. [47] is used, that is the weighting length associated to the maximum stressed quadrature cross-section is controlled. 

3.2 Fiber section model 

For a force-based FE the section state determination consists in computing the resisting generalized section stresses s  and 
the tangent section stiffness matrix ssk  under given generalized section strains e . For the proposed mixed element with section 
warping, this evaluation also depends on the warping displacement field wu  and also provides the generalized stresses x

ws and 
yz
ws  and the warping stiffness matrices /x yz

swk , /x yz
wsk , /x yz

wwk , /xy yx
wwk . 
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Table 3. Element nested iterative procedure. 

 

Initialization: 
State 0l = set equal to the state k (Table 2) and: 
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4) Section state determination in Table 4: 
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, , ,
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10) ( ) ( )1 11 1 1 1 1 1 1 1

, , , , ,
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l l l l l l l l
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n
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11) ( )1 1 1 1

0

L
l k T l l

g
dx+ + + += − +∫v a u b e e  and 1l+fɶ as in Eq. (39) 

12) ( )
111 1 1 1 1 1l l l l l l

qq qw ww wq

−−+ + + + + +∆ = − 
  q f f f f v  

13) 
1 1

1

1
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l l

l
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+ +
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+∆
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q q
q
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14) The following residual internal energy is evaluated: 

( ) ( )1 1 1 1 1

0

L T Tl l l l l

w w
W dx+ + + + += +∫ s e p u  

If 1l toleranceW + <  or 
max

l I≥ → EXIT, 

otherwise → GO TO step 1) 

 

Table 4. Section state determination. 

1) 1l+e  and 1l

w

+u  given 

2) 1 1 1

,

1

N
N

wn
l l x yz li

m s w i w w i

i x

+ + +

=

∂
ε = + +
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∑a e a a u  

3) Material state determination and static condensation of 
c

σ  in Table 5 and Table 6: 

1 1 1 1 1[ ] and [ ]l l l l l

m m m m m m m

+ + + + +ε → σ = σ ε = εk k  

4) 1 1 1 1andl T l l T l

s m ss s m s
A A

dA dA+ + + += σ =∫ ∫s a k a k a  

5) ( ) ( ), 1 1 , 1 1,
T Tx l x l yz l yz l

w w m w w m

A A

dA dA+ + + += σ = σ∫ ∫s a s a  

/ , 1 / , 1 / , 1 / , 1, , ,x yz l x yz l x yz l xy yx l

sw ws ww ww

+ + + +k k k k  Eqs. (25) 

 
Table 4 summarizes the main steps of the corresponding numerical procedure. Known the updated section strains e  and 

warping displacements wu  (step 1), the compatible material strains mε  (step 2) are evaluated and used to perform the material 
state determination in step 3, that is the evaluation of the material response in terms of stresses and stiffness. This procedure is 
described in the following Section 3.3 for the 3D plastic-damage constitutive model used for concrete material, but similar 
considerations hold for any 3D material relationship. Finally, after material stresses and stiffness matrices are computed, these 
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are integrated over the cross-section to obtain the corresponding generalized section quantities (steps 4 and 5). 
To evaluate the integrals over the cross-section area, the proposed model adopts a fiber discretization [35]. For a nonlinear 

material response, Kostic et al. [36] demonstrated that the midpoint rule is the best scheme in terms of accuracy of the solution 
and minimum number of fibers, i.e., computational burden. This means that each rectangular patch composing the cross-section 
is discretized with a uniform (equally spaced) grid of points and each point is located at the midpoint of the associated weighting 
area. 

3.3 Condensation and solution procedure for the plastic-damage model 

The material state determination consists in computing the stresses mσ  and the tangent stiffness matrix mk  for the given 
strains mε  at each point used to perform the numerical integration over the cross-section. However, condensation of in-plane 
components γ( , , )Tc yy zz yzε εε =  and τ( , , )Tc yy zz yzσ σσ = from the fully 3D constitutive model is required at each fiber of the cross-
section. To this end, classical approach is usually adopted [33], that is cε  is determined so that cσ  becomes zero. Because of the 
nonlinear material response, this commonly requires a nonlinear iterative process [32,34], involving the total stress and strain 
vectors and the incremental stress-strain relation in Eq. (14) linearized and properly partitioned. The components to be retained 
are denoted with subscript m  and the components to be condensed with subscript c : 

 , ,m m m mm mc m

c c c cm cc c

        σ ε ∆σ ∆ε               σ = ε = =               σ ε ∆σ ∆ε               

C C

C C
 (42) 

Once the values of cε  components satisfying the condition cσ = 0  are evaluated, the condensed material tangent stiffness matrix 
is given by: 

 ( ) 1

m mm mc cc cm

−= −k C C C C  (43) 

where the subscript t  is dropped to ease notation. 
In this paper, a consistent non-iterative approach is proposed for the condensation process, taking advantage of the iterative 

solution scheme at the higher level of the element state determination: with the values of 1l
m
+ε  and its increment 1l

m
+∆ε  at the 

current element internal iteration 1l+ , the condensed strains l
cε  and  the material stiffness matrix l

tC  are recalled from the 
previous element iteration l  and the steps in Table 5 are performed. Here, the increment of the condensed strains cε  are 
evaluated in step 1 and these are used in the material state of the full 3D model determination in step 2, that is in the 
determination of the stress vector σ  and the material tangent stiffness matrix tC , for the given six strain quantities in ε . Hence, 
the condensed strains are updated in step 3, considering the residual stresses cσ  that need to be zero, which are also used in step 
4 to correct the retained stresses mσ , according to the incremental constitutive relationship in Eq. (42). Finally, the material 
tangent stiffness matrix is evaluated in step 5 according to Eq. (43). 

To be noted is that this approach assumes the behavior of the fibers as independent from each other, that is as if the area 
associated to the single fiber behaves independently from the adjacent ones. Hence, in-plane cross-section distortion and 
interaction between fibers is not accounted for. Similarly, transverse reinforcements are not explicitly included in the model. As 
shown in the numerical applications presented in Section 4, confinement effects due to transverse reinforcements are modeled 
by adequately increasing the strength and ductility of concrete fibers belonging to the confined regions of the cross-section. 
Further developments of the model are required to include in-plane distortion effects and have been left for future works. 

A predictor-corrector solution procedure governs the full 3D material state determination of the plastic-damage model here 
used for concrete-like materials. First, in the elasto-plastic predictor phase the effective stresses σ  and elasto-plastic tangent 
stiffness epC  are computed. Then, in the damage corrector phase the damage variables tD  and cD , the stress vector σ  and the 
tangent stiffness matrix tC  are evaluated. 

In this paper, a consistent non-iterative approach is proposed for the condensation process, taking advantage of the iterative 
solution scheme at the higher level of the element state determination: with the values of 1l

mε
+  and its increment 1l

mε∆
+  at the 

current element internal iteration 1l+ , the condensed strains l
cε  and the material stiffness matrix l

tC  are recalled from the 
previous element iteration l  and the steps in Table 5 are performed. Here, the increment of the condensed strains cε  are 
evaluated in step 1 and these are used in the material state of the full 3D model determination in step 2, that is in the 
determination of the stress vector σ  and the material tangent stiffness matrix tC , for the given six strain quantities in ε . Hence, 
the condensed strains are updated in step 3, considering the residual stresses cσ  that need to be zero, which are also used in step 
4 to correct the retained stresses mσ , according to the incremental constitutive relationship in Eq. (42). Finally, the material 
tangent stiffness matrix is evaluated in step 5 according to Eq. (43). The procedure is summarized in Table 6, where the subscripts 
' 1n+ ' and ' n ' denote the current and previous time steps, 1nt +  and nt , respectively. 

Table 5. Non-iterative nonlinear static condensation of 3D material response. 

1) ( ) 11 1 1 1l l l l l l l

c cc cc m c c c

−+ + + +∆ε = − ∆ε → ε = ε +∆εC C  

2) Material state determination in Table 6: 
1 1 1 1 1[ ] and [ ]l l l l l

t t

+ + + + +ε → σ = σ ε = εC C  

3) ( ) 11 1 1 1 1 1l l l l l l

c cc c c c c

−+ + + + + +∆ε = − σ → ε = ε +∆εC  

4) ( ) 11 1 1 1 1l l l l l

m m mc cc c

−+ + + + +σ = σ + σC C  

5) ( ) 11 1 1 1 1l l l l l

m mm mc cc cm

−+ + + + += −k C C C C  
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Table 6. Material state determination 

1) State at 
n
t  set equal to the state at l  (Table 2) 

1

1

l

n

+

+ε = ε  and 1

1

l l

n

+

+∆ε = ε − ε  

 Elasto-plastic predictor (damage evolution frozen at 
n
t ) 

2) Elastic prediction 

1

p p

n n+ε = ε , 1n n+ζ = ζ , 1n n
α α+ =  and ( )1 1 1
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3) If ( )11 1 1, , 0nn n n
f f α++ + +σ →= ζ < GO TO step 6) 

otherwise                    → GO TO step 4) 
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In the last step of the damage corrector phase, the matrix tC  is evaluated by neglecting the term depending on /D∂ ∂ε  in Eq. 

(14) [48], that is by adopting a secant formulation for the damage evolution process. When considering softening material 
behaviors, this usually leads to higher stability of the solution algorithms. However, this reduces the convergence rate and, thus, 
requires higher computational burden. This issue is particularly important for the condensation procedure described above. As 
the total stresses in Eq. (13) are defined as the product of the effective stresses σ and the scalar quantity 2(1 )D− , to increase 
convergence speed, the condensation procedure can be directly applied to the effective stresses, when the elasto-plastic predictor 
phase is completed. Hence, the values of cε  that satisfy the condition cσ = 0  are found, before starting the damage correction 
phase. This is accomplished by exploiting same equations as those in Table 5, yet written in terms of effective stresses σ  and 
elasto-plastic tangent stiffness epC . Thus, quadratic convergence of the condensation procedure is guaranteed without loss of 
numerical stability. 

4. Numerical Simulations 

This section presents three numerical applications performed to validate the efficiency and accuracy of the presented beam 
FE formulation. The first considers a U-shaped RC wall subjected to bi-axial cyclic horizontal loads and exhibiting prominent 
shear deformations. The second refers to a series of RC prismatic beams, subjected to monotonic end torsional loads, where 
cross-section warping plays a primary role in the damaging process of the specimens. The third simulates the behavior of a steel 
L frame under cyclic torsional load, where transmission of warping occurs between the column and the beam at the connection 
joint. 
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Fig. 4. U-shaped RC shear wall: (a) geometry, (b) loading path, (c) cross-section (dimensions in cm) and (d) mesh details 

 

Fig. 5. U-shaped RC shear wall: (a) fiber discretization for evaluating the material response and warping displacement interpolation scheme with (b) 
Lagrange and (c) Hermite polynomials 

4.1 RC U-shaped wall under bi-axial cyclic lateral forces 

The first numerical application reproduces the experimental test by Pegon et al. [49] on the RC U-shaped shear wall in Fig. 4. 
The focus is on the performance of the adopted FE model in representing the effects of the warping and its coupling with the 
damaging phenomena when cyclic transverse loads are applied to the beam elements. 

The wall is horizontally loaded at the top in both x  and y  directions, controlling the displacements u  and v  according to the 
butterfly path in Fig. 4b. Four butterfly cycles with two different amplitudes characterize the loading path. The red arrows in the 
figure indicate the shape of the first cycle, where the maximum displacement in both the directions is almost 40 mm; the second 
cycle is symmetric to the first one with respect to the v -axis, that is it involves the negative-positive and the positive-negative 
combinations of the displacements; finally, the third and fourth cycles have the same shape of the first two, but they reach a 
maximum displacement of 80 mm. The forces act in the mid-plane of the top slab, i.e., the shear span ratio is equal to 3.90mL= ; 
the constant axial compression is equal to 2000 kN. 

One FE models the whole deformable part of the wall, assuming the top and the bottom square slabs as rigid and the warping 
displacements restrained at both the end sections [50]. Details of the adopted mesh are depicted in Fig. 4d. Four equally spaced 
warping points, 4wn = , and five quadrature cross-sections are placed over the height. Weighting length associated to the base 
quadrature cross-section, where stresses reach their maximum values, is set equal to / 6L , to regularize the element response 
[47], while the remaining four cross-sections are distributed according to the Gauss-Lobatto quadrature rule in the upper portion 
of the element having length 300 cm, i.e. quadrature cross-section positions are x = 0 cm, 60 cm, 127.08 cm, 194.16 cm and 360 cm. 

Fig. 5a shows the fiber discretization of the cross-section and Fig. 5b and Fig. 5c show two interpolation schemes for the 
warping points. Both schemes consider a cubic variation of the warping displacement along web and flanges, and a linear 
variation across the thickness. However, the L24 scheme, adopting Lagrange polynomials, uses 24 warping DOFs, whereas the H12 
scheme, adopting Hermite polynomials, uses only 12 warping DOFs. 

Table 7 lists the material parameters for the unconfined concrete. The strength increase in the confined parts, that is at tips of 
the flanges and at the intersections between these and the web, is reproduced by setting -32.8 10ck = ⋅  and 0.8ca = . The Giuffrè-
Menegotto-Pinto model [39] describes the behavior of the steel reinforcing bars, with 200000MPasE = , 540MPas

yσ =  and 1.0%b=  
being the Young's modulus, plastic yield strength and ratio between hardening and elastic stiffness, respectively. The transition 
coefficient R  from elastic to plastic state needed in the model result from the following parameters: 0 20R = , 1 18.5a =  and 

2 0.15a =  and no isotropic hardening is assumed. 

Table 7. Material parameters for the cyclic uni-axial material response in Fig. 3. 

E ν  t
σ  

c
σ  

k
H  

i
H  0tY  

t
k  

t
a  0cY  

c
k  

c
a  β  

28GPa  0.25  3.3MPa  30MPa  0.8E  0.001E  -56.7 10⋅  -52.0 10⋅  0.8  -44.0 10⋅  -32.0 10⋅  0.4  0.5  
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Fig. 6. U-shaped RC shear wall: global response in terms of applied horizontal loads 
x
F  and 

y
F  vs top displacements u  and v  

 

Fig. 7. U-shaped RC shear wall: global response in terms of applied loads 
x
F  vs 

y
F  and normalized top vertical displacement /w L  

As the global solutions for the two warping interpolation schemes L24 and H12 coincide, since the order of the warping 
interpolation over the cross-section is the same, Fig. 6 plots only the results for the H12 scheme, showing the evolution of the 
applied horizontal loads xF  and yF  in the two directions vs the normalized top displacements /u L  and /v L . Similarly, Fig. 7a 
shows the relation between these forces and Fig. 7b the evolution of the normalized top vertical displacement /w L  during the 
loading history. The numerical results (black solid curves) show the good ability of the model in describing the strength loss 
occurring for subsequent cycles. A certain gap between numerical and experimental (red dashed curves) solutions occurs only in 
the last cycles, in particular for the response in the y  direction. Indeed, the strength loss observed in the real specimen is caused 
by the reinforcing bar failure, which leads to the structural collapse in the last cycle. By contrast, the numerical constitutive 
relationship representing the behavior of the steel reinforcing bars does not include the material degradation and, thus, cannot 
capture this failure mechanism. 

Finally, Fig. 8 compares the total vertical displacements ( , , )u x y z  at (a) the mid-height cross-section ( 1.8mz= ) and (b) the top 
cross-section ( 3.6mz= ) at the end of the first loading in the x  direction, that is loading phase 2 in Fig. 4b. For the mid-height 
cross-section, the solution of the adopted beam model, considering the interpolation scheme H12 and that obtained with a 4-
node MITC shell FE model [51] are compared. It is evident that the adopted beam model can reproduce the cross-section warping 
deformation, here representing an important contribution of the total axial material displacement u . For the top cross-section, 
the comparison also involves the experimental outcomes from [49]. The results show that the adopted beam model correctly 
accounts for the warping constraints and reproduces the plane-section displacements induced by the top slab. 
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Fig. 8. Total vertical displacements u  at the mid-height and top sections in the RC U-shaped shear wall 

 

Fig. 9. Response of the base cross-section (x = 0) of the RC U-shaped shear wall 

Results for the base of the wall are not reported as both plane-section and warping displacements are null at this cross-
section. However, to analyze the interaction between warping and shear-lag effects, Fig. 9a plots the variation of the axial 
(vertical) strain obtained at x = 0 with the beam FE model (colored surface). This is compared with that resulting from the shell 
model (red dots). As shown, strain profile differs from that occurring under rigid plane cross-section assumption and is 
characterized by evident undulation due to warping. This also influences the variation of damage distribution over the cross 
section, that is depicted in Fig. 9b as contour plot. For this quantity, interaction with warping deformation is less evident, as most 
part of the cross-section undergoes severe damage due to tension (red area). Only a small area (green-yellow corner) is under 
compression and results as partially damaged. Further discussion on the performances of the proposed model in reproducing 
boundary condition effects in terms of strain and stress variation is reported in previous works [20, 21]. 

4.2 RC prismatic beams under torsional loads 

The second numerical application concerns the experimental tests performed by Chalioris [52] for three RC beams under 
torsional loads. All the specimens have a total length of 160cm  and are divided into three parts: two end parts of length eL , 
reinforced so as to exhibit an elastic response, and a middle part of length L  undergoing cracking and damage (Fig. 10a). At both 
the ends a monotonically increasing torsional couple xM  is applied. Only the damaging middle part is modeled in the numerical 
analysis, using one beam FE with three Gauss-Lobatto quadrature cross-sections. 
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Fig. 10. Geometry of the prismatic beams subjected to torsional loads 

 

Fig. 11. RC beams under torsional load: (a) cross-section fiber discretization and warping displacement interpolation schemes adopting (b) Lagrange 
and (c) Hermite polynomials 

 

The three cross-section shapes in Fig. 10b are considered, with a midpoint fiber discretization that uses 72 fibers for the 
rectangular cross-sections and 83 fibers for the T-shaped one (Fig. 11a). The reinforcing bars are treated as additional fibers. 

The cross-section warping displacements are assumed to be free, producing uniform warping along the entire element length. 
Hence, 1wn =  is assumed. 

Table 8 contains the value of the material parameters adopted for each specimen, with ν 0.2= , 30MPacσ = , 0.001iH E= , 
0.7kH E= , 0 05c tY Y= , -35.0 10ck = ⋅ , 0.2ca =  and 1.0β =  for all of them.  The classical J2 plasticity model [31] is adopted for the 

steel reinforcing bars, being 210000MPasE =  the Young's modulus, ν 0.3s =  the Poisson coefficient, 560MPas
yσ =  the uni-axial 

yielding stress and 0.001s
iH E=  and 0.01s

kH E=  the isotropic and kinematic hardening moduli, respectively. 
Each beam considers two different interpolation schemes for the warping DOFs over the cross-sections, as depicted in Fig. 11b 

and Fig. 11c, assuming either Lagrange or Hermite interpolation polynomials. All schemes provide cubic interpolation of the 
warping displacements wu  in both y  and z  directions, except for the Lagrange scheme of the T-shaped section, where the  
interpolation order is quadratic. 

Fig. 12 compares the numerical response of the three beams with the experimental data (red dotted curves), in terms of 
applied couple xM  vs average rate of the angle of twist /x Lθ . The results for both the Lagrange (green dashed curves) and 
Hermite (black solid curves with crosses) interpolation schemes coincide for the rectangular beams, as the two interpolations 
have the same order, and slightly differ for the T-shaped one, as the order of interpolation is comparable but not coinciding. In all 
cases, the numerical response satisfactorily reproduces the experimental results, well detecting the initial stiffness, the pick 
strength, and the degrading mechanism of the beams. The experiments show greater strength for the post-peak branch of curves, 
as the beams approach their final collapsing state, but this behavior due to rough cracks, dowel action and nonlinear geometric 
transverse deformations of the bars is not accounted for in the adopted numerical model. 

Fig. 12 also compares the numerical results with those obtained with a standard Timoshenko beam FE (blue dashed curves), 
that is under the assumption of rigid cross-section, correcting the torsional inertia J  through the semi-analytical solutions based 
on the Fourier series to account for warping. J  results equal to 46774cm  for the T-shaped and equal to 3hbα  for the rectangular 
shape, h  and b  being the cross-section depth and width; 0.2291α =  for Rectangular 1 and 0.2635α =  for Rectangular 2. The 
figure shows that the rigid section assumption highly overestimates the beam strength, since this does not correctly capture the 
material state evolution during the loading path [20,48]. The resulting shear/strain distribution over the cross-section is similar to 
that of a circular beam, regardless of the real shape of the cross-section. Fig. 13 compares the distribution of (a) the damage 
variable D  and (b) the maximum principal in-plane stress, which is due to shear, for the standard T-shaped FE and the 
corresponding enhanced model with the Hermite interpolation scheme. The gray dashes in Fig. 13b indicate the direction of the 
plotted principal stress. As shown, the adopted enhanced model gives correct information on the actual trend of damage and 
stress distributions, which depends on the warping displacements wu  (Fig. 14). Completely different solutions are obtained with 
the standard beam model. 
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Table 8. Material parameters for concrete model in prismatic beams under torsional loads. 

 E  t
σ  0tY  

t
k  

t
a  

Rectangular 1 20 GPa  12 MPa  -59 72 10. ⋅  -42.4 10⋅  0.8 

Rectangular 2 20 GPa  12 MPa  -55 40 10. ⋅  -42.5 10⋅  1.0 

T-shaped 30 GPa  21 MPa  -57 20 10. ⋅  -41.0 10⋅  1.0 

 

 

Fig. 12. Response of the RC beams subjected to end torsional loads: moment vs rotation per unit length 

 

Fig. 13. Distribution of damage and maximum principal stress over the T-shaped cross-section with and without warping, at / 0.006rad/m
x

Lθ =  

To investigate the performances of the solution algorithm proposed for the element state determination, the numerical 
analyses of the beams are performed by adopting both the iterative procedure, as described in Table 2, and the non-iterative 
procedure that results by setting the maximum number of internal iterations in Table 3 to one. Identical responses are obtained 
for the two cases and Table 9 reports the computational time required for each analysis, evaluated as the average value of ten 
simulation per each test, and the total number of global N-R and internal element iterations. The total number of load steps 
assumed for the analyses is also given. Only the Lagrange interpolation scheme is considered for this comparison. 
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Fig. 14. Warping displacement in the T-shaped RC beam subjected to end torsional loads, at / 0.006rad/m
x

Lθ =  

 

Fig. 15. Geometry of the steel L frame with flange continuity 

 
As expected, computational time is strongly determined by the total number of internal element iterations, having fixed all 

other model data, e.g. number of load steps, residual tolerance, number of FEs, number of DOFs, number of fibers, etc.. For the 
rectangular beams, the non-iterative algorithm results significantly more efficient than the iterative one, as the total number of 
internal iterations is lower in this case. However, similar computational burden is required by the two solution schemes for the T-
shaped beam. In this case, when the non-iterative solution algorithm is adopted, at each N-R iteration higher residual internal 
forces are passed by the element to the global solution program and more attempts are needed to reach convergence than those 
required when the iterative algorithm is used. 

4.3 Steel L frame with flange continuity 

The third test analyzes the behavior of the steel frame depicted in Fig. 15. This is composed by I-shaped column and beam 
having same cross-section geometry and length equal to 4 m and 3 m, respectively. 

 

Table 9. RC beams subjected to end torsional loads: required total global N-R iterations and total internal iterations for the non-iterative and 
iterative element state determination scheme. 

 Algorithm N-R iterations Internal iterations Total load steps 

Rectangular 1 
Non-iterative 

Iterative 

91.3 s 

479.8 s 

211 

835 

100 

100 

Rectangular 2 
Non-iterative 

Iterative 

80.3 s 

276.8 s 

215 

495 

100 

100 

T-shaped 
Non-iterative 

Iterative 

516.7 s 

511.4 s 

985 

979 

200 

200 
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Fig. 16. Steel L frame with flange continuity: (a) fiber discretization for material response and (b) warping displacement interpolation scheme 

 

Fig. 17. Steel L frame with flange continuity: global response in terms of resisting couple M  vs torsional rotations B

x
θ  (applied) and D

x
θ  of cross-

sections B and D, respectively 

 
Cross-section orientation is such that flange continuity is obtained at the beam-column connection joint (point C in the 

figure). Plane-section and warping displacements are prevented at the ends of the frame (points A and E), as well as the 
transverse displacement along y  direction of point C. The frame is loaded by controlling the torsional rotation, B

xθ , of the cross-
section in B. This varies by following a cyclic pattern that considers the following limit values: 

 0rad 0.2rad 0.2rad 0.4rad 0.4rad 0.4radB
xθ = → → − → → − →  

Elasto-plastic material response is assumed. Thus, J2 plasticity model with linear kinematic hardening is adopted, with 
Young's modulus 205000MPasE = , Poisson ratio 0.3sν = , yielding stress 150MPas

yσ =  and hardening modulus 0.01s s
kH E= . 

The frame is modeled by adopting a uniform mesh made of six and eight proposed FEs for beam and column, respectively, 
with cubic warping interpolation assumed along the element axis, i.e., 4wn = . All FEs consider the additional warping DOFs 
placed at the end nodes as external variables, so that warping continuity is ensured both along the members and at the joint. 
Indeed, due to the particular orientation, the end cross-sections of beam and column that meet at the joint C undergo equal 
warping profile. Hence, when column twists, warping of the top cross-section produces warping in the beam, which is expected to 
twist as well. This is shown in [53-55], where similar specimen is analyzed under monotonic loads and assuming linear elastic 
material response. Different orientations of the element cross-sections are considered there, so that warping transmission at the 
joint is influenced by the configuration of the stiffeners eventually placed to prevent joint distortions. 

Fig. 16a shows the fiber discretization adopted for the cross-section, whose thickness is enlarged in the picture for better 
representation. In this case, fibers are distributed according to the Gauss-Legendre rule, as exact integration of the element 
torsional stiffness is required to obtain the correct response of the frame. Fig. 16b shows the interpolation scheme for the warping 
points. This adopts Lagrange polynomials and assumes parabolic and cubic warping interpolation along web and flanges, 
respectively, and linear interpolation across the membrature thickness. The total number of warping DOFs over each cross-
section is 28wm = . 
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Fig. 18. Axial stresses [MPa]
xx
σ  in the L frame with flange continuity for 0.04radB

x
θ =  

Fig. 17 shows the solution obtained in terms of total torsional resisting couple M , acting about the vertical direction at the 
restraints and corresponding to the couple required in B to impose the desired rotation B

xθ . This is plotted against the torsional 
rotation xθ  of (a) the mid-height cross-section of the column and (b) the mid-span cross-section of the beam, referred to the 
element local axes x . Dashed red curves represent the reference solutions obtained with a shell model. This is defined in FEAP 
[56] considering a mesh of 2268 4-node Discrete Kirchhoff Quadrilateral (DKQ) elements. Solid black curves refer to the results 
obtained with the proposed model and solid blue curves indicate those obtained with a standard beam assuming rigid cross-
section. For this latter, cross-section torsional inertia is computed according to the thin-walled beam theory and results equal to 

tJ Iρκ= , being Iρ  the cross-section polar inertia and 0.001153tκ =  the correction coefficient. 
Proposed FE perfectly agrees with the shell model and captures the warping transmission at the joint, showing the torsional 

rotation occurring in the beam (Fig. 17b) and the correct material plastic evolution. Due to warping constraints, torsion of the 
members induces significant shear-lag effects and the related axial stresses produce yielding of the material at cross-sections A, B 
and C (for both members). By contrast, standard beam model does not consider boundary warping restraints and, thus, provides a 
significantly more flexible response. In addition, this does not capture shear-lag and always provides a linear elastic solution. 

Distribution of the axial stress xxσ  is plotted in Fig. 18 when B
xθ  reaches for the first time the value 0.04 rad. Fig. 18a shows the 

variation obtained with the shell model in the entire frame. Stresses are plotted for the visible face of the shell FEs. While, Fig. 18b 
shows the variation occurring over the cross-section in B and compares the results obtained with the beam model with warping 
(colored surface) with those obtained with the shell model (red dots). For this latter, projected node values are plotted, i.e. values 
of the stresses evaluated at the nodes of the FE mesh. These perfectly agree with those attained at the mid-line of the beam cross-
section. 

Although limited to linear elastic case, similar analyses are presented in [55] for a specimen with similar geometry but 
different orientation of element cross-section, showing the variation along the beam and column axis of the axial stress, xxσ , 
obtained with the proposed model and compared with a shell FE solution. These phenomena related to shear-lag effect have been 
widely studied in previous works [20, 21, 55] and are beyond the scope of this paper, which mainly focuses on the computational 
enhancements introduced for the proposed formulation. Hence, they are not discussed here. 

5. Conclusion 

This paper focused on the computational enhancements concerning the enhanced 3D beam FE model presented by Di Re et al. 
[21] for the analysis of RC structural beams subjected to relevant shear and torsional loads and including cross-section warping. 
All the computational details for its implementation in general FE analysis codes were described. Constitutive models with 
plasticity and damage were adopted to simulate steel and RC structural elements nonlinear response. In particular, a 3D plastic-
damage material model was introduced for concrete in the framework of the fiber discretization procedure to investigate the 
influence of non-uniform shear stress-strain distributions and their interaction with the damaging process. 

The paper presented an enhanced solution algorithm, with respect to that proposed by Le Corvec [19]. This permitted to adopt 
the model for the analysis of damaging structures that exhibit softening material behavior and, if required, to by-pass the 
iterative procedure used to enforce simultaneously the element equilibrium and compatibility conditions, as usual for force-
based and mixed beam FEs. Moreover, the study proposed a new efficient technique to condense out the in-plane stress 
components, involved in the 3D constitutive model description but not directly included in the fiber section formulation. The 
proposed procedure considers a non-iterative scheme that takes advantage of the global iterative solution scheme and avoids the 
inner loop. 

Three numerical applications were conducted to validate the presented numerical model: the analysis of a RC U-shaped shear 
wall under lateral forces, that of three RC prismatic beams under torsional loads and that of a steel L frame with flange continuity 
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under cyclic torsional load. All the solution algorithms adopted for the FE models were proved to be computationally efficient and 
accurate, even under complex loading conditions. Both the non-iterative element state determination and condensation 
procedures resulted less time consuming than the classical iterative ones and did not introduce any complication in the model 
implementation. 

Moreover, numerical analysis discussed the importance of modeling warping effects and warping boundary restraints, when 
relevant torsional actions are present, focusing on the interaction between out-of-plane cross-section deformations and plastic 
and damage phenomena. As expected, classical beam models, based on the rigid cross-section assumption, give incorrect results, 
since cross-section deformation and shear-lag effects are not correctly reproduced, and fail in representing the real evolution of 
plasticity and damaging effects in the material. By contrast, the adopted enhanced model correctly reproduces the cross-section 
deformation displacements and their variation along the element axis and, thus, captures the actual stress-strain distribution 
and the evolution of plastic strains and damage quantities due to out-of-plane warping.  
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