Electrochemical and Mechanical Properties of Ni/g-C_3N_4 Nanocomposite Coatings with Enhanced Corrosion Protective Properties: A Case Study for Modeling the Corrosion Resistance by ANN and ANFIS Models

AliReza Zarezadeh, Mohammad Reza Shishesaz, Mehdi Ravanavard, Moslem Ghobadi, Farzaneh Zareipour, Mohammad Mahdavian

Abstract. This work investigates the effect of electrolysis bath parameters on the corrosion, micro-hardness, and wear behavior of Ni coatings. The characterization of synthesized Graphitic carbon nitride (g-C_3N_4) was done by Fourier transform infrared, Raman spectroscopy, and transmission electron microscope. The surface morphology of coated samples with various amounts of current density was studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The corrosion prevention effect of Ni/g-C_3N_4 nanocomposite coatings was investigated by EIS and polarization techniques. The experimental outcome demonstrates that an electrolysis bath of 0.5 g/L g-C_3N_4 and 0.1 A.cm^-2 presents a Ni coating with the highest corrosion protection, wear resistance, and microhardness. The corrosion current densities of Ni/g-C_3N_4 coatings obtained by electrochemical tests were used for training two machine learning techniques (Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)) based on current density, g-C_3N_4 concentration, and plating time as an input. Various statistical criteria showed that the ANFIS model (R^2 = 0.99) could forecast corrosion current density more accurately than ANN with R^2 = 0.91. Finally, due to the robust performance of ANFIS in modeling the corrosion behavior of Ni/g-C_3N_4 nanocomposite coating, the effect of each parameter was studied.

Keywords: Ni nanocomposite coating; Electrolysis parameter; Electrodeposition; g-C_3N_4; Modeling.

1. Introduction

To extend the lifetime of engineering materials that are subjected to corrosion and wear, surface coatings can be used [1]. Coatings operate as a barrier between the environment and the steel surface. To develop a surface coating of bulk materials, various techniques may utilize. Among several coatings processing, the electrodeposition process is known as the most reliable, cost-effective, and practical surface engineering technique [2]. In the last few years, to improve corrosion resistance, wear, and hardness properties nickel has been extensively used for developing metal-matrix composite structures with various nanoparticles [3]. The electrodeposition process can efficiently coat complex shapes and provide uniform coating thickness. During electrodeposition, insoluble particles are suspended in the electroplating solution and stick to the forming deposit making up the second phase particles. Microcracks are reduced, and the coatings’ mechanical behavior is improved when second phase particles are present in the Ni matrix [4].

According to the literature, several studies focused on the Ni electrodeposited composites coating containing SiC [5], AlO_x [6], TiO_2 [7], graphene [8], CeO_2 [9], etc. During the electrodeposition process, the concentration of nanomaterials and electrodeposition parameters (such as deposition duration and current density), significantly affect the electrochemical, physical, microstructure, and mechanical properties of nanocomposite coatings [45-49].

Due to the high nitrogen content of g-C_3N_4 and its layered two-dimensional structure it may have more active reaction sites compared to other N-carbon compounds. Also, due to the nature of the lamellar structure, g- C_3N_4 is frequently well-crystallized, which promotes charge transfer [10]. It has been known for suitable hardness resistance and excellent chemical and thermal stability [13], excellent biocompatibility, biological activity, and corrosion resistance [14]. There are a few reports on the impact of using g- C_3N_4 in the coatings. Fayyad et al. evaluated the impact of C_3N_4 nanoparticles on the electrochemical and mechanical resistance of NiP coatings. First, the optimum value for each electrolysis parameter, as pH, plating time, and surfactant types,
were investigated; then, the optimal concentration of g-C₃N₄ nanoparticles was determined. As a result, they were able to demonstrate that g-C₃N₄ had a remarkable effect on the corrosion behavior and micro-hardness of the NiP electrodeposition coating [13]. Recently, some researchers evaluated the impact of g-C₃N₄ on the tribological and corrosion behavior of epoxy coatings. It was found that using g-C₃N₄ into the mentioned coatings improves the corrosion and mechanical properties [15-18].

Nowadays, many researchers utilize intelligent reasoning systems to achieve significant improvement in products’ quality because of their capability in prioritization, optimization, planning, and forecasting [19]. Application of machine learning tools such as artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) have recently garnered considerable attention because of their vast capabilities and flexibility of use as compared to other traditional modeling methods [20-22]. ANN is a famous mathematical simulator that is inspired by the structure of the human brain. They have been ordered to have a capacity to accomplish like a human, by instructive data and learning activity [23]. It can learn the linear and nonlinear relationship between different variables from a dataset. In addition, this method is able to simulate various processes without the full realization of mathematical equations and can handle complicated engineering problems [24]. ANFIS is a hybrid universal tool that was firstly introduced by Jang in 1993 [38]. The capabilities of fuzzy logic systems were combined with ANN learning abilities in the ANFIS algorithm [25]. ANFIS assisted in modeling the experimental datasets by converting logical statements to mathematical relations [26]. Base on the learning ability, ANFIS produces a group of rules due to the relation of input-output pairs in a dataset and specifies the best membership functions [24].

ANN was used by Youjun Xu et al. to model the corrosion resistance of Ni–SiC composite coatings produced by ultrasonic electrodiposition and found that constructed model can forecast the corrosion behavior of composite coatings [27]. Hongyu Gan et al. evaluated the ability of three ANN models to simulate the current efficiency and glossiness of silver film which was applied by electrodiposition technique. The results displayed that, when there are enough samples, an extreme learning machine (ELM) is a great choice because it can produce higher accuracy and move faster than conventional ANN models [28]. Xinchen Zhuang et al. utilized several ANN models to forecast the wear properties of Ni-TiN coatings applied by pulse electrodiposition. The outcomes indicated that the application of the ANN model is a promising approach to study the wear behavior of Ni–TiN nanocomposite coatings [29].

In the present article, Ni/g-C₃N₄ nanocomposite coating was applied on the low carbon steel substrate, and the corrosion properties, wear resistance, and microhardness was evaluated according to the value of current density and g-C₃N₄ content. Raman, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) was employed to investigate the characterization of the g-C₃N₄ nanoparticles. Characterization of nanocomposite coatings was implemented based on surface morphology using scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS). The corrosion properties examination was done by polarization test and electrochemical impedance spectroscopy (EIS) technique. Moreover, the comparison between pure Ni coating and composite coatings with different amounts of g-C₃N₄ in the microhardness, friction, and wear behavior were comparatively studied. Finally, based on the experimental results, two machine learning tools (ANN and ANFIS methods) were developed to model the effective electrodipositioning variables, including current density, g-C₃N₄ particles content, and plating time on the corrosion behavior of the coatings.

2. Materials and Methods

2.1 Materials

NiCl₂·6H₂O (≥ 99%), NiSO₄·6H₂O (99%), and melamine (C₃H₆N₆, 99%) which was used as a precursor of g-C₃N₄ were provided from Merck without further purification. Polyvinylpyrrolidone (PVP), HCl (10%), and acetone were procured from Aldrich Co. The low carbon steel panels (98.3% Fe, 0.14% C, 0.9% Mn, 0.035% P, 0.04% S, 0.4% Si and 0.2% Cu) used as substrates were prepared from Mobarakhe steel Co. (Iran).

2.2 Preparation of Ni/g-C₃N₄ composites

Graphitic carbon nitride (g-C₃N₄) was synthesized, as reported previously [30, 31]. After heating 15 g of melamine to 550°C for 240 minutes (at a rate of 20 °C/min), g-C₃N₄ nanosheets powder with the fine yellowish apparent was achieved after cooling to room temperature. The direct current electrodiposition process was selected to prepare Ni/g-C₃N₄ nanocomposite coatings. The substrate was polished with 120, 220, 320, 400, 600, 800, 1000, and 1200 grit emery papers, then ultrasonically degreasing in acetone for 10 min and finally etched in HCl for 30 s. Afterward, distilled water was used to wash the substrate surface and immediately immersed in the electrolyte bath solution. In this study, to find the optimum current density, a Ni/g-C₃N₄ electrodiposition bath with a specified amount of g-C₃N₄ concentration (0.5 g/L) was performed at various current densities (0.02, 0.05, 0.1, and 0.2 A/cm²). The steel substrate as cathode and Ni plate as anode vertically were placed in a 250 ml bath. In order to obtain a smoother and more homogeneous coating, PVP has been added to the solution as a surfactant.

The bath compositions and electrodiposition conditions are mentioned in Table 1. To avoid agglomerated, the bath containing g-C₃N₄ was stirred by magnetic stirrer under 400 rpm for 1 h; then solution bath was ultra-sonicated for a duration of 1 h to disperse nanoparticles uniformly (1 W/ml at 24 kHz). During the plating process, a magnetic stirrer was also employed at 400 rpm. After finding the best suitable current density, different electrodiposition solutions with various concentrations of g-C₃N₄ (0.3, 0.9, and 1.8 g/L) were prepared to construct Ni/g-C₃N₄ nanocomposite coating with optimum conditions.

2.3 Characterization

Raman spectroscopy and FT-IR analysis were used for the characterization of g-C₃N₄ nanosheets. Raman spectra of g-C₃N₄ nanosheets were determined employing a confocal Raman (Horiba Xplora plus, France) (532 nm for wavelength incident laser light). The FT-IR analysis was carried out by Perkin Elmer FTIR Spectrum One within the wavenumber range of 500–4000 cm⁻¹. The morphological attributes of g-C₃N₄ nanosheets were identified by transmission electron microscopy (TEM, JEM-2100; Jeol; Japan). To evaluate the surface morphology and elemental analysis of the Ni/g-C₃N₄ coatings, FE-SEM, EDX, and elemental mapping of the coated samples were done by an instrument model MIRA3 TESCAN. In order to investigate the crystal structure and phase analysis of the deposited coatings an X-ray diffraction XRD instrument (model Philips Xpert MPD X-ray diffraction) was utilized. The start and end angles for continuous scanning were 10° and 80°, respectively.

<table>
<thead>
<tr>
<th>Compositions</th>
<th>Value (g/L)</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NISO₄·6H₂O</td>
<td>220</td>
<td>Time (min)</td>
<td>45</td>
</tr>
<tr>
<td>NiCl₂·6H₂O</td>
<td>40</td>
<td>pH</td>
<td>4</td>
</tr>
<tr>
<td>PVP</td>
<td>0.05</td>
<td>Temperature (°C)</td>
<td>60</td>
</tr>
<tr>
<td>Stirring rate (rpm)</td>
<td>400</td>
<td>Electrode distance (mm)</td>
<td>30</td>
</tr>
</tbody>
</table>
2.4 Electrochemical corrosion studies

The potentiodynamic polarization (Tafel analysis) and electrochemical impedance spectroscopy (EIS) techniques were adopted to evaluate the corrosion resistance of the coatings. The electrochemical tests were performed via IVIUM potentiostat-galvanostat device utilizing a flat electrochemical cell containing three entrances for a conventional three-electrode assembly where the coatings material, saturated calomel electrode (SCE), and pure Pt rod were employed as the working, reference, and counter electrodes, respectively. The tests were done in a 3.5 wt% NaCl solution and ambient temperature. The electrochemical measurement tests were arranged in a non-stirred state while the exposed area of all materials was fixed to 1 cm². The frequency ranges from 100 kHz to 10 mHz with imposed AC amplitude of 10 mV was utilized for EIS experiments. In this test, the extraction process of the EIS data was always initiated after the OCP became stable. For Tafel analysis, the opted potential range was from -1.2V to +0.8V with 1 mV/s scanning rate considering OCP, which was applied to procure the cathodic and anodic curves. To warrant the reproducibility of the extracted data and provide a precise indication of the corrosion rate, whole experiments were conducted at least three times. Zview3.1 software was employed to fit the EIS results.

2.5 Wear test

Wear resistance for samples with different g-C₃N₄ concentration were evaluated by pin-on-disc tribometer under dry condition and 25 °C. For this purpose, AISI S2100-5 mm diameter pin and average hardness of 46 HRC was utilized. Rotation speed was fixed at 60 rpm, applied load was set at 5 N, and sliding distance was 200 m during the test. After the wear tests, SEM was used to study the worn surface morphology. All samples were weighed before and after the wear test when the wear debris was removed.

2.6 The microhardness measurements

The microhardness of Ni/g-C₃N₄ nanocomposite coating was obtained by Vickers microhardness tester. The load of 200 g was inserted on the composite coatings surface for 10 seconds. The average value of 3 separate locations on each coating surface was reported.

2.7 Machine learning approaches

The influence of electrolysis bath parameters on the corrosion behavior of Ni/g-C₃N₄ nanocomposite coatings was evaluated utilizing two machine learning methods. A schematic configuration to simulate the corrosion resistance of Ni/g-C₃N₄ nanocomposite coatings based on experimental analysis was presented in Fig. 1. Based on experimental datasets, the electrolysis bath parameters were set as inputs, and the corrosion current densities were selected as the output. Afterward, two models were trained, and the accuracy of each model was examined through various error criteria. Finally, the most suitable and accurate model was proposed for modeling the corrosion current density of Ni/g-C₃N₄ nanocomposite coatings. The accuracy of constructed models was measured by several statistical errors, like MAE which was calculated according to Eq. (1):

\[
\text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |t - O|
\]

and for calculating the mean-square error (MSE) we can use the following relation:

\[
\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (t - O)^2
\]

In these equations, t is experiment data, n is the number of data for training, and O is predicted data. Also, the coefficient of determination (R²) was calculated according to Eq. (3):

\[
R^2 = 1 - \frac{\sum_{i=1}^{N} (t - O)^2}{\sum_{i=1}^{N} (t - m)^2}
\]

where, m represents the average of the test dataset values. If a model resulted in a lower value of MAE and RMSE, so the model has a suitable accuracy. For the case of R² value, the model which results closer to unity represents a better ability for modeling [32].
2.7.1 ANN modeling

ANN is known as a computational approach that includes various biological neural structures. In this computational method, the appropriate relationships among input and output variables can be achieved without any prerequisite. The three-layer fundamental structure of a neural network comprises an input, hidden, and output layers [33]. According to the dataset, current density, g-C3N4 content, and plating time were set as the inputs for each model. The structure of ANN modeling employed in this study was shown in Fig. 2. Each layer contains the basic factor neurons, which are processing factors. The neuron calculates the weight of each input with a special weight index (w) which is received from the signal of an output. The total weights of the inputs show the bias (b) and the transfer function f (\sum w_i x_i). Thus, the neurons in different layers are connected together. Finally, nonlinear mapping has been connected the input layer to the output layer. A transfer function or activation function turns the signal data that moves between each neuron. One of the crucial parts in the accuracy of the constructed model is the arrangement of hidden layers. In the hidden layer, the learning process take place and also the quantity of each independent parameters were received [34].

The performance and convergence of the ANN model are highly affected by the number of hidden layers and neurons in each hidden layer. Even though, for a small dataset, usually, a single hidden layer resulted in more accuracy and convergence in comparison with two hidden layers. However, these two elements have an important effect on the efficiency of an ANN model. It was preferred to search for the best ANN architecture, such as a model with an optimizing training algorithm and the number of neurons in each hidden layer [35]. Thus, we seek to produce an appropriate structure with one hidden layer for the ANN model. To find a suitable number of neurons, various topological research has been done. The results represent that number of hidden layers is changeable, and the best structure has the least error. For training, the Levenberg-Marquardt back propagation (LMBP) algorithm was employed. LMBP has been widely used in prior research and is well-known for its speed, processing power, reliability, and simplicity [22]. Therefore, for changing the number of neurons LMBP training algorithm was utilized. Hyperbolic tangent sigmoid and Purlin were used as transfer functions for hidden layer and output layer in the ANN modeling. Several studies showed that fewer neurons had resulted in under fitting, and more neurons could result in over fitting, so that trial and error is required to extend the trustable structure for ANN [36]. In this study, ANN was computed with the ANN toolbox in MATLAB software.

2.7.2 ANFIS modeling

Constructing the network structure or Takagi-Sugeno fuzzy inference system has been done by “if-then” rules of the ANFIS model [37]. As presented in Fig. 3, the structure of the ANFIS model comprises of five layers. The input membership functions (MFs) in the first layer transport the inputs to a fuzzy set. Then, in the second layer fixed nodes are used to measure the firing strength. The firing strength is a quantity to which a fuzzy rule’s antecedent part is fulfilled and determined by an AND or OR operation, and it shapes the output function for the rule. After that, in the third layer, firing strength values are done by the normalization process. To determine the impact of the output to the total output in the next layer, the parameter set is multiplied by the output of the prior layer. The summation of each input’s signal is determined in the fifth layer.

Grid partition (GP) is known as one of the methods for producing the ANFIS structure from available data. It has been reported that as the number of inputs increase, the number of fuzzy rules grows exponentially. Also, a GP technique is only appropriate for a dataset which consist of less than six inputs parameters [39, 40]. In this study, we selected ANFIS-GP, in which different types of MF for each input parameter and linear type of MF for output were used to optimize the fuzzy model.
3. Results and Discussion

3.1 Characterization of g-C₃N₄ nanosheets

The g-C₃N₄ nanosheets were characterized by FTIR (Fig. 4a). A broad peak located at 3162 cm⁻¹ was associated with the stretching vibration of N–H bonds [41]. Also, a series of peaks at 1638, 1560, 1407, 1319, and 1239 cm⁻¹ can be referred to as the stretching vibration of C–N or C=N in the CN heterocycles of g-C₃N₄, heptazine structures [42]. It was clear that the absorption at 810 cm⁻¹ is indicative of out-of-plane bending modes of the rings [43]. Raman spectrum of the g-C₃N₄ nanosheets is provided in Fig. 4b. It was revealed that there are two peaks observed at 1233 cm⁻¹ and 1483 cm⁻¹. These peaks may relate to some disorder or defects in the g-C₃N₄ structure [59, 60]. What is more, the strong peaks raised at 702 cm⁻¹ may represent the g-C₃N₄ structure or be attributed to the bending vibrations of melamine, according to [61]. Moreover, the Raman spectrum showed several strong, distinctive peaks of g-C₃N₄, detected at 88.3, 476 and related to heptazine rings in melamine units [44, 62]. TEM image of g-C₃N₄ reported in Fig. 4c reveals an irregular shape for g-C₃N₄ nanosheets.

3.2 Effect of current density

Fig. 5 illustrates the morphologies of Ni/g-C₃N₄ coatings which are applied at various current densities. The presence of pinholes and pits on the Ni coatings surfaces might be related to the reduction of hydrogen ions and/or the impurities in the solution reported previously [52]. At lower current density (e.g., 0.02 and 0.05 A.cm⁻²), a uniform deposition was obtained, leading to ‘defects’ reduction in the coatings (Fig. 5e & f). At 0.2 A.cm⁻², some cracks were observed, as shown in Fig. 5g-l. Thus, the current density of 0.1 A.cm⁻² was chosen as the optimum current density for the electrodeposition of Ni/g-C₃N₄ nanocomposite coatings, according to better surface morphology.

Table 2. Percentage of element EDS analysis of Ni/g-C₃N₄ nanocomposite coatings at various current densities and 0.5 g/L of g-C₃N₄.

<table>
<thead>
<tr>
<th>Ni/g-C₃N₄</th>
<th>Ni/g-C₃N₄</th>
<th>Ni/g-C₃N₄</th>
<th>Ni/g-C₃N₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ 0.02 A.cm⁻²</td>
<td>@ 0.05 A.cm⁻²</td>
<td>@ 0.1 A.cm⁻²</td>
<td>@ 0.2 A.cm⁻²</td>
</tr>
<tr>
<td>Ni (%w)</td>
<td>92.81</td>
<td>95.09</td>
<td>94.24</td>
</tr>
<tr>
<td>C (%w)</td>
<td>4.29</td>
<td>4.46</td>
<td>3.99</td>
</tr>
<tr>
<td>N (%w)</td>
<td>2.90</td>
<td>2.46</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Table 3. Electrochemical parameters of the Ni/g-C₃N₄ nanocoatings with different current densities derived from polarization curves shown in Figure 6.

<table>
<thead>
<tr>
<th>Current density (A.cm⁻²)</th>
<th>Ecorr (mV vs SCE)</th>
<th>icorr (mA.cm⁻²)</th>
<th>b (mV.decade⁻¹)</th>
<th>b (mV.decade⁻¹)</th>
<th>Rct (Ω.cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>-374.0± 35</td>
<td>8.4± 0.8</td>
<td>26 ± 10</td>
<td>127± 30</td>
<td>1118± 328</td>
</tr>
<tr>
<td>0.05</td>
<td>-203.7± 7</td>
<td>5.4± 0.5</td>
<td>53± 10</td>
<td>122± 20</td>
<td>2976± 209</td>
</tr>
<tr>
<td>0.1</td>
<td>-125.5± 8</td>
<td>2.5± 0.2</td>
<td>35± 10</td>
<td>94± 10</td>
<td>4535± 187</td>
</tr>
<tr>
<td>0.2</td>
<td>-244.4± 11</td>
<td>3.6± 0.4</td>
<td>49± 10</td>
<td>61± 10</td>
<td>3277± 268</td>
</tr>
</tbody>
</table>
EIS was applied to assess the impact of current density on the corrosion resistance of Ni/g-C3N4 coatings. Fig. 7 illustrates Nyquist and typical Bode diagrams of Ni/g-C3N4 coatings at different current densities. The results revealed that at 0.1 A.cm$^{-2}$ current density, the highest impedance was achieved, which is in agreement with the polarization results.
Electrochemical and Mechanical Properties of Ni/g-C₃N₄ Nanocomposite Coatings

Fig. 6. Polarization curves for the Ni/g-C₃N₄ coatings with different current densities and 0.5 g/L of g-C₃N₄ in a 3.5 wt% NaCl solution at room temperature.

Fig. 7. The Nyquist, corresponding Bode and phase angle plots of the electrolysis Ni/g-C₃N₄ coatings with different current density and 0.5 g. L⁻¹ of g-C₃N₄ in a 3.5 wt% NaCl solution at room temperature.
Table 4. Electrochemical parameters obtained by fitting the measured EIS data (Figure 7) for the deposited Ni/g-C\textsubscript{3}N\textsubscript{4} coatings with current density in a 3.5 wt\% NaCl solution at room temperature.

<table>
<thead>
<tr>
<th>Current density (A/cm2)</th>
<th>Rs (\Omega/cm2)</th>
<th>Y\textsubscript{0} (\mu\Omega2.cm2.s4)</th>
<th>n</th>
<th>Rp (\Omega/cm2)</th>
<th>Y\textsubscript{0} (\mu\Omega2.cm2.s4)</th>
<th>n</th>
<th>Z-module (\Omega.cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>6.9a 0.2</td>
<td>376a 38.2</td>
<td>0.73a 0.02</td>
<td>19.2a 9.6</td>
<td>2913a 153</td>
<td>0.61a 0.02</td>
<td>509.1a 75.5</td>
</tr>
<tr>
<td>0.05</td>
<td>10.3a 0.3</td>
<td>51.6a 11.4</td>
<td>0.91a 0.01</td>
<td>103a 16.3</td>
<td>1092a 128</td>
<td>0.32a 0.01</td>
<td>1090a 59.7</td>
</tr>
<tr>
<td>0.1</td>
<td>6.9a 0.2</td>
<td>629a 62.7</td>
<td>0.67a 0.02</td>
<td>175.2a 22.5</td>
<td>1747a 112</td>
<td>0.61a 0.02</td>
<td>1291a 42.7</td>
</tr>
<tr>
<td>0.2</td>
<td>8.1a 0.2</td>
<td>200a 35.9</td>
<td>0.77a 0.02</td>
<td>94.4a 18.3</td>
<td>1289a 134</td>
<td>0.52a 0.02</td>
<td>1059a 77.2</td>
</tr>
</tbody>
</table>

To interpret the impedance diagrams in more detail, the equivalent circuit depicted in Fig. 8 has been used. In this circuit, Rs indicates the solution resistance, Rs for the charge transfer resistance, Rs for the film resistance. CPE\textsubscript{a} and CPE\textsubscript{b} are related to the double layer and film constant phase elements, respectively. Constant phase element (CPE) was utilized as a substitute of C\textsubscript{dl} and C\textsubscript{f} respectively. Table 4 gives the values of electrochemical parameters obtained from impedance spectra. The increase in current density from 0.02 to 0.1 led to an increase in Rs. The highest Rs was observed at 0.1 A.cm2, which is in agreement with polarization test results. The highest coating integrity determined at 0.1 A.cm2 might be the reason for its superior corrosion resistance. Moreover, in the case of Rs values, one can deduce that the sample with 0.1 A.cm2 provided the highest degree of protection in comparison with the rest of the samples.

3.3 Effect of g-C\textsubscript{3}N\textsubscript{4} content and plating Time

In this section, the influence of various g-C\textsubscript{3}N\textsubscript{4} content (0.3, 0.9, and 1.8 g/L) in the electrolysis bath of Ni/g-C\textsubscript{3}N\textsubscript{4} coating prepared at 0.1 A.cm2 was studied. Fig. 8 presents the polarization plots of Ni and Ni/g-C\textsubscript{3}N\textsubscript{4} coatings with various g-C\textsubscript{3}N\textsubscript{4} content. The electrochemical variables derived from the coatings’ polarization plots are reported in Table 5. Obviously, the presence of g-C\textsubscript{3}N\textsubscript{4} shifted the E\textsubscript{corr} to more positive values, resulting in a change of the icorr to 1.10 μA.cm2 for 0.3 g/L g-C\textsubscript{3}N\textsubscript{4}. It has been understood that, in comparison to composite coatings with lower g-C\textsubscript{3}N\textsubscript{4} concentrations, an increase in the icorr value and more negative value of E\textsubscript{corr} was achieved by increasing the g-C\textsubscript{3}N\textsubscript{4} content.

Fig. 9 displays the Nyquist, phase angle, and Bode diagrams of the electrolysis Ni/g-C\textsubscript{3}N\textsubscript{4} coatings with different g-C\textsubscript{3}N\textsubscript{4} concentrations at 0.1 A/cm2 current density. Changing the amount of g-C\textsubscript{3}N\textsubscript{4} in the electrolysis bath affected the EIS results. As depicted in Fig. 9, when 0.3 g/L g-C\textsubscript{3}N\textsubscript{4} was used in the Ni/g-C\textsubscript{3}N\textsubscript{4} coating, the spectra showed only one relaxation time, while for the rest of the samples, two relaxation times were observed. Detection of only one-relaxation time in the case of 0.3 g/L g-C\textsubscript{3}N\textsubscript{4} might be originated from its highest integrity leading to the occurrence of corrosion only at the Ni surface. The rest of the samples have defects in the Ni deposited film, which lead to the occurrence of corrosion at the defect areas as Ni is more noble than Fe. Table 6 displays the values of electrochemical parameters derived from impedance spectra.

Fig. 8. Tafel polarization curves for the Ni and Ni/g-C\textsubscript{3}N\textsubscript{4} coatings with different g-C\textsubscript{3}N\textsubscript{4} concentration and 0.1 A/cm2 current density in a 3.5 wt% NaCl solution at room temperature.
Electrochemical and Mechanical Properties of Ni/g-C₃N₄ Nanocomposite Coatings

Fig. 9. The Nyquist, corresponding Bode and phase angle plots of the Ni/g-C₃N₄ coatings with different g-C₃N₄ concentration and 0.1 A/cm² current density in a 3.5 wt% NaCl solution at room temperature.

The highest charge transfer resistance was obtained in the presence of 0.3 g/L g-C₃N₄, which implies the best protection of this electrodeposited coating. By increase in extend of g-C₃N₄, R_{ct} showed a decrease which can be originated from the formation of more defects in the coating.

Moreover, the influence of plating time was investigated utilizing a polarization test. The values of current density and g-C₃N₄ concentration were set at 0.1 A/cm² and 0.3 g/L. The polarization curves and corresponding electrochemical parameters for Ni/g-C₃N₄ coating at various plating times were illustrated in Supporting Information (Fig. S1 & Table S1). The results revealed that at 45 min, higher corrosion resistance was obtained as compared to other plating time values.

The XRD pattern for pure Ni coating and Ni/g-C₃N₄ coating with 0.3 g/L of g-C₃N₄ and 0.1 A/cm² were shown in Fig. 10. As demonstrated all characteristic peaks of nickel crystallographic planes (111), (200), (220) are recognized. In the XRD pattern of Ni/g-C₃N₄ coating a relatively weak diffraction peak (002) can be observed at 27.8°, is corresponding to the graphite-like stacking of conjugated aromatic segments [26]. By apply the Scherrer’s equation, the grain sizes in the coating structure are calculated [1]. The crystallite size for (111), (200) and (220) characteristic peaks were calculated and are reported in Table 7. It can be observed that in the Ni/g-C₃N₄ coating the intensity of the Ni (111) diffraction peak is reduced, the relative intensity of (200) and (220) crystallographic planes increases which can be indicative of preferential growth on the latter crystalline planes. Peak broadening happens in all three planes, which is believed to be an indication of grain refinement during the coatings growth. During the incorporation of reinforcing g-C₃N₄ nanosheets in the coating structure, the number of nucleation sites for nickel increases and the crystal growth is retarded [13, 16].

Table 6. Electrochemical parameters obtained by fitting the measured EIS data (Figure 9) for the deposited Ni/g-C₃N₄ coatings with different g-C₃N₄ concentration in a 3.5 wt% NaCl solution at room temperature.

<table>
<thead>
<tr>
<th>Con. (g/L)</th>
<th>R<sub>s</sub> (Ω.cm<sup>2</sup>)</th>
<th>Y<sub>0</sub> (μΩ<sup>−1</sup>.cm<sup>2</sup>.s<sup>n</sup>)</th>
<th>n</th>
<th>R<sub>f</sub> (Ω.cm<sup>2</sup>)</th>
<th>CPE<sub>f</sub></th>
<th>R<sub>ct</sub> (Ω.cm<sup>2</sup>)</th>
<th>Z-module (Ω.cm<sup>2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-0</td>
<td>7.8±0.3</td>
<td>1793±195</td>
<td>0.49±0.01</td>
<td>78.74±28.6</td>
<td>355.1±86.1</td>
<td>0.93±0.02</td>
<td>428±95.5</td>
</tr>
<tr>
<td>Ni-0.3</td>
<td>7.9±0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>59±45.5</td>
<td>0.69±0.01</td>
<td>2117±33.8</td>
</tr>
<tr>
<td>Ni-0.9</td>
<td>7.9±0.3</td>
<td>184±25.6</td>
<td>0.78±0.01</td>
<td>300±22.4</td>
<td>1312±132.6</td>
<td>0.47±0.01</td>
<td>1734±81.7</td>
</tr>
<tr>
<td>Ni-1.8</td>
<td>8.8±0.2</td>
<td>152±48.2</td>
<td>0.77±0.02</td>
<td>286.8±11.5</td>
<td>2018.1±216.9</td>
<td>0.43±0.01</td>
<td>1300±102.2</td>
</tr>
</tbody>
</table>
Table 7. XRD analysis results for pure Ni and Ni/g-C$_3$N$_4$ coating samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Plane</th>
<th>Peak position, 2θ (degrees)</th>
<th>Peak broadening</th>
<th>Crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Ni Coating</td>
<td>(111)</td>
<td>45.1</td>
<td>0.51</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>(200)</td>
<td>52.5</td>
<td>0.70</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>(220)</td>
<td>76.9</td>
<td>0.76</td>
<td>13.3</td>
</tr>
<tr>
<td>Ni/g-C$_3$N$_4$</td>
<td>(001)</td>
<td>45.2</td>
<td>0.63</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>(002)</td>
<td>52.6</td>
<td>0.89</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>(220)</td>
<td>77.2</td>
<td>1.04</td>
<td>9.8</td>
</tr>
</tbody>
</table>

3.4 Microhardness

The microhardness of the Ni/g-C$_3$N$_4$ coatings at different concentrations of g-C$_3$N$_4$ nanosheets in the deposited coatings is presented in Fig. 11. As can be seen clearly, the microhardness increased with the presence of g-C$_3$N$_4$ in the bath. Although all the Ni/g-C$_3$N$_4$ nanocomposite coatings showed better results compared to the purely Ni coating, the higher loading levels depicted a negative effect on the microhardness. The microhardness of the electrodeposited nickel with 0.3 g/L of g-C$_3$N$_4$ showed a maximum value of 743.6 HV that could be related to the stronger bonding strength between the Ni matrix and the dispersed g-C$_3$N$_4$. Beyond 3 g/L of g-C$_3$N$_4$, the microhardness was approximately constant. It has been reported that the hardness behavior of Ni composite coatings is influenced by several factors such as; grain size, the distribution and amount of reinforcement (e. g. g-C$_3$N$_4$), chemical composition of the Ni, and microstructure variation caused by the nanoparticles’ inclusion [47, 48]. The nano g-C$_3$N$_4$ acts as an obstacle versus dislocation movement while the Ni matrix gains the load. According to the above discussion, it can be concluded that Ni/g-C$_3$N$_4$ with 0.3 g/L of g-C$_3$N$_4$ possess the most compact structure, and the grain refinement that influenced the nucleation of small grains around the hard particles also obstruct the dislocation movement, which can lead to raising the microhardness of the nanocomposite coating (Hall−Petch relation) [53].

Fig. 10. XRD pattern for pure Ni coating and Ni/g-C$_3$N$_4$ coating with 0.3 g/L of g-C$_3$N$_4$ and 0.1 A/cm2.

Fig. 11. The microhardness of the Ni/g-C$_3$N$_4$ coatings for different content of g-C$_3$N$_4$, deposited at 0.1 A/cm2.
Electrochemical and Mechanical Properties of Ni/g-C3N4 Nanocomposite Coatings

Fig. 12. The COF vs. sliding distance for Ni/g-C3N4 coatings at different content of g-C3N4 deposited at 0.1 A/cm².

Fig. 13. SEM micrographs of the worn surface of Ni/g-C3N4 coatings at different content of g-C3N4 (a) pure Ni, (b) Ni-0.3 g/L and (c) Ni-0.9 g/L deposited at 0.1 A/cm² after wear test and their corresponding high magnification images (d, e and f, respectively).

3.5 Wear resistance

In Fig. 12, the coefficient of friction (COF) vs. sliding distance of all electrodeposited Ni/g-C3N4 coatings at different content of g-C3N4s demonstrated. As shown, COF started with a low value, and after that, there was sudden incensement due to the generation of wear particles. However, a stable friction behavior was observed from 20 to 120 m. At a greater distance, there was a reduction in COF owing to softening the coating surface. The COF curve of the coatings steadily augmented to a specific value, and it remained at this certain value of friction coefficient after sliding for 200 m. It is observed that all Ni/g-C3N4 coatings had less friction coefficient than pure nickel coatings and the sample with 0.3 g/L g-C3N4 showed the COF of 0.83, which was the lowest value compared to other coated samples. The average coefficient of friction of other samples with 0.9 and 1.8 g/L g-C3N4 was 0.84, 0.89, respectively.

While the surface of Ni/g-C3N4 was eliminated during the sliding process, the existence of g-C3N4 caused a reduction in shear stress which reduced the COF value. Due to the reduction of COF, the Ni/g-C3N4 coatings displayed lower surface roughness and fewer cracks [54]. It can be observed from Fig. 12 that the highest COF value belonged to the pure Ni coating with 0.89 average COF, which could lead to increased surface roughness and influence the wear losses and cause larger wear grooves. Moreover, the weight loss data for Ni nanocomposite coatings after the wear test were reported in Fig. 12. The lowest weight loss for 0.3 g/L g-
C_3N_4 represents the higher wear behavior of this sample. Fig. 13 shows the SEM worn morphologies of Ni/$\text{g-C}_3\text{N}_4$ coatings and pure Ni after the wear test. The wear surface morphologies of the pure Ni coating revealed huge grooves on the worn surfaces, whereas the Ni/$\text{g-C}_3\text{N}_4$ coating with 0.3 g/L g-C_3N_4 showed only a few small pits, explaining and approving the coating’s highest wear resistance.

Moreover, the cross-sectional SEM morphologies of Ni/$\text{g-C}_3\text{N}_4$ nanocomposite coating prepared at 0.3 g/L g-C_3N_4, 0.1 A/cm2 current density and 45 min plating time was shown in Fig. 14. It can be seen that the average thickness of the coating is about 39.97 μm. It is apparent that the coatings show a compact structure and a suitable adhesion between the coating and substrate has been observed.

3.6 Modeling Results

As mentioned in modeling details, the purpose is to provide an optimized model for corrosion behavior of Ni/$\text{g-C}_3\text{N}_4$ coatings. As demonstrated in Fig. 15, the change of neurons in the hidden layer from 2 to 10 resulted in variation of ANN model performance. Variation of R^2 was observed by changing the neurons in the hidden layer from 2 to 10. Four neurons’ hidden layer architecture was used as it led to the highest R^2 values resulting in the most trustable results.

![Cross-sectional SEM morphologies of Ni/$\text{g-C}_3\text{N}_4$ nanocomposite coating prepared at 0.3 g/L g-C_3N_4, 0.1 A/cm2 current density and 45 min plating time.](image)

Fig. 14. Cross-sectional SEM morphologies of Ni/$\text{g-C}_3\text{N}_4$ nanocomposite coating prepared at 0.3 g/L g-C_3N_4, 0.1 A/cm2 current density and 45 min plating time.

![Variation of R^2 for ANN model with different number of neurons from 2 to 10 in the hidden layer.](image)

Fig. 15. The variation of R^2 for ANN model with different number of neurons from 2 to 10 in the hidden layer.
and \(h \) are the average value for different types of MFs were adjusted. It was observed that GBellmf had the lowest error value. Therefore, it was selected as the optimum MF of this model. Table 9 depicts the variation for all models.

10. In this equation, \(t \) is higher compared with the ANN model. Moreover, other statistical criteria were presented to the models to compare the performance. Where \(R^2 \) is the slope of the regression line is obtained output \((h) \) against anticipated output \((t) \) and \(k \) is the anticipated output versus obtained output \((t \text{ Vs. } h) \) [56]. As presented in this table, other useful parameters, such as \(m, n, \) and \(R_a \) were calculated for the models [57, 58]. The results demonstrated both machine learning models, could satisfy the mentioned standard condition for each criterion. However, the performance of the ANFIS model performed significantly better compared to the ANN model. Therefore, the ANFIS is the most accurate model to predict the corrosion behavior of Ni/g-C3N4 coatings.

![Fig. 16. The correlation of the observed and predicted corrosion current density of Ni/g-C3N4 nanocomposite coatings obtained by the models: (a) ANFIS and (b) ANN. The dash line shows fitted line to the modeling result and solid lines represents the line with a slope of one.](image-url)

<table>
<thead>
<tr>
<th>ANFIS-models</th>
<th>Membership function name</th>
<th>Symbol</th>
<th>MSE</th>
<th>MAE</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS-GP1</td>
<td>Triangular-shaped</td>
<td>Trimf</td>
<td>0.0045392</td>
<td>0.042794</td>
<td>0.999319</td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>Trapezoidal-shaped</td>
<td>Trapmf</td>
<td>0.1972406</td>
<td>0.217367</td>
<td>0.970417</td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>Generalized bell-shaped</td>
<td>Gbellmf</td>
<td>0.0001676</td>
<td>0.007020</td>
<td>0.99974</td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>Gaussian curve</td>
<td>Gaussmf</td>
<td>0.0067303</td>
<td>0.04366</td>
<td>0.998990</td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>Gaussian combination</td>
<td>Gauss2mf</td>
<td>0.0004915</td>
<td>0.012861</td>
<td>0.99926</td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>Difference between two sigmoidal</td>
<td>Dsigmf</td>
<td>0.0004924</td>
<td>0.012872</td>
<td>0.99926</td>
</tr>
</tbody>
</table>

Accordingly, for further optimization of the training phase, a single hidden layer that consists of four neurons and the mentioned transfer functions were used. For this, seven various ANN structures were administrated to get the suitable training algorithm for the prediction of the corrosion current densities of Ni/g-C3N4 coatings. In order to construct the optimal ANN model, the MSE, MAE, and \(R^2 \) values of the built models were compared (Table 8).

The ANN-4 model has been chosen since it has the lowest MAE, MSE (0.554, 0.580), and a higher coefficient of determination than that of the other models (0.91). For the case of the ANFIS model, to obtain the optimum type of MF with the least error, six types of MFs were adjusted. It was observed that Gbellmf had the lowest error value. Therefore, it was selected as the optimum MF of this model. Table 9 depicts the variation for all models.

The reliability of constructed models was examined to value the precision of each model. As discussed above, the best ANN structure was chosen, with four neurons in a single hidden layer. The LM presented a better performance for the purpose of the constructed ANFIS structure for predict the corrosion current density of Ni/g-C3N4 nanocomposite coatings. In addition, the amount of data points around the Y=X line displays that the anticipation of the experimental data is achieved with higher accuracy. The points near the regression line proved the efficiency of the developed model. Generally, the accumulation of data points around the Y=X line displays that the predictive potential of ANFIS model is higher compared with the ANN model.

To validate the constructed machine learning models, several parameters were utilized to evaluate the ability of each model. The correlation of the observed and predicted corrosion current density achieved by ANN and ANFIS models. Generally, the accumulation of data points around the Y=X line displays that the anticipation of the experimental data is achieved with higher accuracy. The points near the regression line proved the efficiency of the developed model. In addition, the amount of \(R^2 \) for ANFIS and ANN models were 0.99 and 0.91, respectively, and proved that both models could appropriately predict the corrosion current density of Ni/g-C3N4 nanocomposite coatings. Based on the reported errors (\(R^2, \) MSE, MAE), even though ANN displayed a reliable performance, it is explicit that the predictive potential of ANFIS model is higher compared with the ANN model.
Table 10. The validation and performance of ANFIS and ANN models

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Condition</th>
<th>ANN</th>
<th>ANFIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[R = \frac{\sum_i^n (h_i - \hat{R}_i) (t_i - \hat{t}_i)}{\sqrt{\sum_i^n (h_i - \hat{R}_i)^2} \sqrt{\sum_i^n (t_i - \hat{t}_i)^2}}]</td>
<td>0.8 < R</td>
<td>0.9556</td>
<td>0.9999</td>
</tr>
<tr>
<td>2</td>
<td>[k = \frac{\sum_i^n (h_i \times t_i)}{\sum_i^n h_i^k}]</td>
<td>0.85 < k < 1.15</td>
<td>0.9710</td>
<td>0.9999</td>
</tr>
<tr>
<td>3</td>
<td>[k' = \frac{\sum_i^n (h_i \times t_i)}{\sum_i^n h_i^k t_i}]</td>
<td>0.85 < k' < 1.15</td>
<td>1.0065</td>
<td>1.0000</td>
</tr>
<tr>
<td>4</td>
<td>[m = \frac{R^2 - RO^2}{R}]</td>
<td>m < 0.1</td>
<td>0.091538</td>
<td>0.000025</td>
</tr>
<tr>
<td>5</td>
<td>[n = \frac{R^2 - RO^2}{R}]</td>
<td>n < 0.1</td>
<td>0.095102</td>
<td>0.000025</td>
</tr>
<tr>
<td>6</td>
<td>[R_m = R^2 \times \left[1 - \sqrt{R^2 - RO^2} \right]]</td>
<td>0.5 < Rm</td>
<td>0.649061885</td>
<td>0.994962713</td>
</tr>
<tr>
<td>R0'</td>
<td>[1 - \frac{\sum_i^n (t_i - h_i^k)}{\sum_i^n (t_i - \hat{t}_i)}]</td>
<td>(\hat{t}_i = k \times t_i)</td>
<td>1</td>
<td>0.996581971</td>
</tr>
<tr>
<td>R0''</td>
<td>[1 - \frac{\sum_i^n (t_i - h_i^k)}{\sum_i^n (t_i - \hat{t}_i)}]</td>
<td>(t_i' = k' \times h_i)</td>
<td>1</td>
<td>0.999835989</td>
</tr>
</tbody>
</table>

Fig. 17. The effect of electrolysis bath parameters including: (a) Current density, (b) g-C3N4 content, and (c) plating time on the corrosion resistance of Ni/g-C3N4 nanocomposite coatings. Each plot was obtained by assuming a constant value for other parameters. The assumed constant value of the current density, g-C3N4 content, and plating time was respectively 0.1 A.cm\(^{-2}\), 0.3 g/L, and 45 min.

Fig. 18. Surface plot denoting the effect of current density and g-C3N4 content on the corrosion resistance of Ni/g-C3N4 nanocomposite coatings.
Finally, toward the simulation of the influence of bath parameters on the corrosion behavior of Ni/g-C₃N₄ nanocomposite coatings, the ANFIS model, which showed the highest accuracy, was used. ANFIS model has been successfully utilized to study the effect of each input parameters by the researchers [22, 26, 64]. As illustrated in Fig. 17, the corrosion current density was greatly influenced by electrolysis bath variables. In general, an increase in current density (Fig. 17a) resulted in the lower corrosion current density of Ni/g-C₃N₄ nanocomposite coatings, but the optimum value for current density was 0.1 A cm⁻². The same behavior was observed for g-C₃N₄ content, in which 0.3 g/L resulted in a lower corrosion current density. Also, the 45 min plating time presented better corrosion resistance. These modeling results are in agreement with the outcomes of the experiments. Additionally, the 3D surface plot obtained from the ANFIS model presented in Supporting Information (Fig. S2) confirmed the mentioned results. The synergistic effects of current density and g-C₃N₄ content (concentration) on the corrosion behavior of Ni/g-C₃N₄ coatings were visualized in Fig. 18. In the current study and g-C₃N₄ content was complex. Mainly, the higher corrosion current density was achieved when the g-C₃N₄ content increases at a lower current density, which is in agreement with experimental results.

4. Conclusion
To sum up, several coatings were prepared by changing the current density and concentration of g-C₃N₄ of the electrolysis bath to study the impact of electrolysis bath parameters on the corrosion resistance of Ni/g-C₃N₄ nanocomposite coatings. The results indicated that the addition of small content of g-C₃N₄ (0.3, 0.9, and 1.8 g/L) in the electrolysis bath resulted in more compact surface morphology, better corrosion resistance, higher microhardness, and wear properties. The Ni/g-C₃N₄ coatings showed the lowest corrosion current density (1.1 μA cm⁻²) with 0.3 g/L g-C₃N₄ and 45 min plating time. Moreover, the influence of current density on the corrosion behavior of Ni/g-C₃N₄ was investigated, which revealed the best corrosion resistance at 0.1 A cm⁻². ANN and ANFIS machine learning models were utilized to predict the corrosion current densities of Ni/g-C₃N₄ nanocomposite coatings based on current density, g-C₃N₄ concentration, and plating time. Different ANN and ANFIS models were constructed by changing the parameters, and the most suitable ones were selected. Finally, the ANN model with the mean absolute error (MAE) value of 0.580 was achieved, which has four neurons and Levenberg–Marquardt backpropagation as a training algorithm. The mean absolute error (MAE) of the optimized fuzzy model was 7.02×10⁻³. The subsequent validity and performance analysis of the models verified that the ANFIS model was more robust than the ANN model. R² of the ANN and ANFIS models was 0.91 and 0.99, respectively. By using the ANFIS model, the corrosion current density of Ni/g-C₃N₄ coatings was predicted with higher accuracy and precision.

Author Contributions
M.R. Shishesaz and M. Mahdavian planned the scheme, initiated the project, and suggested the experiments; A. Zarezadeh, and M. Ravanavard conducted the experiments and analyzed the empirical results; M. Ghobadi and F. Zareipour developed the mathematical modeling and examined the theory validation. The manuscript was written through the contribution of all authors. All authors discussed the results, reviewed, and approved the final version of the manuscript.

Acknowledgments
Not applicable.

Conflict of Interest
The authors declared no potential conflicts of interest concerning the research, authorship, and publication of this article.

Funding
The authors received no financial support for the research, authorship, and publication of this article.

Data Availability Statements
The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Bai, X., Zong, R., Li, C., Liu, D., Liu, Y., Enhancement of visible photocatalytic activity via Ag8@C3N4 core-shell plasmonic composite, Applied Catalysis B: Environmental, 147, 2014, 82-91.

Bai, X., Zong, R., Li, C., Liu, D., Liu, Y., Enhancement of visible photocatalytic activity via Ag8@C3N4 core-shell plasmonic composite, Applied Catalysis B: Environmental, 147, 2014, 82-91.

[60] Liu, L., Qi, Y., Lu, J., Lin, S., An, W., Liang, Y., Cui, W., A stable AgIPO4@ g-C3N4 hybrid core@ shell composite with enhanced visible light photocatalytic degradation, Applied Catalysis B: Environmental, 183, 2016, 133-141.

ORCID ID
Alireza Zarezadeh https://orcid.org/0000-0002-6581-9100
Mohammad Reza Shishesaz https://orcid.org/0000-0001-6350-5215
Mehdi Ravanavard https://orcid.org/0000-0002-6488-4146
Moslem Ghobadi https://orcid.org/0000-0003-0474-8828
Farzaneh Zareipour https://orcid.org/0000-0001-6017-0560
Mohammad Mahdavian https://orcid.org/0000-0001-8470-6833

© 2022 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

How to cite this article: Zarezadeh A., Shishesaz M.R., Ravanavard M., Ghobadi M., Zareipour F., Mahdavian M. Electrochemical and Mechanical Properties of Ni@g-C3N4 Nanocomposite Coatings with Enhanced Corrosion Protective Properties: A Case Study for Modeling the Corrosion Resistance by ANN and ANFIS Models, J. Appl. Comput. Mech., xx(x), 2021, 1–17.
https://doi.org/10.22055/JACM.2021.38403.3220

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.