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Abstract. In the present study, fluid flow, heat transfer, and entropy generation for mixed convection inside a water-filled square 
cavity were investigated numerically. The sidewalls of the cavity, which move upwards, are kept at low-temperature Tc while only 
a part in the center of the bottom wall is kept at high-temperature Th and the remaining parts are kept adiabatic. The governing 
equations, in stream function–vorticity form, are discretized and solved using the finite difference method. Particular attention 
was paid to the influence of the Prandtl numbers of 5.534, 3.045 and 2, corresponding respectively to the water temperatures of 
303.15 K, 333.15 K and 363.15 K. The numerical results are presented in the form of streamlines, isotherms, and entropy 
generation contours for different values of the Richardson numbers at an arbitrary Reynolds number Re=102. Besides this, the 
evolution of the average Nusselt number and the average entropy generation is also reported. The obtained results show 
interesting behaviors of the flow and thermal fields, which mainly involve stable symmetric and non-symmetric steady-state 
solutions, as well as unsteady regimes, depending on specific values of the Richardson and Prandtl numbers. It is additionally 
observed that the average Nusselt number increases and the average entropy generation decreases when both the Richardson 
and Prandtl numbers increase. 

Keywords: Mixed convection, Entropy generation, Finite difference method, Prandtl number, Richardson number, Nusselt Number.  

1. Introduction 

Flows involving both forced and natural convection, commonly referred to as mixed convection, are very often encountered in 
many industrial applications as evidenced, for example, by several recently published papers concerning electronic cooling [1, 2], 
air conditioning [3, 4], thermal design of building [5], solar collectors [6], chemical processing equipment [7], heat exchangers [8]. 
In recent years, convective fluid flows, in different enclosures, using the suspension of the Nano-Encapsulated Phase Change 
Materials (NEPCMs) have created a new research area and opened up radically new opportunities for many industrial applications. 
The following articles [9-12] have made a substantial contribution to the understanding of this phenomenon and, the obtained 
results show that the presence of NEPCM particles improves effectively the heat transfer. 

All real fluids in motion in a process that involve heat and/or mass transfer result in significant energy losses generally 
referred to as the "entropy generation". This phenomenon arises due to the velocity, thermal and/or solutal gradients. The theory 
and the computation of the entropy generation was introduced for the first time by Bejan and reported in several of his works, e.g. 
[13, 14]. Numerous studies have been carried out to understand the fluid flow and heat transfer process in closed cavities in 
mixed convection regime. Most of the important published works that examine the heat transfer process by mixed convection in 
enclosures with different shapes that integrated non-Newtonian fluids and nanofluids were reported more recently in the review 
articles by Izadi et al.[15], Mustafa Abdul Salam et al. [16] and, Yang and Kai Du [17]. 

Entropy generation in mixed and natural convection has been the focus of research by numerous investigators as reviewed by 
Oztop and Al-Salem [18]  Sciacovelli et al.[19] and, Biswal and Basak [20]. Since then, many other numerical studies in the same 
area have been carried out and, by focusing solely over the last two years some of them can be described here. Sheikholeslami et 
al. [21] investigated, by applying a novel numerical simulation approach based on the Finite Element Method FEM, entropy 
generation of a nanomaterial flow in the presence of Lorenz forces within a porous enclosure. They showed that increasing 
permeability makes the Bejan number decline, boundary layer thickness enhances with a rise of Lorentz force. In addition, two 
precise formulas were suggested for the estimation of the Bejan number and average Nusselt number. Sheikholeslami et al. [22] 
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scrutinized entropy generation of nanomaterial through a quad-lobed tube equipped with single or dual helical tape. One of their 
findings is that a greater value of the revolution of tape (N) leads to a reduction in thermal entropy generation (Sgen,th) about 0.48% 
when the number of tapes (TTn) =2 and Re=20,000, while viscous entropy generation (Sgen,f) experiences 35.58% augmentation 
with rising of the number of tapes (TTn) when N=4, Re=400. The effects of a partial elastic wall, an inclined magnetic field, and a 
rotating circular cylinder on the entropy generation of convective heat transfer of carbon nanotube (CNT)–water nanofluid filled 
U-shaped cavity was carried out by Selimefendigil et al. [23]. They demonstrate that the entropy generation rates with varying 
Hartmann (Ha) number, rotational velocity, and location of the cylinder are different for the left and right parts of the domains 
while impacts of elastic wall properties on the entropy generation rate are slight. Rabbi et al. [24] examined magneto-
hydrodynamic convection and entropy generation within a square tank occupied with Cu-H2O nanomaterial. The numerical 
method based on the Galerkin residual finite element analysis has been implemented and, the Artificial Neural Network (ANN) 
model was used as an advanced predictive tool. The investigation has been done for Hartmann number (Ha 0 – 100), Rayleigh 
number (Ra 103-107), and nanomaterial concentration (φ 0 – 0.05). Streamlines, isotherm contours, and entropy generation 
contours are discussed thoroughly. It has been shown that the existence of external Lorentz forces affects both the Nusselt (Nu) 
and the Bejan (Be) numbers. In addition, the impact of Ha and φ on Nu and Be found from the numerical heat transfer analysis 
has been predicted and compared with ANN prediction model. Monda et al. [25] numerically analyzed MHD mixed convection 
flow, and entropy generation of AL2O3-water nanofluid flowing in a lid-driven trapezoidal enclosure. The stream-function vorticity 
formulation is used to solve the discretized coupled non-linear partial differential equations by a finite differences method. The 
obtained results show significant changes in streamlines, temperature, concentration and, global entropy generation contours for 
high Richardson number. Ebrahimi et al. [26] conducted the computational modeling of laminar mixed convection heat transfer of 
nanofluids inside a closed elbow‑shaped cavity (CESC), using a finite volume method. Nusselt number, friction coefficient, 
dimensionless velocity in different sections of the cavity, temperature and entropy generation contours are presented. They argue 
that increasing the Grashof number implies an improvement in the fluid circulation mechanism, which results in a substantial 
reduction in the generation of entropy in the studied geometry. In addition, in the lower areas of the hot surface, entropy 
generation is always the least. Khosravi et al. [27] utilized Fluent software and an Artificial Neural Network model (ANN) in order 
to estimate the entropy generation of graphene–platinum/water hybrid nanofluid flow to assess how a new cylindrical 
microchannel heat sink with wavy-shaped fins performs. A variety of Reynolds numbers, nanoparticle concentrations as well as 
wave amplitudes is used to simulate the problem, while the heat flux is constant. They concluded therefore that increasing each 
factor, including wave amplitude, particle fraction, and Reynolds number, causes a decline in the thermal entropy generation rate, 
while frictional entropy rises significantly. The Bejan number was obtained greater than 0.98 in all cases, which means that 
irreversibility mainly results from the thermal entropy generation. Cimpean and Pop [28] investigated  entropy generation in an 
inclined square cavity filled with a porous media saturated by a nanofluid with sinusoidal temperature distribution on the side 
walls, adiabatic conditions on the upper wall and a heat source at the lower wall. The governing equations and the entropy 
generation, in terms of the dimensionless variables, are discretized and solved by a finite difference method of second-order 
accuracy. The authors conclude that the conditions of the model and the values of the studied parameters have a significant 
effect on the existence of the irreversibility phenomena. 

Relatively low number of numerical investigations are performed in mixed convection for various configurations which 
include the effect Prandtl number. In this context, Maougal and Bessaih [29] performed a numerical investigation on the entropy 
generation in mixed convection in a square cavity, filled with a saturated porous medium and heated by a discrete set of heat 
sources. Simulations were carried out for Reynolds number Re=20, 40, 80, 100, 200, Darcy number, Da=10-5-10-1, Prandtl number, 
Pr=0.015, 0.7, 10, 103, and aspect ratio, D/H =0.05, 0.10, 0.15, 0.2, 0.25. Their results showed that the Reynolds and Prandtl numbers 
have the same effect on the entropy production and, their increase improves the heat transfer. Roy et al. [30, 31, 32] investigated 
the effect of the Prandtl on entropy generation during the mixed convection in a square cavity where the bottom wall is 
isothermally hot, sidewalls are cold, and the top wall is adiabatic. Simulations have been carried out for Prandtl number Pr= 0.026 
and 7.2, the Reynolds number Re varies between 10 and 100, and Grashof number Gr varies between 103 and 105. In [30] the effect 
of moving horizontal or vertical wall(s) is considered, in [31] the effect of various thermal boundary conditions is studied. in [32], 
the cavity is filled with a porous medium and the effect of thermal boundary condition is reported. More recently, Roy et al. [33] 
delt with the same problem as those described above but in porous triangular cavities. In each considered investigation, these 
authors report the values of the parameters that contribute to minimize the entropy generation. However, the topic in question 
continues to receive interest as evidenced in the papers recently published  by Bhatti et al. [34, 35], Khan et al. [36], Ögüt [37], 
Mehta and Pati [38], and Kashyap et al. [39]. Bhatti et al. [34] investigated entropy generation during heat and mass transfer in 
peristaltic Ellis fluid flow through a nonuniform channel. Mathematical and graphical analyses of the velocity profile, 
temperature profile, concentration profile, and entropy profile are presented for the Schmidt, Eckert, Soret, Prandtl, and 
Brinkmann numbers, compliant wall parameters, and Ellis fluid parameters. Bhatti et al. [35] examined the entropy generation on 
the interaction of nanoparticles over a stretching porous sheet with nonlinear thermal radiation. Simultaneous effects of the 
porous medium, Radiation parameter, nanoparticle volume fraction, Prandtl number, Brinkman number, and Reynolds number 
are demonstrated through graphs. Khan et al. [36] analyzed numerically the entropy generation in an incompressible thermal 
flow of Newtonian fluids over a thin needle that is moving in a parallel stream. Water and air are considered working fluids. The 
effects of Prandtl number, Eckert number, and dimensionless temperature parameter are discussed graphically in detail. It is 
shown that entropy generated due to heat transfer and fluid friction in water is more than in air. Ögüt [37] studied the entropy 
generation in laminar mixed convection in an inclined square lid-driven enclosure in the presence of magnetic field. The 
principal parameters considered in this study are : Richardson number (from 0.01 to 100), Prandtl number (from 0.1 to 1.0), 
inclination angle of enclosure (from 0° to 180°), Hartmann number (from 0 to 100) and magnetic field direction (0°). It was found 
that the inclination angle of enclosure is an effective parameter on entropy generation especially for higher Richardson number 
(Ri > 1) due to domination of natural convection. However, Hartmann number is effective on both heat transfer and entropy 
generation for all values of Richardson and Prandtl numbers and it decreases the convective fluid flow and entropy generation. 
Mehta and Pati [38] discussed the thermo-fluidic and entropy generation characteristics for laminar forced convective flow 
through wavy channel at different Prandtl numbers. Results are presented for the following range of parameters: Reynolds 
number (Re), Prandtl number (Pr), dimensionless amplitude () and, dimensionless wavelength () which vary from 5 to 200, 0.72 
to 100, 0.3 to 0.7, and 0.5 to 1.5 respectively. They observed that the thermal entropy generation contribution is higher than the 
viscous one for all the cases considered, the local thermal entropy generation distribution varies with the Re, Pr, and geometrical 

αconfiguration of the channel and, for a smaller amplitude (  = 0.3) the total entropy generation is minimum in the considered 
range of Re and Pr. More recently, Kashyap et al. [39] investigated the effects of three different Prandtl number fluids (Pr = 0.025, 
5.83 and 151) on convective heat transfer inside a closed square cavity with an adiabatic left wall and three other cold walls. A 
centrally positioned square hot block with respective blockage ratios of 0.25 and 0.5 heats the cavity. One of their conclusions is 
that the total entropy generation in mixed convection, the heat transfer irreversibility mostly dominates the entropy generation 
at all Pr irrespective of Ri values as indicated by large average Bejan number. 
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Fig. 1. Physical model and boundary conditions 
 
From this literature review, it appears that the numerical studies of mixed convection in confined spaces taking into account 

the impact of Richardson and Prandtl numbers on the entropy generation are relatively scarce. On the other hand, all authors use 
different fluids to examine the impact of this number when studying convective flows. For our part we have opted for a new 
approach which consists in considering the same fluid at different temperatures, i.e. at different Prandtl numbers. For this 
purpose, we chose water as the working fluid, because of its many practical applications in engineering [40] and on the other 
hand, in contrast to other fluids, it offers a significant disparity in the value of the Prandtl number depending on the temperature. 
Indeed, its value ranges from 11.44 and 0.9996 for temperatures from 5°C to 100°C respectively. 

2. Physical Model and Mathematical Formulation 

2.1 Physical model 

The schematic diagram of the two-dimensional square cavity of side length L considered in the present study is highlighted in 
Fig. 1. The lateral walls are maintained at a constant cold temperature TC and move upwards with a constant velocity vw. A heat 
source of size l = 0.8 L is located at the center of the bottom wall of the cavity and maintained at a constant high temperature TH. 
All remaining parts of the cavity are considered adiabatic. The mechanism for moving the side walls is illustrated in the article by 
Roy et al. [30].   

2.2 Mathematical formulation 

The governing equations for the present problem for steady two-dimensional mixed convection flow in a square cavity are the 
conservation continuity of mass, momentum and energy equation that can be expressed as follows [41] : 

  
 Continuity equation : 

0
u v

x y

∂ ∂
+ =

∂ ∂
 (1) 

 x momentum equation : 
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 Energy equation :  

2 2

2 2

T T T T T
u v

t x y x y
α
 ∂ ∂ ∂ ∂ ∂  + + = +  ∂ ∂ ∂ ∂ ∂ 

 (4) 

The flow is unsteady, laminar and incompressible. All other properties of the fluid are assumed constant, except for the 
density of the fluid that generates the buoyancy forces, in accordance with Boussinesq's approximation. Taking into account 
these assumptions, the momentum governing equations can be given as follows in the vorticity-stream function formulation [41]:  

 Vorticity equation : 

2 2

2 2

T
u v g

t x y x y x

ω ω ω µ ω ω
β

ρ

 ∂ ∂ ∂ ∂ ∂ ∂ + + = + +  ∂ ∂ ∂ ∂ ∂ ∂ 
 (5) 
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 Stream function equation :  

2 2

2 2x y

ψ ψ
ω

∂ ∂
+ =−
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 (6) 

The vorticity is defined as: / /v x u yω = ∂ ∂ −∂ ∂ and the velocity components in the x and y directions, respectively are: 

,u v
y x

ψ ψ∂ ∂
= =−
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 (7) 

2.3 Initial and boundary conditions 

Numerical solution of the previous equations is based on the following initial and boundary conditions:  

 Initial conditions:  (t = 0) : 

0 & 0 & 0Cy L x L T T ψ ω≤ ≤ ≤ ≤ = = =  (8a) 

 Boundary conditions (t > 0) :  
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( ) ( )0 & 2 2 0 & Hy L l x L l u v T Tψ= − ≤ ≤ + = = = =  (8d) 
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2.4 Nusselt number 

Local and average Nusselt numbers has been computed for the heated part of the bottom wall of the cavity and are 
determined from the following expression: 

0

1
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y
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T y
=

∂
=−
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( ) 2

( ) 2

1 L l

loc
L l

Nu Nu dx
l

+

−
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2.5 Entropy generation 

The local entropy generation is given by [42] : 
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(10) 

where Sth is the entropy that is generated due to the thermal irreversibility (heat transfer) and Sff is the entropy that is generated 
due to the flow irreversibility (fluid friction). 

The total entropy generation is the integral over the system volume of the local entropy generation: 

{ }2 0 0

1 L L

gen gens s dx dy
L

= ∫ ∫  (11) 

2.6 Bejan number 

The local Bejan number is a dimensionless number that provides a measure of the importance of the thermal entropy 
generation compared to the total entropy generation. It is expressed by: 

th

th ff

S
Be

S S
=

+
 (12) 

Also, the average Bejan number is given by: 

{ }2 0 0

1 L L

Be Be dx dy
L

= ∫ ∫  (13) 

During the numerical modeling of mixed convection, some parameters should be chosen to serve as a comparison with the 
overwhelming majority of studies reported These include, among others, the Richardson number (Ri) which characterizes the 
flow regime and provides a measure of the influence of free convection in comparison with forced convection, the Prandtl 
number (Pr), which is being designated as the ratio of the momentum diffusivity to the thermal diffusivity, and the Reynolds 
number (Re) used to represent the ratio of inertial forces to viscous forces. These different numbers are defined respectively by 
the following relationships: 
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2
wv LGr

Ri Pr Re
Re

ν

α ν
= = =   

where Gr is the Grashof number, 3 2/Gr g TLβ ν= ∆ , H CT T T∆ = −  is the temperature difference and vw is the side wall velocity. 

3. Numerical Procedure and Validation 

3.1 Numerical procedure 

The finite difference method is used to solve the governing equations (4)-(7) with the corresponding boundary conditions, Eqs. 
(8a-8e). Temporal discretization has been achieved using the Alternating Direction Implicit (ADI) method. More details on this 
procedure can be found in Micula and Pop [43].  High-resolution spatial scheme was used for all equations. Convective terms in 
Eqs. (4, 5) have been discretized into a third-order upwind scheme as proposed by Kawamura et al. [44]. Diffusive terms, as well as 
the terms including the first derivatives, have been discretized by a fourth-order accurate scheme. An iterative procedure based 
on the successive Non Linear Over Relaxation method (NLOR) was used to solve the discretized stream function equation Eq. (6). 
In addition, once the velocity and temperature fields obtained we can then determine the characteristics of the entropy 
generation (Eqs.10, 11, 12), the average Nusselt number along the hot part of the bottom wall (Eq. 9), and the average Bejan 
number (Eq. 13). An in-house FORTRAN code, with a double precision accuracy, has been developed for solving the mathematical 
model under consideration. 

It was also clearly established, (see for example Bejan [45]) that the equation describing the entropy generation depends 
strongly, not only on the thermo-physical properties of the working fluid but also on a reference temperature (T0). For this purpose, 
the reference values of the thermo-physical properties of water at 30°C (303.15 K), 60°C (333.15 K) and, 90°C (363.15 K) listed in 
Table 1, are from Dinçer and Zamfirescu [46] and, Fig.2 shows the variation of the Prandtl number (Pr) as a function of 
temperature. ΔFurthermore, the Reynolds number (Re) and the temperature difference T are kept constant at 102, and 2 K 
respectively. On this point, and as indicated by Ferziger and Peric [47] the use of the Boussinesq approximation in the Navier- 
Stokes equations introduces errors of the order of 1% if the temperature differences are less than 2°C for water. In addition, 
Pallares et al. [48] state that, at Ra=1.2 105 (ΔT=4.6 °C), physical properties of water have a variation of about 9% and non-
Boussinesq effects begin to be important. On the other hand, the length L of the cavity was considered as the typical reference 
length of the system geometry of the study and will be used to compute the values of the non-dimensional parameters 
mentioned above. In view of this, it was deemed appropriate to immediately fix the ideas on the variation of the Richardson 
number (Ri) as a function of the length (L) of the cavity that we have presented in Fig. 3, so as to see precisely the specific value of 
Ri that would correspond more truly to L for each of the considered Prandtl numbers (Pr). The proposal has been suggested 
previously by Goodarzi et al. [49], and very recently by Patil et al. [50], that have dealt with the investigation of entropy generation 
due to fluid flows in the mixed convection regime. 

To achieve clarity in order to facilitate understanding of the adopted numerical procedure, the main steps are described 
below: 

1. Specification of the thermophysical properties of the working fluid. 
Once the fluid and its temperature (To) have been selected, we can access all of its other thermophysical properties ( , μ, , k, ρ ρ ρ 

and, Pr) from table 1. Note that these thermophysical properties of the working fluid may be changed depending on the 
temperature To. 

2. Specification of the boundary conditions.  
For this, we need to set a temperature difference ( ΔT=2K), the length of the cavity (L), and the Reynolds number (Re=100). We 

then get the low-temperature �C, the high-temperature �H and, the sidewall velocity vw as follows: 

; ;
2 2C o H o w

T T
T T T T v Re

L

µ

ρ

∆ ∆
= − = + =   

Here too, these boundary conditions can be changed depending on the temperature To (i.e. Prandtl number) and the length of 
the cavity (L). 

1. Numerical resolution. 
The equations (4, 5, 6 and 7) are used to determine the dynamic and thermal fields, while equation (10) the entropy generation. 

2. Computation of the non-dimensional parameters. 
The Richardson number (Ri) is identified as the primary control parameter in this study. It is given by the following equation: 

2

Gr
Ri

Re
=   

where Gr is the Grashof number 3 2/Gr g TLβ ν= ∆ . 

As a final point, it must be noted that all parameters are known to calculate these dimensionless numbers. These different 
steps are carried out for each length of the cavity L (i.e. each Richardson number) and then after, for each Prandtl number. 

Table 1. Thermo-physical properties of pure water at atmospheric pressure [46]. 

To (°C) ρ (kg m-3) μ (kg m-1 s-1) α (m2 s-1) k (W m-1 K-1) β ( K-1) Pr 

30 995.7 7.977 10-4 1.4477 10-7 6.03 10-1 3.051 10-4 5.534 

60 983.2 4.666 10-4 1.5585 10-7 6.41 10-1 5.221 10-4 3.045 

90 965.3 3.145 10-4 1.62903 10-7 6.613 10-1 6.958 10-4 2.000 
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Table 2. Grid independence test: average Nusselt number and total entropy generation for Ri=0.48 and Pr = 5.534 

Grid Nu  Relative error % gen
S  Relative error % 

41x41 11.1964 6.20 4.1762 5.03 

81x81 11.8402 0.84 4.0265 1.26 

101x101 11.8814 0.49 3.9898 0.35 

161x161 11.9259 0.12 3.9758 0.02 

201x201 11.9399 ----- 3.9763 ----- 

 

3.2 Grid independency test  

Numerical tests have been made to ensure the accuracy of results for the grid used in this study. Five grid sizes (41x41; 81x81; 
101x101, 161x161 and 201x201) have been considered. These numerical tests are carried out for the case of Reynolds number 
Re=100, Prandtl number Pr=5.534 (Water at 303K) and Richardson number Ri =0.48. Table 2 shows the convergence of the average 
Nusselt number and the total entropy generation. It should be noted that the maximum relative error does not exceed 1% 
between the grid sizes of 101×101, and 161x161 compared to the grid size of 201×201. Therefore, it was decided to use a non-
uniform grid with 101×101 grid points for all calculations allowing a balance between accuracy and CPU time. 

3.3 Code validation  

First validation tests of the natural convection in a square cavity heated from below and cooled from others at Ra=105 and 
Pr=0.71 have been verified. The streamlines and isothermal lines are compared with those of Asad et al. [51], and Jani et al. [52] 
(Fig. 4). It is observed qualitatively, that the results agree with the earlier works. 

The code is also tested while considering the same problem in the same geometrical configuration, but this time the 
comparison is related to the vertical velocity component along the horizontal centerline of cavity obtained by Jani et al. [52] and 
that achieved by the present code (Fig. 5). We therefore note that quantitatively the results are in good agreement. 

Once again, the code was tested considering the work of Aydin and Yang [53] which deals with a numerical study of mixed 
convection in a cavity having a locally heated bottom wall and cold descending sidewalls. The dimensionless velocity 
components V=v/vw along the horizontal centerline (Y=0.5), predicted by Aydin and Yang [53] for different Richardson numbers at 
ε=l/L=1/5 and the present work, are shown in Fig. 6. A comparison of the results demonstrates good agreement. 

 
 

  

Fig. 2. Water Prandtl number versus Temperature [46] Fig. 3. Variation of Ri as a function of L 

 
 

   

   

(a) (b) (c) 

Fig. 4. Comparison of the streamlines (upper row) and isotherms (bottom row) between numerical results by (a) Asad et al. [51], (b) Jani et al.[52] and 
(c) present work, at Ra=105 and Pr=0.71 
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(a) (b) 

Fig. 5. Comparison of the vertical velocity component along the horizontal centerline of cavity, (a) Jani et al. [52] and (b) present work, at different  
Ra and Pr=0.71 

 

 

Fig. 6. Comparison of the vertical velocity component along the horizontal centerline of the cavity for Ri=0.1, 1. And 10 at Pr=0.71. Lines present work 
and, symbols: Aydin And Yang [53] 

4. Results and Discussion 

In this section, we investigate and discuss the scope of the effects of the Prandtl number on water flow, heat transfer, and 
entropy generation for different values of the governing parameters. The Richardson number, which is computed based on the 
thermophysical properties of water and the length L of the cavity is identified as the primary control parameter for heat and fluid 
flow inside the cavity. Furthermore, despite the fact that the numerical solution implies a time-dependent solution, it should be 
noted that only results about stable fluid flows are shown here. 

4.1 Dynamic and thermal fields                            

The determination of the entropy generation depends on the velocity and temperature gradients, that is why the dynamic and 
thermal fields need to be examined in the first instance. The structure of streamlines and isotherms presented in Fig. 7 (a), (b) and, 
(c) for the values of the Prandtl number of 2., 3.045, and 5.534 respectively, show that the fluid circulation inside the cavity 
depends strongly on the Richardson number (i.e. the length of the cavity). One must nevertheless note that each figure presents 
the cavity with its own dimension measured on the x, y, axis. The results of the various numerical simulations show the existence 
of three very distinct types of flows according to the value of this parameter. The first type occurs at low values of Ri. The 
streamlines are characterized by the presence, inside the cavity, of two strictly symmetric cells with respect to the vertical axis 
passing through the middle of the cavity (first column of Fig. 7 a,b,c). The one on the left turns clockwise and the one on the right 
turns counterclockwise. Forces due to the movement of the side walls are large enough to draw heat from the heated portion, 
located on the bottom wall of the cavity, to evenly distribute it along these walls. The second type occurs as the Richardson 
number exceeds a critical value (first bifurcation). In this particular case, unsymmetrical flow structures and temperature 
distributions are observed inside the enclosure (second column of Fig. 7 a,b,c). The third and last type takes place when the 
Richardson number continues to increase in order to exceed a second critical value (second bifurcation). Noticeable and 
meaningful changes in streamlines and isotherms are observed (third column of Fig. 7 a, b ,c). In this case, the flow is 
predominantly composed of four symmetric cells, two counter-rotating cells located in the center of the cavity due to buoyancy 
forces, and the other two, also counter-rotating due to viscous forces, are weak and adjacent to the lateral sidewalls. Inside each 
of them, two minor vortices appear at the bottom and top corners. In this instance, all the heat from the hot source is propagated 
through the center of the cavity. It should be noted, however, that if the flow changes from a steady state to chaos the increase of 
Richardson number shall be stopped. It's a similar procedure that has already been used by Cheng [54]. We note that Biswas and 
Manna [55] have previously reported the existence of these same flow patterns that originate in a bottom-heated square cavity 
filled with air, where both the cooled (or adiabatic) sidewalls are translating at a constant velocity in their own planes either 
vertically upward or vertically downward, while the top wall is considered either adiabatic or maintained at a cold constant 
temperature. 
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(a) 

   

   

Ri=35.3 Ri=2.78 Ri=12.86 

 
(b) 

   

   

Ri=62.87 Ri=0.98 Ri=15.35 

(c) 

   

Ri=25.18 Ri=0.2 Ri=11.35 

Fig. 7. Contours of streamlines (first row), isotherms (second row) for different Richardson numbers (Ri) at (a) Pr=2.0, (b) Pr=3.0454 and, (c) Pr=5.534 
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Ri=25.18 Ri=0.2 Ri=11.35 

Fig. 7. Contours of streamlines (first row), isotherms (second row) for different Richardson numbers (Ri) at (a) Pr=2.0, (b) Pr=3.0454 and, (c) Pr=5.534 
 
 

      
 

Ri=22.35 
 

        
Ri=36.38 

 
Fig. 8. Comparison of streamlines (left column) and isotherms (right column) for Ri=22.35 and, 35.36 at Pr= 3.045 

 
 
If this figure reveal that the dynamic and thermal fields show the same trend with the variation of the Richardson number (Ri) 

i.e. by highlighting the three types of fluid flow previously described, however, it was observed that for Pr = 3.045 and Ri between 
22.35 (L = 0.017 m) and 36.38 (L = 0.02m) the distributions of streamlines and temperature contours are considerably altered and 
another interesting type of fluid flow appears. To better identify and define this unexpected and disconcerting new type of flow 
regime, the main characteristics of streamlines and isotherms in the cavity for the Richardson number limit values cited above 
are compared in Fig. 8. The figure indicates that for Ri = 22.35 the streamlines displayed consist of two strictly antisymmetric cells 
with respect to the vertical median axis (x =L / 2) but are practically symmetrical with respect to the horizontal median axis (y = L 
/ 2). We also note that the heat from the hot source spreads on one of the side walls only. However, for Ri = 36.38, the new type of 
flow regime is characterized by two non-symmetrical cells, not only with respect to the vertical median axis (x=L/2) but also with 
respect to the horizontal median axis (y= L/2). On the other hand, unlike the case earlier the isotherms propagate along the two 
sidewalls of the cavity. It is also important to point out that when the new type of flow is considered, the behavior of the flow is 
often unpredictable. To illustrate this point, a comparison of the average Nusselt number for Ri=22.35 and 36.38 is showed in Fig. 9. 
We can see that, for Ri = 22.35, the evolution of the mean value of the Nusselt number converges to a fixed value, while for Ri = 
36.38 the evolution of the same number remains so fluctuating that no exact value cannot be practically determined. It should be 
noted also that this instability and complexity of the fluid flow and the heat transfer have been verified and validated 
experimentally by Sukhanovsky, and Evgrafova [56, 57] by examining closely, laminar and transient convective regimes from 
localized heat source inside a silicon oil-filled cylindrical vessel of different diameters at different values of Prandtl number (Pr = 
209, 104, 67, and 38) at T = 25°C. 

 Furthermore, a similar trend is observed when the flow progresses from the new type of flow regime (two non-symmetrical 
cells) to the third type of flow regime (four symmetric cells). Here, too, we noted, from Fig. 10 (a), that the evolution of the average 
Nusselt number at Pr=3.045 for Ri=62.87, characterizing the third type of flow regime (four symmetric cells) develops also 
unpredictable fluctuations which begin to amplify when the time exceeds 900 s. By contrast, for the other Prandtl numbers (Pr=2. 
and Pr=5.534) the fluid flow remains always stable for the same type of flow regime (four symmetric cells). Figure 10(b) has been 
used to visualize this stability at arbitrary values of the Richardson numbers characterizing the same type of flow regime (four 
symmetric cells). It should be noted that the evolution of the average Nusselt number for Pr=2.0 at Ri=35.3, as it is for Pr=5.534 at 
Ri = 25.18, evolves towards a constant value showing a stable development of the fluid flow. 
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Fig. 9. Comparison of the average Nusselt number Nu for Ri=36.38 and, 22.35 at Pr= 3.045  

        

 
                                        (a)                                   (b) 

 
Fig. 10. Comparison of the evolution of the average Nusselt number (a) for Pr= 3.045 at Ri= 62.87; (b) for Pr=2.0, and, 5.534 at Ri=35.3 and, 25.18, 

respectively 
 

Finally, we have briefly summarized in Table 3, the identification of the different types of flow regimes, defined by their 
Richardson numbers (Ri) and the corresponding length of the cavity (L), for the Prandtl numbers (Pr) considered in this study.  

Having set out results of local distributions through temperature fields, and flow fields, in the following section we will 
present results of the heat transfer rate, which is characterized by the Nusselt number. 

4.2 Heat transfer rate 

The heat transferred from the hot source can be measured by the average Nusselt number. The effect of the Richardson 
number on the evolution of the average Nusselt number for the cases of Pr=2.0, 3.045, and 5.534 is shown in Fig. 11. It is to be 
noted that the same values of Ri that characterize the structure of streamlines and isotherms, previously presented, have been 
taken into account to represent the evolution of the average Nusselt number for each type of flow regime. In general, we noted 
that the average Nusselt number, whatever the Prandtl number, exhibits fluctuations at the beginning that are becoming 
increasingly important as the Richardson number increases before stabilizing at a fixed value. Furthermore, the regime with two 
non-symmetrical cells is characterized by a sudden drop in the evolution of the mean Nusselt number. It can be seen also that the 
more Ri increases, whatever the Prandtl number, the more heat is transferred from the heated bottom wall, either along sidewalls 
(the first and the second type of flow regime) or along the central part of the cavity (the third type of flow regime). It means that 
the temperature gradient at the heated bottom wall also increases and consequently the Nusselt number is achieving increased 
significance. On the other hand the computational times for which flows become steady increase as the Richardson and Prandtl 
numbers increase simultaneously and, their approximate values are 600 s, 1000 s, and 5000 s at Pr=2.0, 3.045, 5.534 respectively. In 
other words, the steady-state is reached more quickly when the Prandtl number decreases. It is rightly noted that in the case of Pr 
= 5.545 a computational time of between 2 and 3 days, on an "HP Z820 Workstation", is required for each numerical simulation to 
ensure the stability of the fluid flow when the Richardson number is between 11.35 (L=0.02m) and 18.36 (L=0.03m).  

Table 3. Identification of the different types of flow regimes for the Prandtl numbers considered. 

Flow regime First Type Second type Third type 
 

Pr=2.0 
stable 

  
0.823 ≤ Ri ≤  4.41 
0.004 ≤ L ≤ 0.007 

 
6.58 ≤ Ri ≤ 19.56 

0.008 ≤ L ≤ 0.0115 

 
Ri ≥22.22 
L ≥ 0.012 

 
Pr=3.045 

stable 

 
0.291 ≤ Ri ≤ 6.06 
0.004 ≤ L ≤ 0.011 

 
6.92 ≤ Ri ≤ 22.34 

0.0115 ≤ L ≤  0.017 

 
------------ 

 
Pr=3.045  
unstable 

 
---------------------- 

 
26.52 ≤ Ri ≤ 36.38 
0.018 ≤ L ≤ 0.023 

 
Ri ≥ 48.43 
L ≥ 0.024 

 
Pr=5.534 

stable 

 
0.0597 ≤ Ri ≤ 9.93 
0.004 ≤ L ≤ 0.022 

 
11.35 ≤ Ri ≤ 18.36 
0.023 ≤ L ≤ 0.027 

 
Ri ≥ 20.47 
L ≥ 0.28 
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(a) (b) (c) 

Fig. 11. Time series of the average Nusselt number Nu for different Ri, (a) Pr=2.0, (b) Pr=3.045 and, (c) Pr=5.534 
 

 

Fig. 12. Comparison of the average Nusselt number ( )Nu as a function of the Richardson number (Ri) for the considered values of Prandtl number (Pr) 

Figure 12 demonstrates the comparison of the average Nusselt number as a function of the Richardson number for the three 
Prandtl numbers considered (2.0, 3.045 and, 5.534). It is easily visible that an increase in the value of the Prandtl number (i.e. a 
decrease in the temperature of the heat source) leads to a significant enhancement in the average Nusselt. A fluid with a higher 
Prandtl number has a relatively lower thermal diffusivity (see table 1), which reduces heat conduction and thereby increases the 
temperature gradient at the heated surface and consequently may also significantly increase the average Nusselt number [58]. 
However, a comparison of the average Nusselt number at Pr=2.0 and 5.534, clearly indicates that the transition from the second 
type of flow (two unsymmetrical cells) to the third one (four symmetric cells), is evidenced by a sudden drop in the average 
Nusselt number (second bifurcation). This does not apply to the particular case where Pr=3.045 because we have already seen that 
the solution becomes so unstable that it becomes impossible, starting from Ri=26.52, to obtain reliable fair values for the different 
fundamental unknowns of the problem. 

4.3 Characteristics of entropy generation  

The contours of the total entropy generation (first row), and entropy generation due to fluid friction (second row), for the same 
Richardson numbers previously considered, at the Prandtl numbers of 2.0, 3.045, and 5.534 are presented in Fig. 13 a, b and, c 
respectively. In most of the cases entropy production is more pronounced at the walls and less at the core region of the cavity. 
Moreover, the contours of the total entropy generation occur strongly near the active part (i.e. the heated portion located on the 
bottom of the cavity) and progress rapidly along the sidewalls as the Richardson number increases. This is due to high-
temperature gradients along the vertical direction. Also, this figure depict that the contours of the local entropy generation due to 
fluid friction are found to be significant only near the cold sidewalls and in the corners but becomes negligible at the core of the 
cavity. In this particular case, the cause of the problem can mainly be attributed to the gradients of the vertical velocity 
component. By comparing the temperature contours in Fig. 7, a, b, c (second row) with those of the total entropy generation in Fig. 
13, a ,b ,c (first row), and whatever the values of Richardson and Prandtl numbers, it can be seen that they appear to be 
sufficiently similar in both cases. This means that temperature gradients play an important role in the creation of entropy 
generation. A similar conclusion has been reported very recently (July 2021) by Khetib et al. [59]. 

 
(a) 
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Ri=35.3 Ri=2.78 Ri=12.86 

 

(b) 

   

   

Ri=0.98 Ri=15.35 Ri=62.87 

 

(c) 

   

   

Ri=25.18 Ri=0.2 Ri=11.35 

Fig. 13. Contours of total entropy generation (first row), and entropy generation due to fluid friction (second row), for different Richardson numbers 
(Ri) ) at (a) Pr=2.0, (b) Pr=3.0454 and, (c) Pr=5.534 
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(a) 

 

(b) 

       

(c) 

Fig. 14. Time traces of the average total entropy generation (first row), the average entropy generation due to fluid friction (second row) and the 
average Bejan number (third row), for different Richardson numbers (Ri) ) at (a) Pr=2.0, (b) Pr=3.0454 and, (c) Pr=5.534 

 

     
 

Fig. 15. Comparison of the average entropy generation, the average entropy generation due to fluid friction and, the average Bejan number vs. the 
Richardson number (Ri) for the considered values of Prandtl number (Pr) 

On the other hand, a comparison of the scales of the values of the total entropy generation and that due to the fluid friction 
reveals that, irrespective of the Prandtl and Richardson numbers, entropy generation due to fluid friction is so insignificant that 
we can conclude, in accordance with equation (13) that the average Bejan number is very close to one. Hence, the trend of 
changes in the thermal entropy generation rate is similar to the total entropy generation rate. It was therefore decided, only in 
order to lighten the text, that the contours and, the profile of the average thermal entropy generation and, the contours of the 
Bejan number would not be included in this study. 
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The time traces of the average total entropy generation (first row), the average entropy generation due to fluid friction (second 
row) and, the average Bejan number (third row), for the same Richardson and Prandtl numbers, previously considered, are 
presented in Fig. 14 a, b and c). It should be noted that when the Richardson numbers increase, the total entropy production and 
the entropy generation due to fluid friction decrease while the Bejan number increases. Also, it is noted that the values of the 
average entropy generation due to fluid friction are insignificant in comparison to those of the average global entropy generation 
which implies that the average Bejan number is very close to 1.0.  

Figure 15 shows the average entropy production gens , the average entropy generation due to fluid friction ffs and the average 
Bejan number Be of the system vs. the Richardson numbers, and illustrates the direct influence of the Prandtl numbers considered. 
It should be noted that when these Prandtl numbers increase, the total entropy production and the average entropy generation 
due to fluid friction decrease. The curves describe a similar behavior to that followed by the curves of the average Nusselt 
numbers, the only difference is, in this case, that when the Prandtl numbers increase, the average Nusselt numbers also increase. 

5. Conclusion 

The present numerical investigation examines the mixed convection in a water-filled square cavity partially heated from 
below. The impact of the Richardson and, Prandtl numbers on heat transfer, fluid flow, and entropy generation is analyzed and 
discussed. The obtained results can be synthesized as follow: 

 The flow patterns and thermal field change significantly with the increase in the Richardson and Prandtl numbers. Indeed, 
the obtained results show that, irrespective of the Prandtl number, for low Ri the heat transfer and entropy generation 
patterns are symmetric, whereas with increasing Ri these patterns become asymmetric and more complex. 

 Unstable flows appear for a Richardson number greater than or equal to 26.52 (L=0.18m) at Pr = 3.045.  
 An increase in the Prandtl number, irrespective of the Richardson number, causes an increase in the average Nusselt 

number.  
 For all cases, the entropy production decreases when both the Richardson and Prandtl numbers simultaneously increase.  
 The average Bejan number is always close to one which reveals that the contribution of the thermal irreversibility to the 

total entropy generation is always much more important than the fluid friction irreversibility. 

Author Contributions 

S. Boudebous initiated and planned the project. H. Koten developed and formulated the mathematical model. N. Ferroudj 
developed the code, conducted the numerical experiments, and examined the validation of the result. Both authors contributed 
equally and significantly in writing this paper. All authors analyzed, discussed the results, reviewed and approved the final 
version of the manuscript. 

Acknowledgments 

The authors like to express their thankfulness to the Computational Fluid Dynamics Laboratory of the Mechanical 
Engineering Department, of Istanbul Medeniyet University, Turkey for having provided computer facilities during this work. 

Conflict of Interest  

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article. 

Funding  

The authors received no financial support for the research, authorship, and publication of this article. 

Data Availability Statements 

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable 
request. 

Nomenclature 

Be  
g  
Gr 
k 
l 
L 
Nu 
Pr 
Re 
Ri 
Sgen 
t 
T 
T0 
u,v 
vw 
x, y  

Bejan number  
Gravitational acceleration [ms-2] 
Grashof number (= gΔTL3/2) 
Thermal conductivity [Wm-1 K-1] 
heat source Length [m] 
Length of the square cavity [m] 
Nusselt number 
Prandtl number, (= /) 
Reynolds number, (=vwL/) 
Richardson number, (Gr/Re2) 
Local entropy generation [Wm−3K−1] 
Time [s] 
Absolute temperature [K] 
Bulk temperature (=Th +Tc)/2) [K] 
Velocity components in x, y directions [m s−1] 
Side wall velocity (= Re/L) [m s−1] 
Dimensional Cartesian coordinates [m] 

 
 
  
 
T  

 
μ 
 
 
 
 
 
 
C 
H 
ff 
Th 

Greek Symbols 
 
Thermal diffusivity, [m2 s-1] 
Thermal expansion coefficient, [K-1] 
Temperature difference (=Th -Tc), [K] 
Kinematic viscosity, [m2 s-1] 
Dynamic viscosity, [kg m-1s-1] 
Density, [kg m−3]  
Stream function, [m2.s-1] 
Vorticity, [s-1] 
 
Subscripts 
 
Cold 
Hot 
Fluid friction 
Thermal  
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