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Abstract. This work investigates the effect of electrolysis bath parameters on the corrosion, micro-hardness, and wear behavior of 
Ni coatings. The characterization of synthesized Graphitic carbon nitride (g-C3N4) was done by Fourier transform infrared, Raman 
spectroscopy, and transmission electron microscope. The surface morphology of coated samples with various amounts of current 
density was studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The corrosion prevention effect 
of Ni/g-C3N4 nanocomposite coatings was investigated by EIS and polarization techniques. The experimental outcome 
demonstrates that an electrolysis bath of 0.3 g/L g-C3N4 and 0.1 A.cm-2 presents a Ni coating with the highest corrosion protection, 
wear resistance, and microhardness. The corrosion current densities of Ni/g-C3N4 coatings obtained by electrochemical tests were 
used for training two machine learning techniques (Artificial neural network (ANN) and adaptive neuro-fuzzy inference system 
(ANFIS)) based on current density, g-C3N4 concentration, and plating time as an input. Various statistical criteria showed that the 
ANFIS model (R2= 0.99) could forecast corrosion current density more accurately than ANN with R2= 0.91. Finally, due to the robust 
performance of ANFIS in modeling the corrosion behavior of Ni/g-C3N4 nanocomposite coating, the effect of each parameter was 
studied.  

Keywords: Ni nanocomposite coating; Electrolysis parameter; Electrodeposition; g-C3N4; Modeling. 

1. Introduction 

To extend the lifetime of engineering materials that are subjected to corrosion and wear, surface coatings can be used [1]. 
Coatings operate as a barrier between the environment and the steel surface. To develop a surface coating of bulk materials, 
various techniques may utilize. Among several coatings processing, the electrodeposition process is known as the most reliable, 
cost-effective, and practical surface engineering technique [2]. In the last few years, to improve corrosion resistance, wear, and 
hardness properties nickel has been extensively used for developing metal-matrix composite structures with various 
nanoparticles [3]. The electrodeposition process can efficiently coat complex shapes and provide uniform coating thickness. 
During electrodeposition, insoluble particles are suspended in the electroplating solution and stick to the forming deposit making 
up the second phase particles. Microcracks are reduced, and the coatings' mechanical behavior is improved when second phase 
particles are present in the Ni matrix [4].  

According to the literature, several studies focused on the Ni electrodeposited composites coating containing SiC [5], Al2O3 [6], 
TiO2 [7], graphene [8], CeO2 [9], etc. During the electrodeposition process, the concentration of nanomaterials and 
electrodeposition parameters (such as deposition duration and current density), significantly affect the electrochemical, physical, 
microstructure, and mechanical properties of nanocomposite coatings [45-49].   

Due to the high nitrogen content of g-C3N4 and its layered two-dimensional structure it may have more active reaction sites 
compared to other N-carbon compounds. Also, due to the nature of the lamellar structure, g- C3N4 is frequently well-crystallized, 
which promotes charge transfer [10]. It has been known for suitable hardness resistance and excellent chemical and thermal 
stability [13], excellent biocompatibility, biological activity, and corrosion resistance [14]. There are a few reports on the impact of 
using g- C3N4 in the coatings. Fayyad et al. evaluated the impact of C3N4 nanoparticles on the electrochemical and mechanical 
resistance of NiP coatings. First, the optimum value for each electrolysis parameter, as pH, plating time, and surfactant types, 
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were investigated; then, the optimal concentration of g-C3N4 nanoparticles was determined. As a result, they were able to 
demonstrate that C3N4 had a remarkable effect on the corrosion behavior and micro-hardness of the NiP electrodeposition coating 
[13]. Recently, some researchers evaluated the impact of g-C3N4 on the tribological and corrosion behavior of epoxy coatings. It 
was found that using g-C3N4 into the mentioned coatings improves the corrosion and mechanical properties [15-18]. 

Nowadays, many researchers utilize intelligent reasoning systems to achieve significant improvement in products' quality 
because of their capability in prioritization, optimization, planning, and forecasting [19]. Application of machine learning tools 
such as artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) have recently garnered considerable 
attention because of their vast capabilities and flexibility of use as compared to other traditional modeling methods [20-22]. ANN 
is a famous mathematical simulator that is inspired by the structure of the human brain. They have been ordered to have a 
capacity to accomplish like a human, by instructive data and learning activity [23]. It can learn the linear and nonlinear relevance 
between different variables from a dataset. In addition, this method is able to simulate various processes without the full 
realization of mathematical equations and can handle complicated engineering problems [24]. ANFIS is a hybrid universal tool 
that was firstly introduced by Jang in 1993 [38]. The capabilities of fuzzy logic systems were combined with ANN learning abilities 
in the ANFIS algorithm [25]. ANFIS assisted in modeling the experimental datasets by converting logical statements to 
mathematical relations [26]. Base on the learning ability, ANFIS produces a group of rules due to the relation of input-output pairs 
in a dataset and specifies the best membership functions [24].  

ANN was used by Youjun Xu et al. to model the corrosion resistance of Ni–SiC composite coatings produced by ultrasonic 
electrodeposition and found that constructed model can forecast the corrosion behavior of composite coatings [27]. Hongyu Gan 
et al. evaluated the ability of three ANN models to simulate the current efficiency and glossiness of silver film which was applied 
by electrodeposition technique. The results displayed that, when there are enough samples, an extreme learning machine (ELM) is 
a great choice because it can produce higher accuracy and move faster than conventional ANN models [28]. Xinchen Zhuang et al. 
utilized several ANN models to forecast the wear properties of Ni-TiN coatings applied by pulse electrodeposition. The outcomes 
indicated that the application of the ANN model is a promising approach to study the wear behavior of Ni–TiN nanocomposite 
coatings [29].  

In the present article, Ni/g-C3N4 nanocomposite coating was applied on the low carbon steel substrate, and the corrosion 
properties, wear resistance, and microhardness was evaluated according to the value of current density and g-C3N4 content. 
Raman, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) was employed to investigate 
the characterization of the g-C3N4 nanoparticles. Characterization of nanocomposite coatings was implemented based on surface 
morphology using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The corrosion properties 
examination was done by polarization test and electrochemical impedance spectroscopy (EIS) technique. Moreover, the 
comparison between pure Ni coating and composite coatings with different amounts of g-C3N4 in the microhardness, friction, and 
wear behavior were comparatively studied. Finally, based on the experimental results, two machine learning tools (ANN and 
ANFIS methods) were developed to model the effective electrodepositing variables, including current density, g-C3N4 particles 
content, and plating time on the corrosion behavior of the coatings. 

2. Materials and Methods 

2.1 Materials  

NiCl2.6H2O (≥ 99%), NiSO4.6H2O (99%), and melamine (C3H6N6, 99%) which was used as a precursor of g-C3N4, were provided 
from Merck without further purification. Polyvinylpyrrolidone (PVP), HCl (10%), and acetone were procured from Aldrich Co. The 
low carbon steel panels (98.3% Fe, 0.14% C, 0.9% Mn, 0.035% P, 0.04% S, 0.4% Si and 0.2% Cu) used as substrates were prepared from 
Mobarakeh steel Co. (Iran).  

2.2 Preparation of Ni/ g-C3N4 composites 

Graphitic carbon nitride (g-C3N4) was synthesized, as reported previously [30, 31]. After heating 15 g of melamine to 550°C for 
240 minutes (at a rate of 20 °C/min), g-C3N4 nanosheets powder with the fine yellowish apparent was achieved after cooling to 
room temperature. The direct current electrodeposition process was selected to prepare Ni/g-C3N4 nanocomposite coatings. The 
substrate was polished with 120, 220, 320, 400, 600, 800, 1000, and 1200 grit emery papers, then ultrasonically degreasing in 
acetone for 10 min and finally etched in HCl for 30 s. Afterward, distilled water was used to wash the substrate surface and 
immediately immersed in the electrolyte bath solution. In this study, to find the optimum current density, a Ni/g-C3N4 
electrodeposition bath with a specified amount of g-C3N4 concentration (0.5 g/l) was performed at various current densities (0.02, 
0.05, 0.1, and 0.2 A/cm2). The steel substrate as cathode and Ni plate as anode vertically were placed in a 250 ml bath. In order to 
obtain a smoother and more homogeneous coating, PVP has been added to the solution as a surfactant.  

The bath compositions and electrodeposition conditions are mentioned in Table 1. To avoid agglomeration, the bath 
containing g-C3N4 was stirred by magnetic stirrer under 400 rpm for 1 h, then solution bath was ultra-sonicated for a duration of 1 
h to disperse nanoparticles uniformly (1 W/mL at 24 kHz). During the plating process, a magnetic stirrer was also employed at 400 
rpm. After finding the best suitable current density, different electrodeposition solutions with various concentrations of g-C3N4 
(0.3, 0.9, and 1.8 g/L) were prepared to construct Ni/g-C3N4 nanocomposite coating with optimum conditions. 

2.3 Characterization 

Raman spectroscopy and FT-IR analysis were used for the characterization of g-C3N4 nanosheets. Raman spectra of g-C3N4 
nanosheets were determined employing a confocal Raman (Horiba Xplora plus, France) (532 nm for wavelength incident laser 
light). The FT-IR analysis was carried out by Perkin Elmer FTIR Spectrum One within the wavenumber range of 500–4000 cm-1. The 
morphological attributes of g-C3N4 nanosheets were identified by transmission electron microscopy (TEM, JEM-2100; Jeol; Japan). 
To evaluate the surface morphology and elemental analysis of the Ni/g-C3N4 coatings, FE-SEM, EDX, and elemental mapping of the 
coated samples were done by an instrument model MIRA3 TESCAN. In order to investigate the crystal structure and phase 
analysis of the deposited coatings an X‐ray diffraction XRD instrument (model Philips Xpert MPD X‐ray diffraction) was utilized. 
The start and end angles for continuous scanning were 10° and 80°, respectively.  

Table 1. Composition and condition of electrodeposition bath of Ni/g-C3N4 

Compositions Value (g.L-1) Parameters Value 

NiSO4·6H2O 220 Time (min) 45 

NiCl2·6H2O 40 pH 4 

PVP 0.05 Temperature (°C) 60 

Stirring rate (rpm) 400 Electrode distance (mm) 30 
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2.4 Electrochemical corrosion studies  

The potentiodynamic polarization (Tafel analysis) and electrochemical impedance spectroscopy (EIS) techniques were adopted 
to evaluate the corrosion resistance of the coatings. The electrochemical tests were performed via IVIUM potentiostat- 
galvanostat device utilizing a flat electrochemical cell containing three entrances for a conventional three-electrode assembly 
where the coatings material, saturated calomel electrode (SCE), and pure Pt rod were employed as the working, reference, and 
counter electrodes, respectively. The tests were done in a 3.5 wt% NaCl solution and ambient temperature. The electrochemical 
measurement tests were arranged in a non-stirred state while the exposed area of all materials was fixed to 1 cm2. The frequency 
ranges from 100 kHz to 10 mHz with imposed AC amplitude of 10 mV was utilized for EIS experiments. In this test, the extraction 
process of the EIS data was always initiated after the OCP became stable. For Tafel analysis, the opted potential range was from -
1.2V to +0.8V with 1 mV/s scanning rate considering OCP, which was applied to procure the cathodic and anodic curves. To 
warrant the reproducibility of the extracted data and provide a precise indication of the corrosion rate, whole experiments were 
conducted at least three times. Zview3.1 software was employed to fit the EIS results. 

2.5 Wear test 

Wear resistance for samples with different g-C3N4 concentration were evaluated by pin-on-disc tribometer under dry 
condition and 25 °C. For this purpose, AISI 52100-5 mm diameter pin and average hardness of 46 HRC was utilized. Rotation speed 
was fixed at 60 rpm, applied load was set at 5 N, and sliding distance was 200 m during the test. After the wear tests, SEM was 
used to study the worn surface morphology. All samples were weighed before and after the wear test when the wear debris was 
removed. 

2.6 The microhardness measurements  

The microhardness of Ni/g-C3N4 nanocomposite coating was obtained by Vickers microhardness tester. The load of 200 g was 
inserted on the composite coatings surface for 10 seconds. The average value of 3 separate locations on each coating surface was 
reported. 

2.7 Machine learning approaches  

The influence of electrolysis bath parameters on the corrosion behavior of Ni/g-C3N4 nanocomposite coatings was evaluated 
utilizing two machine learning methods. A schematic configuration to simulate the corrosion resistance of Ni/g-C3N4 
nanocomposite coatings based on experimental analysis was presented in Fig. 1. Based on experimental datasets, the electrolysis 
bath parameters were set as inputs, and the corrosion current densities were selected as the output. Afterward, two models were 
trained, and the accuracy of each model was examined through various error criteria. Finally, the most suitable and accurate 
model was proposed for modeling the corrosion current density of Ni/g-C3N4 nanocomposite coatings. The accuracy of 
constructed models was measured by several statistical errors, like MAE which was calculated according to Eq. (1):  
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In these equations, t is experiment data, n is the number of data for training, and O is predicted data.  Also, the coefficient of 
determination (R2) was calculated according to Eq. (3): 
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where, m represents the average of the test dataset values. If a model resulted in a lower value of MAE and RMSE, so the model 
has a suitable accuracy. For the case of R2 value, the model which results closer to unity represents a better ability for modeling 
[32]. 
 

 
 
 

Fig. 1. Schematic configuration to simulate the corrosion resistance of Ni/g-C3N4 nanocomposite coatings based on experimental analysis. 
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Fig. 2. The structure for the ANN model utilized for modeling the corrosion current density of Ni/g-C3N4 nanocomposite coatings. 

 

Fig. 3. Typical structure of the ANFIS model for modeling the corrosion current density of Ni/g-C3N4 nanocomposite coatings; the model comprises 3 
inputs and 5 layers. 

2.7.1 ANN modeling 

ANN is known as a computational approach that includes various biological neural structures. In this computational method, 
the appropriate relationships among input and output variables can be achieved without any prerequisite. The three-layer 
fundamental structure of a neural network comprises an input, hidden, and output layers [33]. Accordant with the dataset, 
current density, g-C3N4 content, and plating time were set as the inputs for each model. The structure of ANN modeling employed 
in this study was shown in Fig. 2. Each layer contains the basic factor neurons, which are processing factors.  The neuron 
calculates the weight of each input with a special weight index (w) which is received from the signal of an output. The total 
weights of the inputs show the bias (b) and the transfer function f (∑wixi). Thus, the neurons in different layers are connected 
together. Finally, nonlinear mapping has been connected the input layer to the output layer. A transfer function or activation 
function turns the signal data that moves between each neuron. One of the crucial parts in the accuracy of the constructed model 
is the arrangement of hidden layers. In the hidden layer, the learning process take place and also the quantity of each 
independent parameters were received [34].   

 The performance and convergence of the ANN model are highly affected by the number of hidden layers and neurons in each 
hidden layer. Even though, for a small dataset, usually, a single hidden layer resulted in more accuracy and convergence in 
comparison with two hidden layers. However, these two elements have an important effect on the efficiency of an ANN model. It 
was preferred to search for the best ANN architecture, such as a model with an optimizing training algorithm and the number of 
neurons in each hidden layer [35]. Thus, we seek to produce an appropriate structure with one hidden layer for the ANN model. To 
find a suitable number of neurons, various topological research has been done. The results represent that number of hidden 
layers is changeable, and the best structure has the least error. For training, the Levenberg–Marquardt back propagation (LMBP) 
algorithm was employed. LMBP has been widely used in prior research and is well-known for its speed, processing power, 
reliability, and simplicity [22]. Therefore, for changing the number of neurons LMBP training algorithm was utilized. Hyperbolic 
tangent sigmoid and Purlin were used as transfer functions for hidden layer and output layer in the ANN modeling. Several 
studies showed that fewer neurons had resulted in under fitting, and more neurons could result in over fitting, so that trial and 
error is required to extend the trustable structure for ANN [36]. In this study, ANN was computed with the ANN toolbox in 
MATLAB software. 

2.7.2 ANFIS modeling 

Constructing the network structure or Takagi-Sugeno fuzzy inference system has been done by "if-then" rules of the ANFIS 
model [37]. As presented in Fig. 3, the structure of the ANFIS model comprises of five layers. The input membership functions 
(MFs) in the first layer transport the inputs to a fuzzy set. Then, in the second layer fixed nodes are used to measure the firing 
strength. The firing strength is a quantity to which a fuzzy rule's antecedent part is fulfilled and determined by an AND or OR 
operation, and it shapes the output function for the rule. After that, in the third layer, firing strength values are done by the 
normalization process. To determine the impact of the output to the total output in the next layer, the parameter set is multiplied 
by the output of the prior layer. The summation of each input’s signal is determined in the fifth layer.  

Grid partition (GP) is known as one of the methods for producing the ANFIS structure from available data. It has been reported 
that as the number of inputs increase, the number of fuzzy rules grows exponentially. Also, a GP technique is only appropriate for 
a dataset which consist of less than six inputs parameters [39, 40]. In this study, we selected ANFIS-GP, in which different types of 
MF for each input parameter and linear type of MF for output were used to optimize the fuzzy model. 
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Fig. 4. (a) FTIR, (b) Raman spectra and (c) TEM image of g-C3N4 nanosheets. 

3. Results and Discussion 

3.1 Characterization of g-C3N4 nanosheets 

The g-C3N4 nanosheets were characterized by FTIR (Fig. 4a). A broad peak located at 3162 cm−1 was associated with the 
stretching vibration of N−H bonds [41]. Also, a series of peaks at 1638, 1560, 1407, 1319, and 1239 cm−1 can be referred to as the 
stretching vibration of C–N or C=N in the CN heterocycles of g-C3N4 heptazine structures [42]. It was clear that the absorption at 
810 cm−1 is indicative of out-of-plane bending modes of the rings [43]. Raman spectrum of the g-C3N4 nanosheets is provided in 
Fig. 4b. It was revealed that there are two peaks observed at 1233 cm−1 and 1483 cm−1. These peaks may relate to some disorder 
or defects in the g-C3N4 structure [59, 60]. What is more, the strong peaks raised at 702 cm-1 may represent the g-C3N4 structure or 
be attributed to the bending vibrations of melamine, according to [61]. Moreover, the Raman spectrum showed several strong, 
distinctive peaks of g-C3N4 detected at 88.3, 476 and related to heptazine rings in melamine units [44, 62]. TEM image of g-C3N4 
reported in Fig. 4c reveals an irregular shape for g-C3N4 in nanoscale. 

3.2 Effect of current density 

Fig. 5 illustrates the morphologies of Ni/g-C3N4 coatings which are applied at various current densities. The presence of 
pinholes and pits on the Ni coatings surfaces might be related to the reduction of hydrogen ions and/or the impurities in the 
solution reported previously [52]. At lower current density (e. g. 0.02 and 0.05 A.cm-2), the electrodeposited surface is smooth, but 
some defects such as nodules and pinholes were observed on the surface, as depicted in Fig. 5a-d. At a medium current density of 
0.1 A.cm-2, a uniform deposition was obtained, leading to 'defects' reduction in the coatings (Fig. 5e & f). At 0.2 A.cm-2, some cracks 
were observed, as shown in Fig. 5g-l. Thus, the current density of 0.1 A.cm-2 was chosen as the optimum current density for the 
electrodeposition of Ni/g-C3N4 nanocomposite coatings, according to better surface morphology.   

Fig. 5i-k shows the EDS mapping of Ni/g-C3N4 nanocomposite coating, indicated that nanocomposite consists of Ni, C, and N 
elements, and it was proved that g-C3N4 nanosheets and Ni were uniformly distributed throughout the coating. Moreover, the EDX 
measurements (Table 2) showed that the amount of Ni in the deposit grew as the current density raised. This behavior could 
relate to the increasing of Coulomb force between Ni2+ adsorbed on g-C3N4 particles and the cathode with increasing current 
density. However, by increasing the current density the content of g-C3N4 in the coating dropped which may attributed due to the 
rapid deposition of the metal matrix and fewer particles are embedded into the coating [63].  

The polarization plots of the Ni/g-C3N4 coatings with various current densities and 0.5 g/L of g-C3N4 are plotted in Fig. 6. Table 3 
presents the electrochemical parameters extracted from the polarization plots, containing polarization resistance (Rp), cathodic 
Tafel slopes (ba and bc), corrosion potential (Ecorr), and corrosion current density (icorr). The Ni/g-C3N4 with 0.02 A.cm-2 current density 
had the most negative Ecorr and the highest icorr demonstrating its worst corrosion resistance. However, at 0.1 A.cm-2 current 
density, Ni/g-C3N4 nanocomposite coating presented the most positive Ecorr and the lowest icorr which clearly showed that it had the 
highest corrosion resistance. This result can be originated from the higher integrity of the deposited film as depicted in SEM-EDS 
results.  

 

Table 2. Percentage of element EDS analysis of Ni/g-C3N4 nanocomposite coatings at various current densities and 0.5 g/L of g-C3N4. 

 
Ni/g-C3N4 

@ 0.02 A.cm-2 

Ni/g-C3N4 

@ 0.05 A.cm-2 

Ni/g-C3N4 

@ 0.1 A.cm-2 

Ni/g-C3N4 

@ 0.2 A.cm-2 

Ni (%w) 92.81 93.09 94.24 91.35 

C (%w) 4.29 4.46 3.99 6.32 

N (%w) 2.90 2.46 1.77 2.33 
 

Table 3. Electrochemical parameters of the Ni/g-C3N4 coatings with different current densities derived from polarization curves are shown in Figure 6. 

Current density 

(A.cm-2) 

Ecorr 

(mV vs SCE) 

icorr 

(μA.cm−2) 

ba 

(mV.decade−1) 

bc 

(mV.decade−1) 

Rp 

(Ω.cm2) 

0.02 -374.0± 35 8.4± 0.8 26 ± 10 127± 30 1118± 328 

0.05 -203.7± 7 5.4± 0.5 53± 10 122± 20 2976± 209 

0.1 -125.5± 8 2.5± 0.2 35± 10 94± 10 4535± 187 

0.2 -244.4± 11 3.6± 0.4 49± 10 61± 10 3277± 268 
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Fig. 5. SEM micrographs for the Ni/g-C3N4 nanocomposite coatings at various current densities and 0.5 g/L of g-C3N4: 0.02 (a, b), 0.05 (c, d), 0.1 (e, f) and 
0.2 A.cm-2 (g, h, l); EDS dot-mapping images of 0.1 A.cm-2 sample. 

 
EIS was applied to assess the impact of current density on the corrosion resistance of Ni/g-C3N4 coatings. Fig. 7 illustrates 

Nyquist and typical Bode diagrams of Ni/g-C3N4 coatings at different current densities. The results revealed that at 0.1 A.cm-2 

current density, the highest impedance was achieved, which is in agreement with the polarization results. 
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Fig. 6. Polarization curves for the Ni/g-C3N4 coatings with different current densities and 0.5 g/L of g-C3N4 in a 3.5 wt% NaCl solution at room 
temperature. 

 
 
 

 

 
Fig. 7. The Nyquist, corresponding Bode and phase angle plots of the electrolysis Ni/g-C3N4 coatings with different current density and 0.5 g. L−1 of g-

C3N4 in a 3.5 wt% NaCl solution at room temperature. 
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Table 4. Electrochemical parameters obtained by fitting the measured EIS data (Figure 7) for the deposited Ni/g-C3N4 coatings with current density in 
a 3.5 wt% NaCl solution at room temperature. 

Current density 

(A.cm-2) 
Rs 

(Ω.cm2) 

CPEf 

Rf 

(Ω.cm2) 

CPEdl 
Rct 

(Ω.cm2) 
Z-module 

(Ω.cm2) Y0 

(μΩ-1.cm-2sn) 
n Y0 

(μΩ-1.cm-2sn) 
n 

0.02 6.9± 0.2 376± 38.2 0.73± 0.02 19.2± 9.6 2913± 153 0.61± 0.02 509.1± 75.5 535.2± 66.5 

0.05 10.3± 0.3 51.6± 11.4 0.91± 0.01 103± 16.3 1092± 128 0.32± 0.01 1090± 59.7 1203.3± 98.2 

0.1 6.9± 0.2 629± 62.7 0.67± 0.02 175.2± 22.5 1747± 112 0.61± 0.02 1291± 42.7 1473.1± 58.7 

0.2 8.1± 0.2 200± 35.9 0.77± 0.02 94.4± 18.3 1289± 134 0.52± 0.02 1059± 77.2 1161.6± 88.3 

Table 5. Electrochemical parameters of the Ni and Ni/g-C3N4 coatings with different g-C3N4 concentration and 0.1 A/cm2 current density derived from 
polarization curves shown in Figure 8. 

Conc. 

(g/L) 

Ecorr 

(mV vs SCE) 

icorr 

(μA.cm−2) 

ba 

(mv/decade) 

bc 

(mv/decade) 

Rp 

(Ω cm2) 

Ni-0 -333.1± 42 7.44± 0.5 42± 10 42± 30 1126± 210 

Ni-0.3 -108.4± 9 1.10± 0.1 29± 10 49± 10 4350± 195 

Ni-0.9 -133.2± 12 1.96± 0.1 37± 20 48± 10 4636± 322 

Ni-1.8 -197.4± 11 2.76± 0.1 33± 10 45± 10 2976± 336 

 
To interpret the impedance diagrams in more detail, the equivalent circuit depicted in Fig. 88 has been used. In this circuit, Rs 

indicates the solution resistance, Rct for the charge transfer resistance, Rf for the film resistance. CPEdl and CPEf are related to the 
double layer and film constant phase elements, respectively.  Constant phase element (CPE) was utilized as a substitute of C 
because of the capacitor's non-ideal behavior. The exponent (0<n<1) and admittance of CPE, are represented by Y0 and n in CPE, 
respectively. Table 4 gives the values of electrochemical parameters obtained from impedance spectra. The increase in current 
density from 0.02 to 0.1 led to an increase in Rf. The highest Rf was observed at 0.1 A.cm-2, which is in agreement with polarization 
test results. The higher coating integrity determined at 0.1 A.cm-2 might be the reason for its superior corrosion resistance. 
Moreover, in the case of Rct values, one can deduce that the sample with 0.1 A.cm-2 provided the highest degree of protection in 
comparison with the rest of the samples. 

3.3 Effect of g-C3N4 content and plating Time 

In this section, the influence of various g-C3N4 content (0.3, 0.9, and 1.8 g/L) in the electrolysis bath of Ni/g-C3N4 coating 
prepared at 0.1 A.cm-2 was studied. Fig. 8 presents the polarization plots of Ni and Ni/g-C3N4 coatings with various g-C3N4 content. 
The electrochemical variables derived from the coatings' polarization plots are reported in Table 5. Obviously, the presence of g-
C3N4 shifted the Ecorr to more positive values, resulting in a change of the icorr to 1.10 μA.cm−2 for 0.3 g/L g-C3N4. It has been 
understood that, in comparison to composite coatings with lower g-C3N4 concentrations, an increase in the icorr value and more 
negative value of Ecorr was achieved by increasing the g-C3N4 content.  

Fig. 9 displays the Nyquist, phase angle, and Bode diagrams of the electrolysis Ni/g-C3N4 coatings with different g-C3N4 
concentrations at 0.1 A/cm2 current density. Changing the amount of g-C3N4 in the electrolysis bath affected the EIS results. As 
depicted in Fig. 9, when 0.3 g/L g-C3N4 was used in the Ni/g-C3N4 coating, the spectra showed only one relaxation time, while for 
the rest of the samples, two relaxation times were observed. Detection of only one-relaxation time in the case of 0.3 g/L g-C3N4 
might be originated from its highest integrity leading to the occurrence of corrosion only at the Ni surface. The rest of the 
samples have defects in the Ni deposited film, which lead to the occurrence of corrosion at the defect areas as Ni is more noble 
than Fe. Table 6 displays the values of electrochemical parameters derived from impedance spectra.  

 

Fig. 8. Tafel polarization curves for the Ni and Ni/g-C3N4 coatings with different g-C3N4 concentration and 0.1 A/cm2 current density in a 3.5 wt% NaCl 
solution at room temperature. 
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Fig. 9. The Nyquist, corresponding Bode and phase angle plots of the Ni/g-C3N4 coatings with different g-C3N4 concentration and 0.1 A/cm2 current 
density in a 3.5 wt% NaCl solution at room temperature 

 
The highest charge transfer resistance was obtained in the presence of 0.3 g/L g-C3N4, which implies the best protection of this 

electrodeposited coating. By increase in extend of g-C3N4, Rct showed a decrease which can be originated from the formation of 
more defects in the coating.  

Moreover, the influence of plating time was investigated utilizing a polarization test. The values of current density and g-C3N4 
concentration were set at 0.1 A.cm-2 and 0.3 g/L. The polarization curves and corresponding electrochemical parameters for Ni/g-
C3N4 coating at various plating times were illustrated in Supporting Information (Fig. S1 & Table S1). The results revealed that at 45 
min, higher corrosion resistance was obtained as compared to other plating time values.  

The XRD pattern for pure Ni coating and Ni/g-C3N4 coating with 0.3 g/L of g-C3N4 and 0.1 A/cm2 were shown in Fig. 10. As 
demonstrated all characteristic peaks of nickel crystallographic planes (111), (200), (220) are recognized. In the XRD pattern of 
Ni/g-C3N4 coating a relatively weak diffraction peak (002) can be observed at 27.8°, is corresponding to the graphite-like stacking of 
conjugated aromatic segments [26]. By apply the Scherrer’s equation, the grain sizes in the coating structure are calculated [1]. 
The crystallite size for (111), (200) and (220) characteristic peaks were calculated and are reported in Table 7. It can be observed 
that in the Ni/g-C3N4 coating the intensity of the Ni (111) diffraction peak is reduced, the relative intensity of (200) and (220) 
crystallographic planes increases which can be indicative of preferential growth on the latter crystalline planes. Peak broadening 
happens in all three planes, which is believed to be an indication of grain refinement during the coatings growth. During the 
incorporation of reinforcing g-C3N4 nanosheets in the coating structure, the number of nucleation sites for nickel increases and 
the crystal growth is retarded [13, 16]. 

 

Table 6. Electrochemical parameters obtained by fitting the measured EIS data (Figure 9) for the deposited Ni/g-C3N4 coatings with different g-C3N4 

concentration in a 3.5 wt% NaCl solution at room temperature. 

Con. 
(g/L) 

Rs 

(Ω.cm2) 

CPEf 
Rf 

(Ω.cm2) 

CPEdl 
Rct 

(Ω.cm2) 
Z-module 

(Ω.cm2) 
Y0 

(μΩ-1.cm-2sn) 
n 

Y0 

(μΩ-1.cm-2sn) 
n 

Ni-0 7.8± 0.3 1793± 195 0.49± 0.01 78.74± 28.6 355.1± 86.1 0.93± 0.02 428± 95.5 514.5± 52.7 

Ni-0.3 7.9± 0.1 - - - 595± 49.5 0.69± 0.01 2117± 33.8 2124.8± 92.1 

Ni-0.9 7.9± 0.3 184± 25.6 0.78± 0.01 300± 22.4 1312± 132.6 0.47± 0.01 1734± 81.7 2041.9± 112.8 

Ni-1.8 8.8± 0.2 152± 48.2 0.77± 0.02 286.8± 11.5 2018.1± 216.9 0.43± 0.01 1300± 102.2 1595.6± 142.5 
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Table 7. XRD analysis results for pure Ni and Ni/g-C3N4 coating samples. 

Sample Plane Peak position, 2θ (degrees) Peak broadening Crystallite size (nm) 

Pure Ni Coating 
(111) 
(200) 
(220) 

45.1 
52.5 
76.9 

0.51 
0.70 
0.76 

16.9 
12.7 
13.3 

Ni/g-C3N4 coating 
(111) 
(200) 
(220) 

45.2 
52.6 
77.2 

0.63 
0.89 
1.04 

13.9 
10.3 
9.8 

3.4 Microhardness 

The microhardness of the Ni/g-C3N4 coatings at different concentrations of g-C3N4 nanosheets in the deposited coatings is 
presented in Fig. 11. As can be seen clearly, the microhardness increased with the presence of g-C3N4 in the bath. Although all the 
Ni/g-C3N4 nanocomposite coatings showed better results compared to the purely Ni coating, the higher loading levels depicted a 
negative effect on the microhardness. The microhardness of the electrodeposited nickel with 0.3 g/L of g-C3N4 showed a 
maximum value of 743.6 HV that could be related to the stronger bonding strength between the Ni matrix and the dispersed g-
C3N4. Beyond 3 g/L of g-C3N4, the microhardness was approximately constant. It has been reported that the hardness behavior of 
Ni composite coatings is influenced by several factors such as; grain size, the distribution and amount of reinforcement (e. g. g-
C3N4), chemical composition of the Ni, and microstructure variation caused by the nanoparticles' inclusion [47, 48]. The nano g-
C3N4 acts as an obstacle versus dislocation movement while the Ni matrix gains the load. According to the above discussion, it 
can be concluded that Ni/g-C3N4 with 0.3 g/L of g-C3N4 possess the most compact structure, and the grain refinement that 
influenced the nucleation of small grains around the hard particles also obstruct the dislocation movement, which can lead to 
raising the microhardness of the nanocomposite coating (Hall−Petch relation) [53]. 

 

Fig. 10. XRD pattern for pure Ni coating and Ni/g-C3N4 coating with 0.3 g/L of g-C3N4 and 0.1 A/cm2. 

 

Fig. 11. The microhardness of the Ni/g-C3N4 coatings for different content of g-C3N4 deposited at 0.1 A/cm2. 
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Fig. 12. The COF vs. sliding distance for Ni/g-C3N4 coatings at different content of g-C3N4 deposited at 0.1 A/cm2. 

 

Fig. 13. SEM micrographs of the worn surface of Ni/g-C3N4 coatings at different content of g-C3N4 (a) pure Ni, (b) Ni-0.3 g/L and (c) Ni–0.9 g/L 
deposited at 0.1 A/cm2 after wear test and their corresponding high magnification images (d, e and f, respectively). 

3.5 Wear resistance 

In Fig. 12, the coefficient of friction (COF) vs. sliding distance of all electrodeposited Ni/g-C3N4 coatings at different content of 
g-C3N4is demonstrated. As shown, COF started with a low value, and after that, there was sudden incensement due to the 
generation of wear particles. However, a stable friction behavior was observed from 20 to 120 m. At a greater distance, there was a 
reduction in COF owing to softening the coating surface. The COF curve of the coatings steadily augmented to a specific value, 
and it remained at this certain value of friction coefficient after sliding for 200 m. It is observed that all Ni/g-C3N4 coatings had 
less friction coefficient than pure nickel coatings and the sample with 0.3 g/L g-C3N4 showed the COF of 0.83, which was the 
lowest value compared to other coated samples. The average coefficient of friction of other samples with 0.9 and 1.8 g/L g-C3N4 
was 0.84, 0.89, respectively. 

While the surface of Ni/g-C3N4 was eliminated during the sliding process, the existence of g-C3N4 caused a reduction in shear 
stress which reduced the COF value. Due to the reduction of COF, the Ni/g-C3N4 coatings displayed lower surface roughness and 
fewer cracks [54]. It can be observed from Fig. 12 that the highest COF value belonged to the pure Ni coating with 0.89 average COF, 
which could lead to increased surface roughness and influence the wear losses and cause larger wear grooves. Moreover, the 
weight loss data for Ni nanocomposite coatings after the wear test were reported in Fig. 12. The lowest weight loss for 0.3 g/L g-
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C3N4 represents the higher wear behavior of this sample. Fig. 13 shows the SEM worn morphologies of Ni/g-C3N4 coatings and pure 
Ni after the wear test. The wear surface morphologies of the pure Ni coating revealed huge grooves on the worn surfaces, whereas 
the Ni/g-C3N4 coating with 0.3 g/L g-C3N4 showed only a few small pits, explaining and approving the coating's highest wear 
resistance.  

Moreover, the cross-sectional SEM morphologies of Ni/g-C3N4 nanocomposite coating prepared at 0.3 g/L g-C3N4, 0.1 A/cm2 
current density and 45 min plating time was shown in Fig. 14. It can be seen that the average thickness of the coating is about 
39.97 μm. It is apparent that the coatings show a compact structure and a suitable adhesion between the coating and substrate 
has been observed. 

3.6 Modeling Results 

As mentioned in modeling details, the purpose is to provide an optimized model for corrosion behavior of Ni/g-C3N4 coatings. 
As demonstrated in Fig. 15, the change of neurons in the hidden layer from 2 to 10 resulted in variation of ANN model 
performance. Variation of R2 was observed by changing the neurons in the hidden layer from 2 to 10. Four neurons' hidden layer 
architecture was used as it led to the highest R2 values resulting in the most trustable results 

 
 

 

Fig. 14. Cross-sectional SEM morphologies of Ni/g-C3N4 nanocomposite coating prepared at 0.3 g/L g-C3N4, 0.1 A/cm2 current density and 45 min 
plating time. 

 

Fig. 15. The variation of R2 for ANN model with different number of neurons from 2 to 10 in the hidden layer. 
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Table 8. The effect of training algorithm on the performance of the seven ANN models executed with four neurons in the hidden layer architecture. 

ANN models Training Algorithm Symbol MAE MSE R2 

ANN-1 Resilient backpropagation RP 1.139 2.051 0.58 

ANN-2 BFGS quasi-Newton backpropagation BFG 0.7881 1.932 0.71 

ANN-3 Scaled Conjugate Gradient SCG 1.058 3.158 0.52 
ANN-4 Levenberg–Marquardt backpropagation LM 0.554 0.580 0.91 

ANN-4 Gradient Descent with Momentum & Adaptive LR GDX 1.367 3.156 0.53 

ANN-6 Conjugate Gradient With Powell/Beale Restarts CGB 0.911 1.707 0.74 

Table 9. The performance of alternative ANFIS-GP models. 

ANFIS-models Membership function name Symbol MSE MAE R2 

ANFIS-GP1 Triangular-shaped Trimf 0.0045392 0.042794 0.999319 

ANFIS-GP2 Trapezoidal-shaped Trapmf 0.1972406 0.217367 0.970417 

ANFIS-GP3 Generalized bell-shaped Gbellmf 0.0001676 0.007020 0.999974 

ANFIS-GP4 Gaussian curve Gaussmf 0.0067303 0.04366 0.998990 

ANFIS-GP5 Gaussian combination Gauss2mf 0.0004915 0.012861 0.999926 

ANFIS-GP6 Difference between two sigmoidal Dsigmf 0.0004924 0.012872 0.999926 

 
Accordingly, for further optimization of the training phase, a single hidden layer that consists of four neurons and the 

mentioned transfer functions were used. For this, seven various ANN structures were administrated to get the suitable training 
algorithm for the prediction of the corrosion current densities of Ni/g-C3N4 coatings. In order to construct the optimal ANN model, 
the MSE, MAE, and R2 values of the built models were compared (Table 8). 

The ANN-4 model has been chosen since it has the lowest MAE, MSE (0.554, 0.580), and a higher coefficient of determination 
than that of the other models (0.91). For the case of the ANFIS model, to obtain the optimum type of MF with the least error, six 
types of MFs were adjusted. It was observed that Gbellmf had the lowest error value. Therefore, it was selected as the optimum 
MF of this model. Table 9 depicts the variation for all models. 

The reliability of constructed models was examined to value the precision of each model. As discussed above, the best ANN 
structure was chosen, with four neurons in a single hidden layer. The LM presented a better performance for the purpose of the 
training model; hence, the offered ANN model for anticipating the dataset obtained the lowest MAE and MSE values. Moreover, to 
construct the best ANFIS structure for predict the corrosion current density of Ni/g-C3N4 nanocomposite coatings, several models 
were built. ANFIS-GP3 with MSE and MAE values of 0.0001676 and 0.007020 showed the highest performance.  

Fig. 16 shows the relation between experimental (observed) and modeling (predicted) amounts of corrosion current density 
achieved by ANN and ANFIS models. Generally, the accumulation of data points around the Y=X line displays that the anticipation 
of the experimental data is achieved with higher accuracy. The points near the regression line proved the efficiency of the 
developed model. In addition, the amount of R2 for ANFIS and ANN models were 0.99 and 0.91, respectively, and proved that both 
models could appropriately predict the corrosion current density of Ni/g-C3N4 nanocomposite coatings. Based on the reported 
errors (R2, MSE, MAE), even though ANN displayed a reliable performance, it is explicit that the predictive potential of ANFIS model 
is higher compared with the ANN model.  

To validate the constructed machine learning models, several parameters were utilized to evaluate the ability of each model. 
Smith et al. [55] reported the R formula to evaluate the performance of a constructed model. The equations are provided in Table 
10.  In this equation, hi and ti represents the observed and predicted outputs, respectively, ih  and it  are the average value for 
corresponding parameters. Moreover, other statistical criteria were presented to the models to compare the performance. Where k 
is the slope of the regression line is obtained output (hi) against anticipated output (ti) and k' is the anticipated output versus 
obtained output (ti Vs. hi) [56]. As presented in this table, other useful parameters, such as m, n, and Rm were calculated for the 
models [57, 58]. The results demonstrated both machine learning models, could satisfy the mentioned standard condition for each 
criterion. However, the performance of the ANFIS model performed significantly better compared to the ANN model. Therefore, 
the ANFIS is the most accurate model to predict the corrosion behavior of Ni/g-C3N4 coatings.  

 

Fig. 16. The correlation of the observed and predicted corrosion current density of Ni/g-C3N4 nanocomposite coatings obtained by the models:  
(a) ANFIS and (b) ANN. The dash line shows fitted line to the modeling result and solid lines represents the line with a slope of one. 
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Table 10. The validation and performance of ANFIS and ANN models 

Item Formula Condition ANN ANFIS 
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Fig. 17. The effect of electrolysis bath parameters including: (a) Current density, (b) g-C3N4 content, and (c) plating time on the corrosion resistance of 
Ni/g-C3N4 nanocomposite coatings. Each plot was obtained by assuming a constant value for other parameters. The assumed constant value of the 

current density, g-C3N4 content, and plating time was respectively 0.1 A.cm-2, 0.3 g/L, and 45 min. 

 

Fig. 18. Surface plot denoting the effect of current density and g- C3N4 content on the corrosion resistance of Ni/g-C3N4 nanocomposite coatings. 



 Alireza Zarezadeh et al., Vol. 9, No. 3, 2023 
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 3, (2023), 590-606   

604 

Finally, toward the simulation of the influence of bath parameters on the corrosion behavior of Ni/g-C3N4 nanocomposite 
coatings, the ANFIS model, which showed the highest accuracy, was used. ANFIS model has been successfully utilized to study the 
effect of each input parameters by the researchers [22, 26, 64]. As illustrated in Fig. 17, the corrosion current density was greatly 
influenced by electrolysis bath variables. In general, an increase in current density (Fig. 17a) resulted in the lower corrosion 
current density of Ni/g-C3N4 nanocomposite coatings, but the optimum value for current density was 0.1 A.cm-2. The same 
behavior was observed for g-C3N4 content, in which 0.3 g/L resulted in a lower corrosion current density. Also, the 45 min plating 
time presented better corrosion resistance. These modeling results are in agreement with the outcomes of the experiments. 
Additionally, the 3D surface plot obtained from the ANFIS model presented in Supporting Information (Fig. S2) confirmed the 
mentioned results. The synergistic effects of current density and g-C3N4 content (concentration) on the corrosion behavior of Ni/g-
C3N4 coatings were visualized in Fig. 18. However, the effect of current density and g-C3N4 content was complex. Mainly, the higher 
corrosion current density was achieved when the g-C3N4 content increases at a lower current density, which is in agreement with 
experimental results. 

4. Conclusion 

To sum up, several coatings were prepared by changing the current density and concentration of g-C3N4 of the electrolysis 
bath to study the impact of electrolysis bath parameters on the corrosion resistance of Ni/g-C3N4 nanocomposite coatings. The 
results indicated that the addition of small content of g-C3N4 (0.3, 0.9, and 1.8 g/L) in the electrolysis bath resulted in more 
compact surface morphology, better corrosion resistance, higher microhardness, and wear properties. The Ni/g-C3N4 coatings 
showed the lowest corrosion current density (1.1 μA.cm−2) with 0.3 g/L g-C3N4 and 45 min plating time. Moreover, the influence of 
current density on the corrosion behavior of Ni/g-C3N4 was investigated, which revealed the best corrosion resistance at 0.1 A.cm-2. 
ANN and ANFIS machine learning models were utilized to predict the corrosion current densities of Ni/g-C3N4 nanocomposite 
coatings based on current density, g-C3N4 concentration, and plating time. Different ANN and ANFIS models were constructed by 
changing the parameters, and the most suitable ones were selected. Finally, the ANN model with the mean absolute error (MAE) 
value of 0.580 was achieved, which has four neurons and Levenberg–Marquardt backpropagation as a training algorithm. The 
mean absolute error (MAE) of the optimized fuzzy model was 7.02×10-3. The subsequent validity and performance analysis of the 
models verified that the ANFIS model was more robust than the ANN model. R2 of the ANN and ANFIS models was 0.91 and 0.99, 
respectively. By using the ANFIS model, the corrosion current density of Ni/g-C3N4 coatings was predicted with higher accuracy 
and precision. 
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