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Abstract. Shang et al. (Commun. Nonlinear Sci. 94, 105556, 2022) proposed an efficient and robust synchronization estimation 
between two not necessarily stationary time series, namely the refined cross-sample entropy (RCSE). This method considered the 
empirical cumulative distribution function of distances using histogram estimator. In contrast to classical cross-sample entropy, 
RCSE only depends on a fixed embedding dimension parameter. In this paper, the RCSE is revisited as Freedman-Diaconis rule was 
considered to estimate the number of bins for the cumulative distribution function. Results are illustrated with some simulations 
based on 2D Hénon maps, the sinusoidal model, and the Lorenz attractor. In addition, a practical study of foreign exchange rate 
time series is presented. Specifically, the Canadian/US and Singaporean/US dollar time series were considered to compute the 
synchrony level between the 1995-1998 (before the 1999 Asian financial crisis) and the 1999-2003 (post-crisis) periods. 

Keywords: Refined cross-sample entropy; Freedman-Diaconis rule; time series; 2D Hénon map; Lorenz attractor; foreign exchange 
market. 

1. Introduction 

Cross-sample entropy (CSE) was developed by Lake et al. [1] to measure the synchrony level between two time series. CSE is a 
non-negative value, under which a low CSE is obtained when two time series are highly synchronized, while CSE is larger for 
unsynchronized time series. This way, CSE also corresponds to an associative measure between time series, such as the correlation 
index [2,3]. However, CSE computation depends on two parameters: an embedding dimension � and tolerance � parameters. In 
general, values between 0.1 and 0.25 are considered for � and 1 or 2 for �, in time series of sample size 100-5,000 observations [1]. 

As discussed in [4] and [5], the selection of tolerance parameter � is ambiguous and produces several implications for sample 
entropy and CSE estimations. For sample entropy, [6] proposed the entropy profile to avoid the selection of �, while [5] redefined 
the sample and approximate entropy under a parametric approach and based on eigenvector analysis to eliminate the ambiguity 
arising from choosing tolerance parameter � and analyzed implications in sample entropy estimations. This method considered 
the empirical cumulative distribution function of distances using histogram estimator, i.e., the cumulative distribution function is 
often based on the number of bins. Recently, [7] proposed an efficient and robust synchronization estimation, namely the refined 
CSE (RCSE) measure, which extended entropy profile ideas to CSE and considered the cumulative histogram method (CHM) 
developed in [8]. In contrast to classical CSE, RCSE only depends on a fixed embedding dimension parameter. 

Shang et al.’s work [7] motivated this paper, where number of bins was determined using the Freedman-Diaconis rule [9] as 
proposed in [10]. This in slight difference to Shang et al.'s approach, where number of bins were determined by the range of distance 
divided by parameter �, obtained by the minimum of all distances. Another motivation of this paper was the study of foreign 
exchange rate time series, specifically the Canadian/US and Singaporean/US foreign exchange rate time series. Especially the 
synchrony level between the 1995-1998 (before the 1999 Asian financial crisis) and the 1999-2003 (post-crisis) time series were 
studied using the RCSE. 

The paper is organized as follows. Section 2 starts by briefly presenting the profile sample entropy, then the refined cross-
sample entropy based on Freedman-Diaconis rule is presented. Section 3 illustrates some simulations based on 2D Hénon maps, 
the sinusoidal model, and the Lorenz attractor. Section 4 presents a numerical application of RCSE on foreign exchange rate time 
series. Finally, Section 5 concludes the study. 

2. Sample Entropy Methods 

First, we present the profile sample entropy proposed by [4] and [6]. This measure considered the CHM and a multi-resolution 
binning data-based approach to get a potential set of values for tolerance parameter �. This set was used to construct the profile 
entropy as follows. 
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2.1 Profile sample entropy 

Let {�(�)}, 1 ≤ � ≤ �, be a time series, not necessarily stationary, of length �. For a given embedding dimension parameter �, 
the following steps describe the construction of the profile entropy: 

 
Step 1. Form � − � vectors, each of length � and given by {���}, 1 ≤ � ≤ � − �, where ��� = �(� + �), 0 ≤ � ≤ � − 1. 

 
Step 2. Analogously, form � − � vectors, each of length � + 1 and given by {�����}, 1 ≤ � ≤ � − �, where ����� = �(� + �), 0 ≤ � ≤�. 

 
Step 3. Take each vector {���} of step 1 as template one and compute the Chebyshev distance (or infinity norm distance) for each {���}, as Chebyshev distance is given by 

���� = {max� ���� − ����: 1 ≤ � ≤ � − �, � ≠ �} (1) 

where 

max�"�"#$��%�
���� − ���� = lim(→* + , ���� − ����#$�

�-� .�/( .  

For any �th template vector, the distance vector for an embedding dimension parameter � is ��� = ����, 1 ≤ � ≤ � − �, � ≠ �. 
Analogously for an embedding dimension parameter � + 1, the distance vector is ����� = ������, 1 ≤ � ≤ � − �, � ≠ �. 

 
Step 4. Let 1 be the matrix that contains all the elements of ��� and �����. The range is defined as the set of all unique elements 
of 1 and ordered in ascendent form. In addition, 23�4 is the number of bins of this range. 
 
Step 5. From distance vector ���, the empirical cumulative distribution function 5�6��(7) is computed as 

5�6��(7) = ℙ(��� ≤ �92:;(7)),     1 ≤ 7 ≤ 23�4 ,  

where ℙ denotes probability. 
 

Step 6. Repeat step 5 for all ���, 1 ≤ � ≤ � − �, to compute complete matrix =� of cumulative distributions for a given embedding 
dimension parameter � as 

=� = > 5�6��(1) ⋯ 5�6��(23�4)⋮ ⋱ ⋮5�6#$���� (1) ⋯ 5�6#$���� (23�4)B  

 
Step 7. Analogously for embedding dimension parameter � + 1, the complete matrix =��� of cumulative distributions is obtained 
by repeating step 4 and for all ����� as 

=��� = +5�6����(1) ⋯ 5�6����(23�4)⋮ ⋱ ⋮5�6#$����(1) ⋯ 5�6#$����(23�4).  

 
Step 8. For each column of matrices =� and =���, the average of probabilities is computed, which can be represented respectively 
by 

C�(7) = 1� − � , 5�6��(7)#$�
�-�  

C���(7) = �#$� ∑ 5�6����(7)#$��-� ,     1 ≤ 7 ≤ 23�4 . 
 

 

Step 9. The sample entropy, which is an approximation of conditional probability of two segments that overlap in � + 1 if they 

overlap in �, could be defined using C� and C��� as log ( GH
GHIJ). In this case, 23�4 is the number of bins for sample entropy, because C� and C��� are computed in interval 1 ≤ 7 ≤ 23�4. The latter can be expressed as 

K9�LM2(7) = log N GH(O)GHIJ(O)P ,     1 ≤ 7 ≤ 23�4.  

Consider each value of 7 as a unique value of �. Therefore, 23�4 as number of unique values of � is used for profile entropy. 
The algorithm described in steps 1-9 automatically selects 23�4, derived from signal dynamics. In this case, 23�4 is obtained from 
the data (which involves all possible values of � for a given signal), and is hence the best selection to generate a complete profile 
of entropy. However, [4] and [6] did not present a statistical method to estimate 23�4. Shang et al. [7] considered the range of vectors 
to provide 23�4 for the RCSE case. In this paper we considered the Freedman-Diaconis rule as follows. 

2.2 Freedman-Diaconis rule 

In many applications, it is easy to construct a histogram of the data, but the optimal choice of the partition is not known, 
especially when data length is not large, even if one restricts partitions to intervals of equal length. The Freedman-Diaconis binning 
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rule [9] is proposed to give an automatic, easy to program and efficient method to choose the number of bins for the partition from 
the data. 

Let {Q(�)}, 1 ≤ � ≤ �, be any vector of observations of length �. The relative frequency of the histogram estimation is considered 
for {Q(�)}, which is divided into 23�4 bins. Let 

RST({Q(�)}) = SU({Q(�)}) − S�({Q(�)})  

be the interquartile range of {Q(�)}, where S�({Q(�)}) and SU({Q(�)}) are the first and third quartile of the set of observations {Q(�)}. 
Then,  23�4 was computed from the Freedman-Diaconis binning rule as 

23�4VW = 2RST({Q(�)})��/U  (2) 

For a set of observations {Q(�)} , 1 ≤ � ≤ � , sampled from some probability distribution, the Freedman-Diaconis rule (2) 
minimized the theoretical integral of the squared difference between the relative frequency density and the theoretical one. 

2.3 Refined cross-sample entropy 

In contrast with the original CSE of [11], based on a fixed tolerance parameter �, the RCSE is based on CHM of [6] to obtain a 
range of entropies with several selected � in a determined range. In addition, the dissimilarity measure of the profile entropy is 
redefined, rather than the distance function used for CSE. The method proposed by [7] comprises the following steps: 
 
Step 1. Let {Y(�)} and {Z(�)}, 1 ≤ � ≤ �, be two not necessarily stationary time series of length �. 

 
Step 2. For a fixed and given embedding dimension parameter � , are extracted � − �  vectors of length � , ��(�) ={Y(�), Y(� + 1), … , Y(� + � − 1)}, 0 ≤ � ≤ � − �, and \�(�) = {Z(�), Z(� + 1), … , Z(� + � − 1)}, 0 ≤ � ≤ � − �, for Y and Z, respectively. 

 
Step 3. Permute vectors ��(�) and \�(�) by the range of their respective elements and replace the elements of the vectors by 
integer numbers of set {0,1,2, … , � − 1} . Then, ��(�)  and \�(�)  are respectively permuted as ��] (�)  and \�](�) , where ��] (�) ={^�, ^_, … , ^�} and \�](�) = {`�, `_, … , `�}, and ^� and �̀ are the permuted integer numbers related to original elements. 

 
Step 4. To define the distance/dissimilarity measure between both vectors, Kronecker's delta function is introduced for two 
variables: 

�abcb = d0, �6 ^e ≠ `e ,1, �6 ^e = `e .  

In addition, the dissimilarity measure between two vectors extracted from two time series is defined as 

���� = ;$Gfg(�)�h��(�), \�(�)i,    C��(�) = 1� , �abcb
�

e-� ,  

where the distance is based on Eq. (1) as 

�h��(�), \�(�)i = maxj"e"�$��"�,�"#$� |Y(� + �) − Z(� + �)|. 
 

 
Step 5. Distance vector ��� is constructed as ��� = {����, ��_�, … , ��(#$���)� }. Analogously for vector of length � + 1, the distance vector 

is constructed as ����� = {������, ��_���, … , ��(#$�)��� }. 
 

Step 6. All distance vectors are reordered in ascendent form and put in a set {l�}, � = 1,2, … , 2m, 2m = (� − � + 1)(� − �). Let 

n = min�"�"4p$�Wf%WfIJ
|l� − l���|,    

 

thus the total number of all segments that are divided by the minimum length n is 

23�4 = max�"�"4p$�{l�} − min�"�"4p$�{l�}n . (3) 

In this paper, the Freedman-Diaconis rule given in (2) is proposed to obtain 

23�4VW = 2RST({l(�)})
(� − � + 1)�U(� − �)�U (4) 

and, by matching Eq. (3) and Eq. (4), nVW parameter based on Freedman-Diaconis rule is 

nVW = (� − � + 1)�U(� − �)�U2RST({l(�)}) q max�"�"4p$�{l�} − min�"�"4p$�{l�}r.  

Step 7. For a distance vector ���, the empirical cumulative distribution function 

5�6��(7nVW) = ℙ(��� ≤ 7nVW),     1 ≤ 7 ≤ 23�4VW ,  

is computed. 



1008 Javier E. Contreras-Reyes and Alejandro Brito, Vol. 8, No. 3, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 1005-1013   

Step 8. The complete cumulative distribution matrix is constructed by repeating step 7 for all ���, � = 1,2, … , � − � + 1, as 

=� = + 5�6��(1nVW) ⋯ 5�6��(23�4VW nVW)⋮ ⋱ ⋮5�6#$���� (1nVW) ⋯ 5�6#$���� (23�4VW nVW)..  

Analogously, the complete cumulative distribution matrix for embedding dimension � + 1 is 

=��� = +5�6����(1nVW) ⋯ 5�6����(23�4VW nVW)⋮ ⋱ ⋮5�6#$�� (1nVW) ⋯ 5�6#$�� (23�4VW nVW)..  

    
Step 9. Now, from =� and =���, are respectively defined the averages 

st|u� (7nVW) = 1� − � + 1 , log 5�6��(7nVW)#$���
�-� ,  

st|u���(7nVW) = �#$� ∑ log 5�6����(7nVW)#$��-� ,     1 ≤ 7 ≤ 23�4VW .  

 
Step 10. Previous steps treat ��(�) as template vector while \�(�) is template overlapping vector (objective). To define the direction 
dependency, st|u� (7nVW) and st|u���(7nVW) are defined by changing ��(�) and \�(�), and then by repeating steps 2-9. Then, are 
defined 

v� = st|u� (7nVW) + su|t� (7nVW)2   

v��� = st|u���(7nVW) + su|t���(7nVW)2   

to finally obtain 

TwKM(�, �) = v� − v���.  

The definition of RCSE is based on CHM and, considering all possible values of �, allows to observe the synchronization level 
between the time series in an exhaustive form (by adding one dimension) [7]. In general, the dissimilarity measures are based on 
spatial distances, yielding to erroneously decide that trends are similar although they have different spatial distances. A flowchart 
is presented in Fig. 1 to show the RCSE algorithm based on Freedman-Diaconis rule. 

 

 
 

Fig. 1. Flowchart of RCSE algorithm based on Freedman-Diaconis rule. 
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RCSE was redefined in step 6 of Section 2.3 so that the number of bins was obtained through the Freedman-Diaconis rule. This 
modified the calculus of cumulative distribution function matrices (produced by CHM) and parameter nVW for the range (steps 7-
10 of Section 2.3). Therefore, a new dissimilarity measure is proposed based on Kronecker's delta, Chebyshev distance, sequence of 
symbols and Freedman-Diaconis rule. This proportioned a reasonable and logic alternative to solve the synchronization problem of 
time series. This way, RCSE could estimate the synchronization of two different time series. RCSE is high under weak 
synchronization, while strong synchronization produces low RCSE. 

3. Simulations 

RCSE was implemented with R software [12] for three simulations: 2D Hénon map, the sinusoidal model, and the Lorenz attractor. 
All simulations were carried out with a unit featuring Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 2.00GHz, and 16.0GB RAM. R codes 
used in this paper will be made available upon reasonable request to the corresponding author. 

3.1 2D Hénon map 

The 2D Hénon map is considered because it provides time series to analyze the synchronization between them, using refined 
cross-sample entropy. The 2D Hénon map series [13] is defined as 

d�(� + 1) = 1 + Q(�) − 9�(�)_,Q(� + 1) = x�(�),   

The values of the two parameters 9 and x varied for generating three sets of series: 9 = 1.4, x = 0.3 (Hénon 1), 9 = 1.3, x = 0.35 
(Hénon 2), and 9 = 1.1, x = 0.35 (Hénon 3). For each set of time series, the initial value was �(1) = Q(1) = 0. The schematic diagrams 
of the Hénon maps are shown in Fig. 2. 

Results were obtained by applying RCSE on simulated times series produced by Hénon 1, 2 and 3, for � = 3, 4 and 5. Specifically, 
RCSE was computed between {�(�)} and {Q(�)} for the three cases, which varied according to parameters 9 and x. Hénon 1 time 
series were chaotic, thus the scale of Fig. 3 is based on RCSE of this map. RCSE based on Hénon 3 was more fluctuant and showed 
the biggest difference with respect to Hénon 2 for all �. This indicates the synchrony level of {�(�)} and {Q(�)} from Hénon 1 and 2 
was the most similar, in contrast to synchrony level of {�(�)} and {Q(�)} from Hénon 1 and 3, where the synchrony level of Hénon 
3 was stronger (lower RCSE, implying more synchrony) than of Hénon 1, for all �. For the three cases, the time series could be 
considered as irregular perturbations, so the effect of � on RCSE was faint (� > 1.5). When � increased, in general RCSE tended to 
decrease for all Hénon maps. 

3.2 Sinusoidal model 

The sinusoidal model involves multiple time series, which combine the normally distributed errors {}(�)} with sinusoidal 
functions to obtain noisy and periodical components [10]. For �th time series, the sinusoidal model is 

��(�) = ~� sin(2���� ) + }(�),  

 

Fig. 2. Schematic diagrams of time series produced by the 2D Hénon map, where blue and red lines correspond respectively to {�(�)} and {Q(�)} 
time series. 

 
Fig. 3. The relationship between RCSE and r of the time series produced by the 2D Hénon map. 
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with }(�)~�(0,1), � = 1, … , �, � = 1, … , �. In addition, �� = 5� and 

~� = d10, �6 � ≤ 20,0, �6 � > 20.  

The simulated sinusoidal model considered �=50 and �=100. Fig. 4 illustrates three time series: the periodical type {��(�)}, the 
periodical type with a larger period {��(�)}, and the noisy type {��j(�)} with irregular vibrations. RCSE was applied to simulated 
times series produced for � = 2, 3, 4 and 5. Specifically, RCSE was computed between {��(�)} and {��(�)}, and between {��(�)} and {��j(�)}. Results are shown in Fig. 5. In general, the synchrony level of {��(�)} and {��(�)} was the weakest given the difference of 
periods, in contrast to synchrony level of {��(�)} and {��j(�)}, where the synchrony level was stronger (lower RCSE) for all �. 

3.3 Lorenz attractor 

The Lorenz model (see e.g. [14, 15]) is a chaotic system which has a robust singular strange attractor. The Lorenz attractor is 
given by the following system of differential equations:  

⎩⎪
⎨
⎪⎧ ���� = 9(Q − �),

   �Q�� = 5� − Q − ��,���� = �Q − x�,
  

where 9, x, and 5 are three real positive parameters; and �, Q and � generate the tridimensional space. Classical chaotic behavior 
is obtained by letting 9 = 10, x = 8/3, and 5 = 150. 

Numerical solutions were developed using the Euler-Maruyama method over trajectories of size � = 1000.  �� = �� − ��$� = �/� =0.1 is the length of the time discretization subinterval h�� , ��$�i, � = 1, … , �, with � = 100. Fig. 6 illustrates the simulated trajectories 
for axes � and Q, where both are characterized by periodical behavior. For practical purposes, trajectory � was excluded from the 
analysis because it is on another scale, different from �  and Q. RCSE between �  and Q is given for � = 2, 3, 4 and 5, which 
indicates that synchronization of trajectories increases when � increase. 

The computational cost in the calculus of RCSE based on Freedman-Diaconis rule is considerably lighter related to classical CSE. 
This is because CSE searches for coincidences of distances less than tolerance parameter � using minmax procedure, while RCSE 
estimates directly the number of bins using the Freedman-Diaconis rule. Besides, calculating minmax distance is not trivial from a 
computational perspective, especially for smaller values of � [1]. Consider that several methods to estimate the number of bins 
exist, such as Sturges or Doane, which were considered but discarded because they produced too similar results. 

 

Fig. 4. Components {��(�)} (blue line), {��(�)} (red line), and {��j(�)} (black line) of sinusoidal model. 

 

Fig. 5. The relationship between RCSE and r of components {��(�)}, {��(�)}, and {��j(�)} produced by the sinusoidal model. 
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4. Application 

Financial markets are complex systems where several elements interact with one another to determine asset prices in 
dynamical form. This section considers RCSE based on Freedman-Diaconis rule to analyze the synchronization between Canadian 
to US (CAD/USD) and Singaporean to US (SGD/USD) foreign exchange time series, and compare values from before and after the 
Asian crisis. Among several foreign exchange rate time series analyzed in the literature [16-18,5], we specifically considered the 
SGD/USD time series because the CSE values reported by [16,5] after the Asian currency crisis increased significantly compared to 
those before this crisis. In contrast, as [17,5] reported, the CSE values related to CAD/USD show less synchronism before the Asian 
currency crisis. Therefore, the daily exchange rates of CAD/USD and of SGD/USD time series were considered to contrast an Asian 
and a North American market. Specifically, the synchrony level of the 1995-1998 time series (before the 1999 Asian financial crisis) 
was studied and the 1999-2003 time series, just after the crisis, using the RCSE, i.e., four time series were considered. The RCSE was 
applied to standardized log-returns of CAD/USD and SGD/USD time series, quantifying the impact of policies in response to the 
1999 Asian financial crisis' effects on foreign exchanges.  

Let {�(�)} be a foreign exchange rate time series, where the log-return of �(�) is given by  

T(�) = log( �(�)�(� − 1)),   � = 1, … , �.   

T(�) is the daily appreciation/depreciation rate on concurrences with respect to USD. Fig. 4 illustrates the log-returns of both foreign 
exchange rate time series, where the 1999 Asian financial crisis is highlighted as producing high volatility. It becomes clear that 
high SGD/USD variability was produced in the middle of 1997. The same occurred at the end of 1998 for the CAD/USD case. 

RCSE are illustrated in Fig. 5 for embedding dimension parameters � = 2, 3, 4 and 5. The blue lines represent higher values than 
the red lines, implying that RCSE of foreign exchange rate log-returns after the Asian crisis were higher than those produced before 
the crisis. Results reveal that foreign exchange rate log-returns before crisis had larger synchronization than post-crisis ones, in 
line with the fact that in the period posterior to the crisis foreign exchange volatility increased. This result as the exchange rate 
regime of Singapore moved around the US dollar before the Asian crisis and had moved to manage floating after the crisis [16]. This 
is consistent with the findings of [5]. Indeed, asynchrony was produced after the Asian crisis, given that exchange rate regimes or 
liquidity and the policies changed after the shock. 

 

Fig. 6. Left: Trajectories � (blue) and Q (red) produced by Lorenz attractor. Right: Relationship between RCSE and � of trajectories � and Q. 

 

Fig. 7. Log-returns of CAD/USD and SGD/USD foreign exchange rate time series. 
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Fig. 8. The relationship between RCSE and � of log-returns of CAD/USD and SGD/USD foreign exchange rate time series. RCSE were obtained by 
comparing the log-returns before the Asian crisis (blue lines) and after the crisis (red lines). 

5. Concluding Remarks and Further Works 

In this paper, the profile entropy and refined cross-sample entropy have been revised. Specifically, the refined cross-sample 
entropy was redefined by the histogram estimator based on Freedman-Diaconis rule, which allowed finding the number of bins and 
posteriorly the complete cumulative distribution matrices for any embedding dimension. As further work, more complex simulated 
time series could be obtained by the use of chaotic attractors in a three-dimensional space [15] or with more dimensions [14], 
especially when time series are perturbed with Gaussian [19, 20] or non-Gaussian [15, 21] noise. Besides, the synchronization of 
asymmetric chaotic maps [20] and its characterization in the Fisher-Shannon information plane [21] could be studied. The 
construction of refined cross-sample entropy based on time series affected by common external factors [22] could provide an 
important insight to analyze refined cross-sample entropy properties. Finally, researchers may consider the proposed methodology 
for further investigations, including the study of nonlinear interactions between biological and other climatic variables [23, 24]. 
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