
J. Appl. Comput. Mech., 9(3) (2023) 623-636  

DOI: 10.22055/JACM.2022.38869.3302  

ISSN: 2383-4536 

jacm.scu.ac.ir 
 

Published online: January 29 2022 

 

 
Shahid Chamran 

University of Ahvaz 

 
 

 

  Journal of 

     Applied and Computational Mechanics 

 

 

Research Paper  

Power Law Nanofluid through Tapered Artery based on a 

Consistent Couple Stress Theory 

Fatemeh Karami1 , Afshin Ahmadi Nadooshan2 , Yaghoub Tadi Beni3  
 

1 
Department of Mechanical Engineering, Lorestan University, Khoramabad, Iran, Email: karamif.mech@gmail.com 

2 Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran, Email: ahmadi@sku.ac.ir 

3 Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran, Email: tadi@sku.ac.ir 

 

Received October 15 2021; Revised January 13 2022; Accepted for publication January 20 2022. 

Corresponding author: A. Ahmadi Nadooshan (ahmadi@sku.ac.ir) 

© 2022 Published by Shahid Chamran University of Ahvaz 

Abstract. Based on couple stress theory, this study investigated non-Newtonian power-law nanofluid flows in converging, non-
tapered, and diverging arteries. In addition to excluding gravity effects artery, geometry included mild stenosis. The momentum 
equation is solved via the Galerkin method, and the results are compared with experimental and classical findings. Although the 
power-law couple stress theory’s relations are first used in the analysis of non-Newtonian blood flow, the results of this theory are 
far more consistent with experimental results than classical results. Comparison of the results of the study of blood flow velocity 
profiles in a non-tapered artery without stenosis by the mentioned theory with experimental and classical theory results shows 
the difference in velocity at the center of the artery between the experimental results and the results of the classical theory is 
36%, while this value has been reduced to 14% for the results of the couple stress theory. The variations in velocity profile with the 
power-law index (n=0.8 and n=0.85) and the dimensionless Darcy number (Da=10-10 and Da=10-7) in all three geometries indicated 
a flat velocity distribution with the increase in the power-law index while increasing the velocity profile with increased Darcy 
number. Mass transfer and energy equations are solved using the extended Kantorovich method. The solution convergence is 
evaluated, and the influence of parameters such as Prandtl number, Schmidt number, and dimensionless thermospheric and 
Brownian parameters on concentration and temperature profiles is obtained.  

Keywords: Couple stress theory, nanoparticle, power-law model, tapered artery, blood flow. 

1. Introduction 

Many researchers are interested in investigating arterial blood flow and its main attributes such as velocity, pressure, and 
shear stress. Such attributes are applicable in diagnosing and treating disorders such as atherosclerosis. Atherosclerosis is a 
disease in which the arterial diameter is reduced and obstructed due to lipid accumulation on arterial walls [1]. As a result, there 
have been numerous studies on the effect of stenosis geometry on blood flow. Haldar [2] studied blood flow in an artery with mild 
stenosis to investigate the effect of stenosis geometry. In his study, the flow resistance decreased with a change in stenosis 
geometry, with the most resistance produced by symmetrical stenosis. 

Nevertheless, stenosis is not the only geometric parameter influencing blood flow. Some studies have aimed to analyze the 
effect of the convergence/divergence of the arterial wall. Nadeem et al. [3] studied the power-law blood flow in a tapered stenosis 
artery, finding the effect of tapered geometry and stenosis on parameters such as impedance, shear stress, and flow velocity. Their 
results indicate a higher velocity in diverging tapered forms compared to direct and converging arteries at the same interval. Liu 
et al. [4] used a limited element method to solve pulsatile blood flow in tapered stenosis arteries numerically and obtained wall 
shear stress distribution. Their study correctly shows flow disturbance at the stenosis region, especially the neck and downstream 
parts leading to separation after the stenosis region. 

In their study on non-Newtonian arterial blood flow, Shukla et al. [5] showed that while flow resistance and wall shear stress 
increase with increased stenosis, such increases are negligible due to the non-Newtonian behavior of blood. This clearly shows 
the significance of blood rheology on flow parameters. Johnston et al. [6] conducted a study on non-Newtonian blood flow in the 
right coronaries of humans, finding that the Newtonian blood viscosity model only performs well in regions with moderate to 
high shear stress, while the extended power-law model gives better results in regions with low shear stress. Liu and Tang [7] 
investigated the effects of the non-Newtonian attributes of blood on the shear stress of the coronary wall using numerical 
modeling of Newtonian and non-Newtonian models. Their study indicates that blood viscosity significantly influences wall shear 
stress, especially at the disturbance points. In a similar numerical study by Chen and Lu [8] on non-Newtonian fluid flow in a two-
branch arterial model with a non-flat branch, the difference in results between Newtonian and non-Newtonian fluids was 
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significant, indicating the non-Newtonian attributes as an essential hemodynamic factor affecting the biology, pathology, and 
formation of atherosclerosis. 

Most studies are based on Navier–Stokes classical theory; however, due to the length parameter and couple stresses in small-
scale (nano and micro scales), flow studies are increasingly investigating newer theories such as the couple stress theory [9, 10]. 
Valanis and Sun [11] studied the Poiseuille flow of blood as a couple stress fluid and compared the velocity profiles obtained from 
the theory with experimental results, finding that blood flow can be described via the linear couple stress theory. Srivastava [12] 
investigated the effects of mild, symmetrical axial stenosis on blood flow based on couple stress fluid flow. The study shows 
increased flow resistance and wall shear stress at specific stenosis with reduced couple stress, while the flow resistance and wall 
couple stress in the couple stress fluid model were more significant compared to the Newtonian fluid model based on Navier–
Stokes equations. In another numerical study by Srinivasacharya and Rao [13] on pulsatile blood flow in a two-branch artery with 
mild stenosis in the main artery based on Stokes’s couple stress theory [14], flow parameters such as impedance, flow rate, and 
shear stress were influenced by the parameters of couple stress fluid. According to their results, impedance, flow rate, and shear 
stress increased with an increase in couple stress fluid parameters. 

In the present study, blood is considered a nanofluid. Nanofluid combines nano-sized metal or non-metallic particles and a 
base fluid with various applications in the energy, medical, electronics, and food industries [15-17]. Pordanjani et al. [15] examine 
the applications and effects of nanofluids in energy systems. According to this study, nanofluids have improved heat transfer in a 
system in most studies. A similar result has been observed in improving microstructure energy efficiency [16]. Sheikhpour et al. 
[18] have studied the application of nanofluids in biomedicine, especially in drug delivery, imaging, and antibacterial activities. 
One of the applications of nanofluid drugs is to prevent the accumulation of blood cells. The inner walls of blood vessels are 
negatively charged. Therefore, to prevent the accumulation of blood cells, therapeutic particles must have a negative charge to 
prevent the accumulation.  

In addition, the study of non-Newtonian fluid flow within the geometry of straight and conical tubes has many applications in 
industry. For example, in some studies, the flow of gels, considered non-Newtonian fluids, has been studied in converging tubes 
and tapered injectors. Gel propellants are composed of liquid fuels and gelling agents that improve the rheological properties of 
the fuel and thus the combustion efficiency [19]. 

Whereas other studies based on couple stress theory on blood flow are based on Newtonian fluid, this paper investigates a 
power-law fluid flow in tapered and non-tapered arteries with mild stenosis using the couple stress theoretical and extended 
relations proposed by Karami et al. [20]. It models blood as a nanofluid, considering its suspension property. Energy and mass 
transfer equations are solved with momentum equations. Many studies have been on blood flow in tapered arteries where many 
terms of the energy and mass transfer equations are omitted using dimensional analysis and gravitational effects [21-23], or only 
momentum equation is used [24-26]. Nevertheless, this study avoids much of the mentioned simplifications and proposes a more 
comprehensive solution for mass transfer and energy equations based on an utterly consistent couple stress theory.  

2. Geometry, Equations, and Boundary Conditions 

The laminar flow of an incompressible, non-Newtonian power-law nanofluid is assumed in the 2D geometry of a tapered 
artery (Fig. 1). The stenosis is assumed to be mild, and wall geometry for the converging and diverging tapered and non-tapered 
arteries at the stenosis point is as follows [27]: 

( ) ( ) ( ) ( )( )1
0 0 0R 1

mmz d z l z d z d− = −Ψ − − −  
, 0 0 0d z d l< ≤ +  (1) 

At the non-stenosis region, the flow is modeled by: 

( ) ( )R z d z=  (2) 

In the above equations: 
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where ( )R z , 0l , 0d  and 0R  are the radius of the tapered stenosis region, length of the stenosis region, distance from the inlet 
to the stenosis, and radius of the non-stenosis tube and δ  is Maximum stenosis height occurring at 1 /( 1)

0 0
mz d l m− −= + . m  is the 

parameter denoting stenosis shape and determining the stenosis curve. 2m=  means a symmetric stenosis. Regardless of the 
gravitational force effects, the equations and boundary conditions governing flow are [23]: 
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where V  is the velocity vector, nfρ  is density, P is the pressure, f is the body force, C is the nanoparticle concentration, BD  and 

TD  are the Brownian and Thermospheric diffusion coefficients, respectively, T is the temperature, nfK  is the thermal 
conductivity coefficient, fu  and Bu  are the filtration velocity and the slip velocity on the wall, respectively. λ  is the wall 
permeability coefficient, 1T  and 1C  are the nanofluid temperature and nanofluid concentration on the wall, respectively. α  is 
a dimensionless quantity dependent on material parameters. It indicates a porous material structure at the boundary region and 

1l  is the length of the artery. Eqs. (9) and (10) respectively show the wall’s axial symmetry, slip velocity, and zero moment. Eq. (11) 
indicates arterial wall permeability [28], while Eq. (12) represents the temperature and concentration development at the arterial 
end. A is a stress tensor consisting of two symmetric and asymmetric components. The symmetric component of the stress 
tensor is obtained by [20]: 

( ) 2ij eff ijjiA P Dδ µ=− +  (13) 
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where ijD , effµ , k , jiM  and kM  are the symmetric component of velocity gradient tensor, the effective viscosity of the power-
law fluid, the flow consistency index, the character of the couple stress tensor, and the character of couple stress vector, 
respectively. The asymmetric component of stress tensor for a power-law, non-Newtonian fluid is given by [20]: 
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 (17) 

where ,i jM  is the gradient vector of couple stress and l  is the characteristic length missing in classical relations. The mentioned 
characteristic length depends on the geometry, boundary conditions, and default conditions of the problems and maybe obtained 
via tests or molecular simulation. Section 3-3 elaborates on this parameter. In Eq. (17), the shear rate, shear stress, and couple 
stress have negative signs because the studied geometry resembles a tube. 

Ultimately, tension tensor consisting of both symmetric and asymmetric components is given by: 

( ) [ ]ji ji jiA A A= +  (18) 

 

Fig. 1. The geometry of non-tapered and tapered arteries [27] 

Fluid flow equations (Eqs. (5-8)) in cylindrical coordinates are non-dimensionalized by these dimensionless parameters: 
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where U is the mean velocity at each flow cross-section. Initially, the continuity equation is non-dimensionalized: 

0

1
( ) 0rv u

R r r z

δ  ∂ ∂  + =   ∂ ∂ 
 (20) 

Dimensional analysis of Eq. (20), assuming mild arterial wall stenosis ( ( )0O / 1Rδ << ) and the satisfaction of ( ( )0 0O / 1R l = ) is 

given by: 
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Therefore, Eq. (21) leads to ( ) ( )0O / O /u z Rδ∂ ∂ = . 

To non-dimensionalize and simplify momentum equations in z and r directions, stress is first calculated: 
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Moreover, shear stress has a negative sign: 
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where zrS  and rzS  are the shear stress tensor parameters. Substituting stress in the momentum Equation, extending it in the r 
direction and non-dimensionalization, and dimensional analysis (assuming ( )0 0O / 1R L =  and ( )0O / 1Rδ << ), we have: 
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Further, Eq. (31) gives: 
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Substituting the symmetric and asymmetric stress tensors in Eq. (18) yields the total stress tensor. Then we substitute it in: 
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By non-dimensionalizing and dimensional analysis of the above equation, the momentum equation in the z-direction is 
simplified: 
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Mass transfer and energy equations are non-dimensionalized via Eqs. (21) and (19) and then simplified using dimensional 
analysis: 
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The dimensionless boundary conditions according to Eqs. (9-12) are: 
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λ

 ∂ ∂ ∂ = = − =− = =  ∂ ∂ ∂
 (39) 

( ) ( ) ( ) ( ),0 1, , 0, ,0 1, , 0.r r L r r L
z z

σ θ
σ θ

∂ ∂
= = = =

∂ ∂
 (40) 

where L is the dimensionless length of the artery in Eq. (40). 

3. Solution of the Equations 

3.1 Solution of the Momentum Equation by Galerkin Method 

The momentum equation (Eq. (34)) is solved using the Galerkin method. Accordingly, first, the desired solution for velocity 
profile is selected [29]: 

( )
3

1
B j j

j

u U c xϕ
=

= +∑  (41) 

1ϕ , 2ϕ  and 3ϕ are the basic functions of the boundary condition, obtained from solving three third-degree equations according to 
the boundary conditions of Eqs. (37-39): 

( ) 3 * 2 *3
1

1 3 5

6 8 24
r r R r Rϕ = − +  (42) 

( ) 4 *2 2 *4
2

1 1 1

24 6 8
r r R r Rϕ = − +  (43) 

( ) 5 *3 2 *5
3

1 5 7

60 48 80
r r R r Rϕ = − +  (44) 

As a result, using the Galerkin method, the functions 1ϕ , 2ϕ  and 3ϕ  are chosen as weighting functions. Multiplying each of 
them by Eq. (34) and integrating within the solution domain gives a system of equations which can yield the constant values 1c , 

2c  and 3c : 

( )

( ) ( ) ( ) ( )
2

23 3 3
*2

2
1 1 1

1

1 1 1
1

n n

B B Bj j j j j j
j j j

P u
r U c x L r n U c x r U c x

z r r r r r r r r r r
r

ϕ ϕ ϕ

ϕ

−

= = =

             ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                 − − − + + − − + +                    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂               
∑ ∑ ∑

( ) ( )
1

3 3
*2

1 1

1 1
n

B Bj j j j
j j

L r U c x r U c x
r r r r r r r

ϕ ϕ

−

= =

                               


          ∂ ∂ ∂ ∂ ∂              + − + − +                ∂ ∂ ∂ ∂ ∂            
∑ ∑

*

0

0
R

dr

        =          

∫  (45) 
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( )

( ) ( ) ( ) ( )
2

23 3 3
*2

2
1 1 1

2

1 1 1
1

n n

B B Bj j j j j j
j j j

P u
r U c x L r n U c x r U c x

z r r r r r r r r r r
r

ϕ ϕ ϕ

ϕ

−

= = =

             ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                 − − − + + − − + +                    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂               
∑ ∑ ∑

( ) ( )
1

3 3
*2

1 1

1 1
n

B Bj j j j
j j

L r U c x r U c x
r r r r r r r

ϕ ϕ

−

= =

                               


          ∂ ∂ ∂ ∂ ∂              + − + − +                ∂ ∂ ∂ ∂ ∂            
∑ ∑

*

0

0
R

dr

        =          

∫  (46) 

( )

( ) ( ) ( ) ( )
2

23 3 3
*2

2
1 1 1

3

1 1 1
1

n n

B B Bj j j j j j
j j j

P u
r U c x L r n U c x r U c x

z r r r r r r r r r r
r

ϕ ϕ ϕ

ϕ

−

= = =

             ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                 − − − + + − − + +                    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂               
∑ ∑ ∑

( ) ( )
1

3 3
*2

1 1

1 1
n

B Bj j j j
j j

L r U c x r U c x
r r r r r r r

ϕ ϕ

−

= =

                               


          ∂ ∂ ∂ ∂ ∂              + − + − +                ∂ ∂ ∂ ∂ ∂            
∑ ∑

*

0

0
R

dr

        =          

∫  (47) 

Substituting the basic functions jϕ  (Eqs. (42-44)) and constant values jc  in Eq. (41) gives the arterial flow velocity profile: 

3.2 Solution of Mass Transfer and Energy Equations by EKM 

The extended Kantorovich method (EKM) is used to solve coupled equations (Eqs. (35) and (36)). In EKM, there is a 
multiplication of two independent functions for each unknown. Commonly, one of the independent functions is approximated 
based on boundary conditions, and after placing the functions in respective equations, using the Galerkin method, the resulting 
equations are multiplied by the weighting functions. After integrating within the solution domain, a differential equation is 
obtained, solvable using numerical or analytical methods. This process is repeated until reaching convergence and the final 
answer [30]. 

Following the above, concentration and temperature functions are: 

( ) ( ) ( ) ( )1 1, ,n nr z z r S r zσ ψ ξ= +  (48) 

( ) ( ) ( ) ( )2 2, ,n nr z z r S r zθ ψ ξ= +  (49) 

where the n symbol indicates the degree of repetitions to obtain the convergency. 
The ( ),S r z  function is selected based on the boundary conditions of Eqs. (37), (38) and (40) and for the sake of homogeneity 

in boundary conditions: 

( )

( )
( ) ( ) ( ) ( )

( )

1 1
1 2 csgn 1 2 csgn

1
csgn 2

1
1 2 csgn

4 1 cos 1
2

,
1

csgn
1 2 2cos

2

n z n L z
R R

n R RR

n r
R

e e
R

S r z

R
n

π ππ

π

π

      + + −             

      +          − +           
=

        + +  

( ) 10 1 2 csgn

1

n n L
R

Re

π

∞

 =  +    

           +            

∑  (50) 

Therefore, the boundary conditions of functions ( )i zψ  and ( )i rξ are: 

( ) ( )0 0, 0 1,2in in L iψ ψ ′= = =  (51) 

( ) ( )* 0, 0 0 1,2in inR iξ ξ ′= = =  (52) 

Substituting Eqs. (48) and (49) respectively in Eqs. (35) and (36) simplify mass transfer and energy equations: 

2 22
1 1 2 2 1

1 1 2 2 12 2 2

1 1 1
1 Re Re 0j j j j jt t t

j j j j j
b b b

N N NS S S
r r r Sc u Sc u

r r r N r r r z z N r r r N z z z

ξ ψ ξ ψ ψ
ψ ξ ψ ξ ξ

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    + + + + + + − − =         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 (53) 

2 22 2
2 2 2 2 2

22 2 2 22 2

1 2

1 2

1 1
PrRe Pr Rej j j j j

t nj j j j

j j

b j j

S S S S S
r r N u u

r r r r r r z z r r z z z z

S S
N

r r r r

ξ ψ ξ ψ ψ
ψ ξ ψ ξ ξ

ξ ξ
ψ ψ

       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         + + + + + + + − −             ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
  ∂ ∂∂ ∂ + + + ∂ ∂ ∂ ∂ 

1 2

1 2 0j j

j j

S S

r r z z

ξ ψ
ψ ξ

      ∂ ∂ ∂ ∂      + + + =       ∂ ∂ ∂ ∂       

 (54) 

The initial approximations for functions 1ξ  and 2ξ  according to the boundary conditions of Eqs. (37) and (38) are: 

( ) ( )2 *2 4 *4
10

1

4
r r R r Rξ = − + −  (55) 

( ) ( )2 *2 6 *6
20 r r R r Rξ =− − + −  (56) 
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Substituting Eqs. (55) and (56) respectively in Eqs. (53) and (54), and then, respectively multiplying them by functions ( )10 rξ  
and ( )20 rξ  followed by integrating into the solution domain [0-R*] gives: 

2 2
1 2 1

1 1 1 2 1 3 1 4 1 5 1 2 6 1 7 1 8 1 9 1 10 12 2
0, 1j j j

j j j j j j j j j j j j

d d
F F F F F F F F F F j

dz dz z

ψ ψ ψ
ψ ψ− − − − − − − − − −

∂
+ + + + + + + + + = ≥

∂
 (57) 

( ) ( )
2

2 1 2 2 1

1 1 2 2 1 3 1 4 1 5 1 1 2 6 1 2 7 1 1 8 1 9 1 10 1 11 12

2

2 22
12 1 13 1 2 14 1 15 1 2 16 1 17 1 18 1

j j j j j

j j j j j j j j j j j j j j j j

j j

j j j j j j j j j

d d d d d
G G G G G G G z G G G G z

dz dz dz dz dz

d d
G G G G G G G G

dz dz

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ

ψ ψ
ψ ψ

− − − − − − − − − − −

− − − − − − −

+ + + + + + + + + + +

  + + + + + + +   
2

19 1 20 1 0, 1j

j j

d
G j

dz

ψ
− −+ = ≥

 (58) 

The Galerkin method is used for each iteration to solve the above differential equations system; therefore, according to the 
boundary conditions of Eq. (51) and the descriptions on Galerkin method (Section 3.1), the functions ( )1 j zψ  and ( )2 j zψ  are 
defined as: 

( ) ( ) ( ) ( )1 2 31 1 2 3j j j jz q z q z q zψ ε ε ε= + +  (59) 

( ) 2 3 2 4 3
2 1 2 3

1 1 1 1 1

2 6 2 12 3j j j jz z Lz z L z z L zψ α α α
         = − + − + −             

 (60) 

( ) ( ) ( )2 3 2 4 3
1 2 3

1 1 1 1 1
, ,

2 6 2 12 3
q z z Lz q z z L z q z z L z

         = − = − = −             
 (61) 

The constant values , 1,2,3ij iε =  and ijα  are obtained by substituting ( )1 j zψ  and ( )2 j zψ  in the system of equations below: 

( )
2 2

1 2 1

1 1 1 2 1 3 1 4 1 5 1 2 6 1 7 1 8 1 9 1 10 12 2

0

d 0, 1,2,3.
L

j j j

p j j j j j j j j j j j j

d d
q z F F F F F F F F F F z p

dz dz z

ψ ψ ψ
ψ ψ− − − − − − − − − −

 ∂ + + + + + + + + + = = ∂  
∫  (62) 

( )
( )

( )

2
2 1 2 2

1 1 2 2 1 3 1 4 1 5 1 1 2 6 1 2 7 1 1 8 1 9 1 10 12

2

1 2 22
11 1 12 1 13 1 2 14 1 15 1 2 16 1 17 1 18 1

j j j j

j j j j j j j j j j j j j j j

p

j j j

j j j j j j j j j j

d d d d
G G G G G G G z G G G

dz dz dz dz
q z

d d d
G z G G G G G G G

dz dz d

ψ ψ ψ ψ
ψ ψ ψ ψ ψ

ψ ψ ψ
ψ ψ

− − − − − − − − − −

− − − − − − − −

+ + + + + + + + +

  + + + + + + + +  
20

19 1 20 1

d 0, 1,2,3.
L

j

j j

z p
d

G G
z dz

ψ
− −

 
 
 
  = = 
 
 + +
  

∫  (63) 

After that, using the values obtained for ( )1 j zψ  and ( )2 j zψ , and substituting them in Eqs. (53) and (54), and then, integrating 
within the dimensionless arterial length [0-L], we have two equations: 

1 2

1 2 3 1 4 5 6 7 2 8 9 1 10

1 1
0j j

j j j j j j j j j j j j j

d dd d
M r M M M M r M M M M M

r dr dr r dr dr

ξ ξ
ξ ξ ξ

      + + + + + + + + + =         
 (64) 

2 2 2 2 1

1 2 3 2 4 5 6 7 8 9 1 2 10 2 11 1

2

2 2 2
12 13 14 15 16 2 17 18 2 19 2 20

1

0

j j j j j

j j j j j j j j j j j j j j j j

j j

j j j j j j j j j j j j

d d d d dd
N r N N N N N N N N N N

r dr dr dr dr dr dr

d d
N N N N N N N N N

dr dr

ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ

ξ ξ
ξ ξ ξ

  + + + + + + + + + +   

  + + + + + + + + + =   

 (65) 

Using Galerkin method and based on the boundary conditions in Eq. (52), 11ξ  and 21ξ  are given: 

( ) ( ) ( )1 21 1 2j j jr x r x rξ β β= +  (66) 

( ) ( ) ( )1 22 3 4j j jr x r x rξ β β= +  (67) 

( ) ( )2 *2 6 *6
1 1,x r r R x r r R= − = −  (68) 

According to the boundary conditions, the functions in Eq. (68) are determined as desired. The constant values , 1,2,3,4ij iβ =  
are obtained via the Galerkin method and by substituting Eqs. (66) and (67) in this system of equations: 

( ) 1 2

1 2 3 1 4 5 6 7 2 8 9 1 10

0

1 1
0, 1,2

R
j j

p j j j j j j j j j j j j j

d dd d
x r M r M M M M r M M M M M dr p

r dr dr r dr dr

ξ ξ
ξ ξ ξ

        + + + + + + + + + = =            
∫  (69) 

( )

2 2 2 2 1

1 2 3 2 4 5 6 7 8 9 1 2 10 2

2

2 2 2
11 1 12 13 14 15 16 2 17 18 2 19 2 20

1 j j j j j

j j j j j j j j j j j j j j

p

j j

j j j j j j j j j j j j j j

d d d d dd
N r N N N N N N N N N

r dr dr dr dr dr dr
x r

d d
N N N N N N N N N N

dr dr

ξ ξ ξ ξ ξ
ξ ξ ξ ξ

ξ ξ
ξ ξ ξ ξ

   + + + + + + + + +   

   + + + + + + + + + +   

0

0, 1,2
R

dr p






= =


 
 
 

∫  (70) 
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Table 1. Geometrical parameters in the numerical examples 

0
/ 3.6L R =  

0 0
/ 1.4l R =  

0
/ 0.2Rδ =  2m =  

0 0
/ 1.4d R =  

 

Table 2. Convergence of ( )
1
zψ and ( )

2
zψ for converging artery 

 1st iteration 2nd iteration 3rd iteration 

1
ψ  4.519 4.536 4.536 

2
ψ  -1.352 -1.357 -1.357 

 
 

  

Fig. 3. Convergence of ( )
2
rξ for converging artery Fig. 2. Convergence of ( )

1
rξ for converging artery 

After calculating the coefficients ijβ  and placing them in Equations (66) and (67), values of functions 11ξ , 21ξ  are obtained by 
placing these new values in Eqs. (53) and (54) and repeat the process of solving new values of functions ( )1 j zψ , ( )2 j zψ . The 
process iterates until convergence. The nth iteration gives the final values for temperature and concentration using Eqs. (48) and 
(49). Solving the above equations is done by Maple software. The constants , , 1,..,10ij ijF M i=  and , , 1,..,20ij ijG N i=  are presented 
in the Appendix. 

Figures 2 and 3 and Table 2 respectively show the convergence of functions ( )1 zψ , ( )2 zψ , ( )1 rξ , and ( )2 rξ  based on the 
material and geometric properties in Table 1. These values are for a section of converging tapered artery ( 0.017ξ =− ) with 
maximum stenosis. The dimensionless pressure gradient ( d /d 29.17P z =− ) is selected according to [31] for the tapered artery with 
a taper angle of 1o. As observed, the Kantorovich method quickly converges, and after the third iteration, the function values cease 
to change. 

3.3 Calculation of characteristic material length  

The characteristic length parameter in couple stress theory depends on the fluid’s geometry, boundary conditions, and 
material properties. The characteristic length can be calculated via experimental methods or dynamic molecular simulation. 
Stokes [14] was the first to introduce the couple stress theory of fluids. In his study, he proposed a method to estimate the 
characteristic length. In this method, using the experimental volumetric flow rate and equating it with the theoretical equation, 
the characteristic length is obtained: 

exp

0

2 d
R

Q AU ru rπ= = ∫  (71) 

In case of missing experimental values, the characteristic length can be estimated via: 

*2

*2

0 0

2 d
R

R
R ru r

R

  = =    ∫  (72) 

The characteristic length can be determined by trial and error, using the velocity profile equation, and substituting it in Eq. 
(72). 

4. Results and Discussion  

4.1 Validation with experimental results 

Figures 4 and 5 compare velocity profiles obtained by this theory and experimental results in [32] for two different flow rates. 
The velocity profiles represent stable blood flow with a hematocrit of 10% in a non-tapered artery without stenosis (R0 = 20 µm). 
According to the experimental results, the power-law and consistency index of the blood fluid with a hematocrit of 10% are 
assumed n = 0.8796 and k = 0.002702 Pa/sn [33]. In Fig. 4, blood flow and pressure gradient mean velocity are 3.9U =  mm/s and 
d / d 118.605P z =  kPa/m, respectively. The theoretical result for the characteristic length is * 0.187L = . This characteristic length 
is calculated using Eq. (72). In Fig. 4, the velocity profile of the classical theory ( * 0L = ) and couple stress theory is compared with 
experimental results, indicating a better match between couple stress and experimental results compared to classical theory. The 
difference in velocity at the center of the artery between the experimental and the classical theory is 36%, while this value has 
been reduced to 14% for the couple stress theory results. Fig. 5 compares the results of couple stress theory (Eq. (41)) and classical 
theory and experimental results in [32] (mean speed: 14.7U = mm/s, d /d 473.077P z=  kPa/m, * 0.31L = ). This characteristic 
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length is obtained via Eq. (72). Fig. 5 shows a better consistency between the couple stress theory and experimental results than 
classical theory. In Fig. 4 and 5, the difference between the couple stress theory and classical theories is significant. This 
difference entirely depends on the geometrics of the problem; that is, for smaller dimensions (micro and nano scales), the 
difference is significant while it is negligible for larger dimensions [34]. This shows the importance of using couple stress theory 
and characteristic length when dealing with the flow in small-scale geometries.  

4.2 Velocity, concentration, and temperature profiles 

Figures 6 and 7 show the dimensionless velocity profiles in non-tapered, converging, and diverging arteries with blood as a 
non-Newtonian fluid. The geometric parameters are as stated in Table 1. The taper gradient for diverging arteries, non-tapered, 
and converging arteries are 0/ 0.017Rξ = , 0/ 0Rξ = , and 0/ 0.017Rξ =− , respectively. The pressure gradient is assumed 
d /d 29.17P z =−  [31], and the velocity profile is for the arterial section with the highest stenosis. 

Figure 6 shows variations in dimensionless velocity profile for three values of the power-law index ( 0.775n = , 0.8n = , and 
0.85n = ) in converging, diverging, and non-tapered arteries. In all three geometries, the increase in the power-law index makes 

the flat velocity profile. Increasing the viscosity by increasing the power-law index near the wall leads to an increase in the 
velocity gradient in this area. As a result, the maximum velocity decreases at a constant flow rate within an artery with a 
specified geometry in these conditions. Further, as shown in Fig. 6, the diverging artery’s velocity profile is higher than non-
tapered and converging arteries for specific dimensionless pressure gradients. Therefore, increasing the radius of the artery 
increases both the pressure gradient and mean flow velocity at each section while maintaining a constant dimensionless 
pressure gradient (Eq. (19)). Table 3 shows the characteristic material length obtained from Eq. (72) for all three arterial geometries, 
including various power-law indices. 

Figure 7 shows the influence of Darcy number on the dimensionless velocity profile in converging, diverging, and non-tapered 
arteries ( 0.8n = ). Increasing the Darcy number increases slip velocity on the arterial wall and velocity profile in all three 
geometries. Increasing the Darcy number leads to a reduced arterial radius, and in turn, increased velocity. The Darcy values 

710Da −=  and 1010Da −=  are selected from [35-37] according to the wall permeability and arterial radius. 

  

Fig. 4. Comparison of theoretical velocity profile with experimental 

results [32] for mean velocity 3.9mm/sU =  

Fig. 5. Comparison of theoretical velocity profile with experimental 

results [32] for mean velocity 14.7mm/sU =  

 

 

Fig. 6. Variation in velocity profile for n = 0.775, 0.8, and 0.85 
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Fig. 7. Influence of Darcy number (Da) on the velocity profile 

  

Fig. 8. Influence of Prandtl number (Pr) on the concentration profile Fig. 9. Influence of Prandtl number (Pr) on the temperature profile 

Figures 8 and 9 show the variations in concentration and temperature profiles for different values of Pr 0.1= , 1 and 10 in 
diverging ( 0/ 0.017Rξ = ), non-tapered ( 0/ 0Rξ = ) and converging ( 0/ 0.017Rξ =− ) arteries. This paper assumes the following 
parameter values: 1tbN N= = , d /d 29.17P z =− , 10Sc = , 0.8n = , and Re 100= . Table 1 shows the respective geometric 
parameters. The power-law ( 0.8n = ) is based on 40% hematocrit in the blood of a healthy individual. Figure 8 shows how the 
concentration profile increases with an increase in the Prandtl number in all three arterial geometries. However, in Fig. 9, Increase 
in Prandtl number reduces the temperature. Reduced thermal permeability or fluid conductivity coefficient, in turn, reduces heat 
transfer and temperature. Although in Fig. 8, increasing the Prandtl number causes minor concentration variations, in Fig. 9, 
increasing the Prandtl number significantly increases the temperature. 

Figures 10 and 11 respectively show the variations in dimensionless concentration and temperature profiles for Sc = 1 and 10 
in the three geometries of diverging ( 0/ 0.017Rξ = ), non-tapered 0/ 0Rξ = ), and converging ( 0/ 0.017Rξ =− ) arteries and with 

Pr 1tbN N= = = , d /d 29.17P z =− , 0.8n = , and Re 100= . Although Fig. 11 shows minor variations in temperature profile with 
increased Schmidt number, in Fig. 10, the gradient of the concentration curve (concentration gradient) close to the artery wall 
significantly increases with increased Schmidt number. In fact, reduced Brownian diffusion coefficient and constant Reynolds and 
Prandtl numbers—leading to a constant viscosity and flow velocity—increase viscosity effects close to the wall and, in turn, 
increase nanoparticle concentration. However, reduced viscosity effects also reduce concentration at the center of the artery. 

Table 3. The calculated length scale for different values of n 

0.85n =  0.8n =  0.775n =   

* 0.456L =  
* 0.55L =  

* 0.639L =  Converging artery 

* 0.5L =  
* 0.6L =  

* 0.697L =  Non-tapered artery 

* 0.545L =  
* 0.652L =  

* 0.758L =  Diverging artery 
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Fig. 10. Influence of Schmidt number (Sc) on the concentration profile Fig. 11. Influence of Schmidt number (Sc) on the temperature profile 

  

Fig. 12. Influence of Brownian parameter (Nb) on the concentration 

profile 

Fig. 13. Influence of Brownian parameter (Nb) on the temperature profile 

  

Fig. 14. Influence of thermophoresis parameter (Nt) on the concentration 

profile 

Fig. 15. Influence of thermophoresis parameter (Nt) on the temperature 

profile 

Figures 12 and 13 show the variations in dimensionless concentration and temperature profiles with increasing bN while 
assuming Pr 1tN = = , d /d 29.17P z =− , 0.8n = , Re 100= , and 10.Sc =  Figure 12 shows the increased dimensionless 
concentration profile close to the wall with increased bN ; however, at the center of the artery, concentration is reduced. 
According to Eq. (19) and considering the constant values for Prandtl and Schmidt’s numbers leading to a constant ratio between 
Brownian diffusion and thermal diffusion coefficients, the concentration gradient near the wall increases with increasing bN . 
Figure 13 shows an increased dimensionless temperature profile with increased bN . The Brownian movement of nanoparticles 
increases thermal conductivity, and in turn, the temperature. 
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Figures 14 and 15 respectively show the variations in dimensionless concentration and temperature profiles for tN  values of 
0.1 and 1, Pr 1bN = = , d /d 29.17P z =− , 0.8n = , Re 100= , and 10Sc = . Figure 14 shows a reduced concentration profile with 
increased tN ; conversely, Fig. 15 indicates the opposite for the dimensionless temperature profile where increasing tN  also 
increases the temperature. 

In Figs. 8-15, concentration and temperature profiles represent the arterial section with the highest stenosis. The 
dimensionless characteristic length for velocity profiles of each section has been obtained using Eq. (72) and Table 3 for a power-
law index of 0.8n = . 

5. Conclusion  

Galerkin and extended Kantorovich methods were used to solve momentum equations and mass transfer and energy 
equations for power-law nanofluid flow in tapered and non-tapered arteries. Figs. 4 and 5 indicate a proper consistency between 
the velocity profiles obtained from the couple stress theory and previously obtained experimental findings compared to classical 
theories’ results. According to Figs. 2 and 3 and Table 2, the convergence in the Kantorovich method for mass transfer and energy 
equations indicates its quick convergence in the third step. 

The influence of parameters such as dimensionless Darcy number and Power-law on the velocity profile, as well as the effect 
of parameters such as dimensionless Prandtl and Schmidt numbers, the thermospheric parameter, and Brownian movement on 
dimensionless concentration and temperature profiles, were investigated. Overall, the effects of the above parameters on velocity, 
concentration, and temperature profiles can be described as follows: 

1. The dimensionless velocity profile in all three arterial geometries increases with an increase in the Darcy number; 
2. Increasing the power-law index flattens the velocity profile curve. As a result, the shear stress near the wall increases. 

Studies have shown that in areas of the artery where the shear stress is low, the accumulation of particle concentrations is 
higher and vice versa. Therefore, particles’ accumulation near the wall decreases with the increasing Power-low index.  

3. Increasing the Prandtl number also increases concentration profile while decreasing the temperature profile; 
4. Increasing the Schmidt number also increases nanoparticle concentration close to arterial walls while reducing it at the 

center of arterial geometry; nevertheless, there is only a minor increase in temperature profile with increased Schmidt 
number; 

5. Increasing the dimensionless Brownian parameter also increases the concentration profile near the arterial wall while 
reducing it near the center of arterial geometry. In addition, increasing the dimensionless Brownian parameter also 
increases the dimensionless temperature profile; 

6. Increasing the dimensionless thermospheric parameter reduces the concentration profile while increasing the 
temperature profile. 

The results of this study, especially the study of various parameters on the concentration of particles, can be effective in 
investigating the decreasing or increasing trend of particles within the artery. These particles can be fat particles such as LDLs or 
drug nanoparticles. Reducing the accumulation of fat particles in the wall is very important in reducing the stenosis of the 
arteries. 
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Nomenclature 

A  Force stress tensor V  Velocity vector 

c  Volumetric volume expansion coefficient l  Characteristic material length  

C  Concentration 0l  Length of stenosis 

aD  Darcy number 1l  Length of artery 

BD  Brownian diffusion coefficient  ijM  Coupe stress tensor 

TD  Thermospheric diffusion coefficient  m  Shape parameter 

nfK  Thermal conductivity n  Power-law index 

P  Pressure  bN  Brownian motion parameter 
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0R  The radius of the non-tapered artery α  Slip parameter 

( )R z  The radius of the tapered artery 1α  Thermal diffusivity  
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Sc  Schmidt number λ  Wall permeability coefficient  
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