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Abstract. Perturbed motions of a rigid body, close to the Lagrange case, under the action of restoring and perturbation torques of 
forces are investigated in the paper. The following problem is formulated: investigating solutions behavior of system of equations 
of motion for nonzero values of small parameter on a sufficiently long time interval. To analyze a nonlinear system of equations 
of motion, the averaging method is used. The problem can be decomposed into slowly and quickly changing variables. Conditions 
for the possibility of averaging the equations of motion with respect to the phase of nutation angle are presented and averaging 
procedure for slow variables of a perturbed motion of a rigid body in the first approximation is described. As an example of the 
developed procedure, we investigate a perturbed motion, close to Lagrange case, taking into account constant dissipative and 
small torque, and dissipative torques depending on slow time. A new class of rotational motions of a dynamically symmetric rigid 
body about a fixed point has been investigated with restoring and perturbation torques of forces being taken into account. 

Keywords: Perturbed motion, Averaging method, Torque, Lagrange’s case, Rigid body. 

1. Introduction 

The motion of a rigid body about a fixed point is one of the important problems in mechanics. In dynamics of a rigid body 
with a fixed point there exists vast bibliography on the perturbed motions, close to Lagrange top, and on the applications in the 
problems of flying vehicle entry into the atmosphere [1, 2], rotating projectile motion [3] and gyroscopy [4-8]. 

In the theoretical aspect the problems attract the attention of specialists in the field of theoretical mechanics. They can be 
quite rigorously formulated within the framework of dynamic rigid body models in Lagrange’s case, which is the unperturbed one. 
The refinement of the models under study is carried out by taking into account the perturbation torques of various physical 
nature, both internal and external. 

The mathematical description of the symmetrical top motion in the field of gravity is one of the solved problems of rigid body 
dynamics. Many advanced treatise of classical mechanics include this problem [1-9]. The investigations of the dynamics of 
rotating bodies is important for some applications in astronautics [10]. 

In V.S. Aslanov’s monograph [2] the motion of the rigid body in the atmosphere under the action of biharmonic air dynamic 
torque and small perturbations was studied. 

In [5, 11], an averaging procedure for slow variables of a perturbed motion of a rigid body, close to Lagrange’s case, in the first 
approximation was described. A perturbed motion of Lagrange’s top, taking into account the torques acting on a rigid body from 
the external medium was studied. 

The evolution of the motion of a rigid body, close to the Lagrange gyroscope, under the action of an unsteady perturbation 
torque was investigated by Akulenko et al. [12]. The generalization of this problem is considered in [13], when the restoring and 
perturbation torques are slowly varying in time. 

The perturbed fast rotations of a rigid body, close to regular precession in the Lagrange case, were considered by Akulenko et 
al. [14]. Leshchenko [15] studied the motion of a rigid body, close to regular Lagrangian precessions, under the action of 
perturbation torque and a restoring torque, depending on the nutation angle. Akulenko et al. [16-18] studied the evolution of the 
rigid body rotations, close to regular precession, under the action of a restoring torque, depending on slow time and nutation 
angle, as well as a perturbation torque slowly varying in time. The perturbed motions of a rigid body, similar to Lagrange top, have 
been considered in a number of works such as [1, 2, 5, 11-21]. 

In [5 (Sections 4.8.2, 11.3), 14-18, 21] the perturbed fast rotational motions of a rigid body, close to regular precession in 
Lagrange’s case, were studied for different orders of smallness of the projections of the perturbation torque vector. In [5 (Section 
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4.8.3)], the perturbation torques are small compared to the restoring one. In contrast to [5 (Sections 4.8.1, 11.1, 11.2), 11-13, 20], 
studies [14-18, 21] considered the case of a rigid body that rotates rapidly about the axis of dynamic symmetry, and therefore the 
unperturbed solution was not the trajectory of motion in Lagrange case, but rather some simpler solution. 

The motion of a symmetric Lagrange’s gyroscope under the action of perturbation torques, Newtonian force field and gyro 
moment vector was considered by Amer, W.S. [20]. The procedure of averaging proposed in [5, 14] for studying the fast rotation of 
Lagrange’s top was applied by Abady and Amer, T.S. [21] for investigation of the rotation a rigid body in the presence of a 
Newtonian field of force, gyro and perturbation torques. 

Dissipation is an important factor of determination of heavy symmetric top’s motion. Tanriverdi [22] estimated dragging with 
simple models; it is investigated as torque in Euler equations to be solved mathematically. The motion of a heavy symmetric rigid 
body with a fixed point under the action of forces caused by the surrounding dissipative medium has been considered in [23]. 
Some qualitative and quantitative results on motion of a slightly asymmetric heavy top subject to small viscous damping were 
investigated in [24]. 

A problem of stationary motions of a dynamically symmetric heavy rigid body under the action of dissipative torque and the 
constant torque was considered by Karapetyan [25]. Kononov and Vasylenko [26] considered rotation about a fixed point of a 
heavy dynamically symmetric rigid body with arbitrary asymmetric cavity completely filled with ideal fluid in a resisting medium. 
The conditions of asymptotic stability of the uniform rotations of an asymmetric rigid body in a resisting medium was obtained 
by Kononov [27]. The rotation of a rigid body is maintained by a constant torque that is directed along the third principal axes. The 
motion of a rigid body with an arbitrary cavity containing a heavy multilayer ideal fluid was studied using a linear problem 
statement in [28]. Ivashchenko [29] studied heavy symmetrical top’s motion with a cavity filled with viscous fluid, when the axis 
of the top is diverged from the vertical. 

Scarpello and Ritelli [30] computed in the Lagrange case the Euler angles of precession  and proper rotation  in actual form 
through hypergeometric functions. The motion of symmetrical rigid body without weight under viscous dissipation was studied. 

The author in [31] analyzes lower-order resonances in the motion of the Lagrange top with a small mass asymmetry. The 
secondary resonance effects in the spherical motion of a heavy asymmetrical rigid body with moving masses were investigated 
by Lyubimov [32], in the case, close to the Lagrange top.  

The asymptotic stabilization of a top to a steady rotation about axes of symmetry was investigated by Wan et al. [33]. A rigid 
body forced by a nonstationary perturbation torque with zero mean value was studied by Aleksandrov and Tikhonov [34]. The 
control strategy for attitude stabilization of the body was based on the usage of dissipative and restoring torques. The motion of a 
heavy Lagrange’s gyroscope with inequality of the equatorial moments of inertia was studied by Holmes and Marsden [35].  

Interest to rigid body rotation about a fixed point attracts a wide circle of specialists, and not only in rigid body dynamics, but 
also in control theory [36], hydrodynamics [37], physics [38] and elasticity theory [39]. 

When axisymmetric magnetized body moves in constant field, close to regular precession, the following equations coincide: 
motion of the satellite to motion of the Lagrange gyroscope. It is known that a dynamically symmetric satellite moves the same 
way as a heavy rigid body in the Lagrange case, once the satellite possesses a magnetic torque moved along dynamic symmetry 
axis [40]. 

The resemblance of the problem of Lagrange’s top motion in case of potential perturbations to the problem of satellite’s 
rotation can be observed. The latter’s mass center repositions in the equatorial plane’s circular orbit, being affected by the Earth’s 
magnetic field [41-43]. 

The Lagrange case occupies a special place in the range of problems in rigid body dynamics. This is explained by its proximity 
to a wide range of practical problems of gyroscopic technology and is associated with the possibilities of its theoretical analysis by 
classical methods of theoretical mechanics and vibration theory. The initial conditions are the nature of the body’s motion, 
without resorting to integrating the equations of motion. 

The mathematical model of a symmetric top represents an entire range of physical systems, including a child’s spinning top 
toy, a variety of navigational instruments, the spinning earth, etc. These are all examples of gyroscopic systems, so called because 
they all exhibit peculiar behavior characteristic of the spinning gyroscope. We shall choose the symmetric top to develop the 
mathematical theory explaining the phenomenon of gyroscopic motion [44]. 

Besides the toy, there are many industrial applications of the spinning top such as navigation of the closely related gyroscope 
[45]. Because the earth had an initial spin on its polar axis when formed and because it is an oblate spheroid (slightly flattened at 
the poles), it acts like a top. The torque is due to gravitational attraction, primarily by the sun and moon, and would be zero if the 
earth were spherical. This torque is extremely weak and gives a processional period of 26000 years; in 80 years the spin axis 
processes 1°  [46].  

Author of book [47] considers an analytical solution for the dynamics of axially symmetric rotating objects. This work provides 
the gyroscopic effects theory, elaborating on their physics and utilizing mathematical models of Euler’s form for the motion of 
non-fixed spinning objects. 

In dynamics of a rigid body with fixed point there is vast bibliography on the theoretical researches of the perturbed motions 
that are close to Lagrange case, and on the applications to dynamics of space vehicle and flying machines, of gyrosystems and 
other engineering objects [2, 5, 7, 13, 22, 44-49]. A series of books and papers are dedicated to dynamics of a rigid body in a 
resistant medium (see, for example, works [2, 5, 7, 8, 11-24, 25, 26, 29, 48, 50, 51]). 

In the first approximation, we provide a description of an averaging procedure for slow variables of a rigid body’s perturbed 
motion similar to the Lagrange top. A series of applied problems permit averaging over the phase of the nutation angle θ . We 
analyze a perturbed motion similar to Lagrange’s case, taking into consideration the torques influencing the rigid body from 
external medium. In contrast to the procedure of averaging with respect to the Euler-Poinsot motion, averaging with respect to 
the Lagrange motion permits us to examine the motion with external force torques, large in absolute value, as the unperturbed 
motion. 

A non-standard approach to the selection of evolutionary variables is proposed to consider the roots of the Lagrange 
polynomial. Its results may be of interest to specialists in the field of rigid body dynamics, gyroscopy, and applications of 
asymptotic methods.  

In this paper we present a new approach for the investigation of perturbed motions of Lagrange top for perturbations which 
assumes averaging with respect to the phase of the nutation angle. Nonlinear equations of motions are simplified and solved 
explicitly, so that the description of motion is obtained. 

Asymptotic approach permits to obtain some qualitative results and to describe evolution of rigid body motion using 
simplified averaged equations. Thus it is possible to avoid numerical integration. We present a unified approach to the dynamics 
of angular motions of rigid bodies subject to perturbation torques of different physical nature. 

In our paper the perturbed fast rotations of a rigid body are considered. An averaged system of the motion equations is 
obtained and investigated. We consider another possible variant of application of the averaging method for the perturbed motion 
close to Lagrange’s top, this variant being different from the known ones (see, for example [5]). 
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In many applications, the angular velocity of the proper rotation of a rigid body significantly exceeds other components of the 
angular velocity of the body. The practical value of the results of this work is that it gives a qualitative and quantitative analysis of 
the motion of a rigid body under the influence of a number of perturbations that occur in the dynamics of satellites and 
gyroscopes. The obtained results can be used in studying the problems of stabilization of motions of mechanical systems. 

The importance of this study is due to its different applications in many fields, for example in physics, celestial mechanics 
and engineering. 

We can see from this survey that there is an extensive literature on the dynamics of a rigid body under the action of 
perturbation torques of various physical nature. The researches in this area is in connection with the problems of motion of flying 
vehicles, gyroscopes, and other objects of modern technology. 

The plan of paper is as follows. In Sect. 1 the original equations are derived and the assumptions are formulated. In Sect. 2 we 
make the assumptions which means that the direction of the angular velocity of the body is close to the axis of dynamic 
symmetry; the angular velocity of the body is sufficiently large. In Sect. 3 we find expressions for real roots of the cubic 
polynomial. This is a distinctive feature of our problem as opposed to analysis carried out in [5, 11-20]. The perturbed motions of a 
rigid body motion, close to Lagrange top, were investigated in general case with the help of the averaging method in the works [5, 
11-13]. The fast variable θ  for unperturbed motion of expressed in terms of elliptic sine. In our paper θ  is elementary function 
of sine. This is an element of novelty in our investigation. Conditions for the possibility of averaging the equations of motion over 
the phase of the nutation angle are presented and averaged system of equations is obtained. In Sect. 3, an example, 
corresponding to the body’s motion in a medium with linear dissipation, is considered. In Sect. 4, we study the rigid body motion 
under the action of dissipative torques depending on slow time. 

The averaged system for the projection of the angular momentum vector on the vertical Gz and total energy H was integrated 
numerically for various initial conditions and parameters of the problem. 

2. Equations of Motion 

Consider the perturbed motion about a fixed point of a dynamically symmetrical heavy rigid body in the case of perturbations 
of arbitrary nature. The equations of motion have the form: 

1

2

3

( ) sin cos , ( sin cos )cosec ,

( ) sin sin , cos sin ,

, ( , , , , , , ),  1,2,3, ( sin cos )ctg .i i

dp d
A C A qr M p q
dt dt
dq d

A A C pr M p q
dt dt
dr d

C M M M p q r i r p q
dt dt

ψ
µ θ ϕ ε ϕ ϕ θ

θ
µ θ ϕ ε ϕ ϕ

ϕ
ε ψ θ ϕ τ ϕ ϕ θ

+ − = + = +

+ − =− + = −

= = = = − +

 (1) 

Dynamic Eq. (1) are written in projections on the principal axes of inertia of the body, passing through point O . Here , ,p q r  
are the projections of the angular velocity vector of the body on these axes; , 1,2,3iM iε =  are the projections of the vector of the 
perturbation torques on the same axes; , ,ψ ϕ θ  are the Euler angles; ε  is a small parameter characterizing the magnitude of 
the perturbations; A  and C  are the body’s respectively, equatorial and axial moments of inertia relative the fixed point 

,O A C≠ . 
In particular, when 0ε=  the system Eq. (1) describes motion in the Lagrange case [3, 5-9]. Figure 1 shows the Lagrange top, in 

which, the ellipsoid of inertia relative to a fixed point O  is an ellipsoid of revolution. Oxyz  - stationary coordinate system; 

1 1 1Ox y z  - moving coordinate system associated with the ellipsoid of revolution; axis 1Oz  is the axis of dynamic symmetry of the 
body. The center of gravity of the body lies on the axis 1Oz , the distance from the stationary point O  of the body to the center of 
gravity 1C  is l . Force of gravity of the spinning top m=P g  and is directed vertically downward, m  is the mass of the body, g  
is the acceleration due to gravity. It is assumed that at the initial moment of time the body performs a fast rotation, θ  the angle 
of deviation of the axis 1Oz  of dynamic symmetry from the vertical. In the case of a heavy top, in the first three equations (1), the 
restoring moment mglµ =  and 0ε= . The study of the system of equations (1) is related to the problems of motion of 
gyroscopes, flying vehicles, and other devices of modern technology. 

 

Fig. 1. Lagrange’s top. 
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The problem that we formulate is that of investigating the asymptotic behavior of the solution of system Eq. (1) for small ε . 
This will be done by employing the averaging method [52] on a time interval of order 1ε− . We present the basic information about 
the unperturbed motion in the general case. 

The first integrals of the equations of motion for the unperturbed system Eq. (1) are [3, 5-7]: 

2 2 2
1 2 3

1
sin ( sin cos ) cos , [ ( ) ] cos , ,

2zG A p q Cr c H A p q Cr c r cθ ϕ ϕ θ µ θ= + + = = + + + = =  (2) 

where zG  is the projection of the angular momentum vector on the vertical Oz , H  is the total energy of the body, r  is the 
projection of the angular velocity vector on the axis of dynamic symmetry, , 1,2,3ic i=  are arbitrary constants 2( )c µ≥− . 

The expression for the nutation angle θ  in the unperturbed motion for the general case as a function of time t , of the 
motion integrals Eq. (2) and of arbitrary phase constant β  is known [3, 5-7]: 

2
1 2 1 1 2 3

1 /2
3 1

cos ( )sn ( , ), 1 1 ,

[ ( ) / (2 )] , sn( , ) sinam( , ),

u u u u t k u u u

u u A t k t k

θ α β

α µ α β α β

= = + − + − ≤ ≤ ≤ < <+∞

= − + = +
 (3) 

2 1 2
2 1 3 1( )( ) , 0 1.k u u u u k−= − − ≤ <  (4) 

Here u  is a periodic function of time with the period ( ) /K k α , where ( )K k  is the complete elliptic integral of the first kind; 
sn , amu u  are respectively called elliptic sine and the delta amplitude [53], k  is the modulus of the ellipticity of the functions, 

1 2,u u  and 3u  are real roots of the cubic polynomial: 

2 2 2 2( ) [(2 2 )(1 ) ( ) ].zQ u A H Cr u u A G Cruµ−= − − − − −  (5) 

Relations between the roots of the polynomial ( )Q u  of Eq. (5) and first integrals Eq. (2) can be written in the following way: 

2 2 2

1 2 3 1

1 2 1 3 2 3 2

2 2

1 2 3 3

,
2 2

1 ,

.
2 2

z

z

H Cr C r
u u u F

A

G Cr
u u u u u u F

A

H Cr G
u u u F

A

µ µ µ

µ

µ µ µ

+ + = − + ≡

+ + = − ≡

=− + + ≡

 (6) 

Formulas Eq. (2), (3), (6) describe the solution of system Eq. (1) when 0ε= . 

3. The Averaging Procedure 

Let us make the following basic assumptions: 

2 2 2 2, ,p q r Cr µ+ << >>  (7) 

which means that the direction of the angular velocity of the body is close to the axis of dynamic symmetry; the angular velocity 
is sufficiently large. 

If the body performs fast rotation about the axis of symmetry, then the potential energy of the body is small in comparison 
with the kinetic energy T , and we obtain the following in the first approximation: 

21
, .

2zG Cr H T Cr≈ ≈ ≈  (8) 

If the angular velocity r  of the body is large, the square modulus of ellipticity of the functions can be presented in the form: 

2 1
2 1 3 1( )( ) 1,k u u u u −= − − <<  (9) 

after realization of the second initial assumption Eq. (7) we obtain: 

1 3 2 3 1 2 3, , .u u u u u u u<< << + <<  (10) 

Then from relations Eq. (6) we obtain: 

3
3 1 1 2

1

, .
F

u F u u
F

= =  (11) 

After a number of transformations with regard to Eq. (6) we find expressions for real roots of the cubic polynomial Eq. (5) in 
the form: 

2 2
1 2 2 1 3 2 2 2 1 3 3 1

1 1

1 1
[ 4 ], [ 4 ], .

2 2
u F F F F u F F F F u F

F F
= − − = + − =  (12) 

Then, there is no need to solve cubic Eq. (5) with respect to iu . This is the main distinguishing feature of our problem. 
Let us reduce the equations of perturbed motion Eq. (1) to the form allowing application of the averaging method. To do this, 

we identify slow and fast variables. In the considered problem, the first integrals Eq. (2) will be slow variables for the perturbed 
motion Eq. (1). In the case of fast rotation of a body about the axis of symmetry the angle of precession ψ  is also slow variable [7]. 

We reduce the first three equations in Eq. (1) after several transformations to the form [5, 11]: 
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1 2 3

1 2 3

1
3

[( sin cos )sin cos ],

( ),

, ( , , , , , ), 1,2,3.

z

i i

dG
M M M

dt
dH

M p M q M r
dt
dr

C M M M p q r i
dt

ε ϕ ϕ θ θ

ε

ε ψ θ ϕ−

= + +

= + +

= = =

 (13) 

Here and in the last three equations in Eq. (1) it is assumed that variables , ,p q r  are expressed as functions of 
, , , , ,zG H r ψ θ ϕ  and substituted into Eq. (1) and Eq. (7). Here ε  is a small parameter.  
The right-hand sides of Eq. (13) contain two fast variables, which creates difficulties for the application of the averaging 

method connected with the possibility of appearance of resonances. To eliminate this difficulty we  require that the right-hand 
sides of Eq. (13) for slow variables depend just on a single fast variable, the angle of nutation θ , and are periodic functions with 
respect to phase of nutation angle θ  with the period 2π . We also require that the right-hands sides of Eq. (13) have the 
following structural properties of perturbation torque (see Eq. (2)): 

* * *
1 2 1 1 2 2 3 3sin cos ( , , , ), ( , , , ), ( , , , ).z z zM M M G H r M p M q M G H r M M G H rϕ ϕ θ θ θ+ = + = =  (14) 

We consider for determination the case when the perturbation torques satisfy the conditions: 

1 2 3 3, , , ( , , , ).zM pf M qf M M f f G H r θ∗= = = =  (15) 

We assume satisfied the necessary and sufficient conditions Eq. (14) or, in particular, the sufficient conditions Eq. (15), which 
ensure that relations Eq. (14) are held. Then the system Eq. (13) of equations of the perturbed motion of a rigid body, close to 
Lagrange case, can be represented in the form: 

* *
1 1 1 3

* *
2 2 2 3

1 *
3 3 3

( , , , ), sin cos ,

( , , , ), ,

( , , , ), .

z
z

z

z

dG
U G H r U M M

dt
dH

U G H r U M M r
dt
dr

U G H r U C M
dt

ε θ θ θ

ε θ

ε θ −

= = +

= = +

= =

 (16) 

Here 1 2 3, ,U U U  are 2π  – periodic functions of phase of nutation angle θ . 
For fast spinning rigid body if 2 1k <<  from Eq. (3) for u  we obtain approximate formula: 

2
1 2 1cos ( )sin ( ).u u u u tθ α β= ≈ + − +  (17) 

The procedure of averaging for equations Eq. (16) for slow variables , ,zG H r  of the first approximation consists in the 
following. We substitute into the right-hand sides of system Eq. (16) the fast variable θ  from expression Eq. (17) for the 
unperturbed motion: 

2
1 2 1arccos[ ( )sin ( )].u u u tθ α β≈ + − +  (18) 

Averaging the right-hand sides of the resulting system with respect to t , we obtain with regard to Eq. (3), (6) the averaged 
system of the first approximation: 

1 2 3

2 /

0

( , , ), ( , , ), ( , , ),

( , , ) ( , , , ( )) , 1,2,3,
2

z
z z z

z zi i

dG dH dr
V G H r V G H r V G H r

dt dt dt

V G H r U G H r t dt i
π α

ε ε ε

α
θ

π

= = =

= =∫
 (19) 

while expression Eq. (18) is inserted into Eq. (19) instead of ( )tθ θ= . 
Thus, according to the proposed method, the study of perturbed Lagrange motion is carried out in the following way. Let 

perturbation torques iMε  satisfy conditions Eq. (14) or, in particular Eq. (15). We calculate functions , , 1,2,3,i iM U i∗ =  with the 
help of relations Eq. (14) - (16). Then, according to Eq. (19), we average functions iU  using expressions Eq. (17), (18), and from the 
averaged system Eq. (19). System Eq. (19) is much simpler that the initial system Eq. (1), since it has a lower order (three instead of 
six), is autonomous and does not contain fast oscillations. 

The question about proximity of solutions of system Eq. (16) and averaged system Eq. (19) is considered in [54] in the case of 
solution for θ  of the form Eq. (17) having error ( )O δ , where 1δ <<  is a small parameter. Estimate of proximity of solutions of 
system Eq. (16), (19) on time interval 1~ ε−  consists of the sum of estimate of approximation of unperturbed solution δ  and 
small parameter ε , which characterizes the value of perturbations [54]. 

After investigating and solution of system Eq. (14) for , ,zG H r  slow variables , 1,2,3iu i=  is determined according to 
formulas Eq. (12). 

4. Motion of a Rigid Body under the Action of Dissipative Torque and a Small Torque that is Constant in 
the Attached Axes 

As an example of the technique, let us consider perturbed Lagrange motion with allowance for the torques acting on our rigid 
body from the surrounding medium and under the action of a torque that is constant in the attached axes and is applied along 
the axis of symmetry. We take the perturbation torque , 1,2,3iM iε =  in the form [4, 5, 7, 11]: 

1 2 3, , , , 0.M ap M aq M br a bη=− =− =− − >  (20) 

 



 Dmytro Leshchenko et. al., Vol. 8, No. 3, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 1023-1031   

1028

Here a  and b  are certain constant proportionality coefficients depending on the medium’s properties and the body’s shape, 
constη = .  
Torques Eq. (20) satisfy the conditions Eq. (14), (15) for the possibility of averaging with respect to phase of the nutation angle 

θ . System Eq. (13) can be written as follows: 

2 2 2

1 1

[ ( sin cos )sin cos ] cos ,

[ ( ) ] ,

.

zdG
a p q br

dt
dH

a p q br r
dt
dr

C br C
dt

ε ϕ ϕ θ θ εη θ

ε εη

ε εη− −

=− + + −

=− + + −

=− −

 (21) 

Integrating the third equation in Eq. (21), we obtain ( 0r  is the arbitrary initial value of the axial rotation velocity, tτ ε=  is the 
slow time): 

1 1 1
0( )exp( ) .r r b bC bη τ η− − −= + − −  (22) 

Substituting Eq. (22) for r  in the first two Eq. (21), we average according to Eq. (19). We note, that with regard to Eq. (8), (11): 

2
1 2

1

1
( ) ~ 1.

2 2

F
u u

F
+ =  (23) 

After some transformations averaged system of the first approximation has the form: 

1 1 1 1 1 1
0

1 1 1 2 1 1 1 1 1 2 2 1 1
0 0

( )( )exp( ) ,

2 ( )( ) exp( 2 ) ( )(2 1)exp( ) 2 .

z
z

dG
aA G aA C b r b bC b aA C

d
dH

aA H aA C b r b bC r b b aA C bC b aA C aA
d

η τ η
τ

η τ η η τ η µ
τ

− − − − − −

− − − − − − − − − − −

+ = − + − −

+ = − + − − + − − + +
 (24) 

Solution of the system Eq. (24) is described as follows: 

1 1 1 1
0 0 0

2 1 1 2 1 1 1 1 2 2
0 0 0 0

( )exp( ) ( )exp( ) ,

1 1 1
( )exp( 2 ) ( ) exp( 2 ) ( )exp( ) .

2 2 2

z zG G Cr aA C r b bC Cb

H H Cr aA C r b bC Cb r b bC Cb

τ η τ η

µ τ η τ η η τ η µ

− − − −

− − − − − − −

= − − + + − −

= − − − + + − − + − + +
 (25) 

Here 0, 0zG H  are arbitrary initial conditions of the projection of the angular momentum vector on the vertical Oz  and of the 
body’s total energy. 

Let us point out some qualitative features of motion in the case in question. The modulus of the axial rotational velocity r  
and the projection of the angular momentum vector on the vertical Oz  zG  asymptotically approach to values 

1 1, zr b G Cbη η− −=− =− . Total energy H  is changed asymptotically and approaches to value 2 20.5H Cbη µ−= + . 

5. The Motion of Rigid Body under the Action of Dissipative Torques Depending on Slow Time 

We investigate the perturbed Lagrange motion with torques applied to the body from the surrounding medium. This is the 
case, for example, for a medium the viscous properties of which change due to varies in the density, temperature of which is 
linearly dissipative and has the form [12, 13, 17, 18]: 

1 2 3( ) , ( ) , ( ) , ( ), ( ) 0, .M a p M a q M b r a b tτ τ τ τ τ τ ε=− =− =− > =  (26) 

Here ( )a τ  and ( )b τ  are positive integrable functions depending on the medium’s properties and the body’s shape.  
Torques Eq. (26) satisfy the conditions Eq. (15) for the possibility of averaging with respect by the phase of nutation angle θ . 

System Eq. (13) can be written as follows: 

2 2 2

1

[( ( ) sin ( ) cos )sin ( ) cos ],

[ ( )( ) ( ) ],

( ) .

zdG
a p a q b r

dt
dH

a p q b r
dt
dr

C b r
dt

ε τ ϕ τ ϕ θ τ θ

ε τ τ

ε τ−

=− + +

=− + +

=−

 (27) 

Integrating the third equation in Eq. (27), we obtain ( 0r is the arbitrary initial value of the axial rotation velocity): 

1
0

0
exp( ( )) .

t

r r C b t dtε ε−= − ∫  (28) 

Consider a case where ( ), ( )a bτ τ  have the form: 

0 1 0 1 0 1 0 1( ) , ( ) , , , , const.a a a b b b a a b bτ τ τ τ= + = + − . (29) 

Integrating the equation Eq. (28), we obtain: 

1
0 0( ) exp( )r r C bτ τ−= − . (30) 

 



Rotations of a Rigid Body Close to the Lagrange Case under the Action of Nonstationary Perturbation Torque  
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 1023-1031 

1029 

 

Fig. 2. Graph of changes of projection of the angular momentum vector on the vertical Oz. 

 

 

Fig. 3. Graph of changes of total energy. 

 
 
First two equations of system Eq. (27) after sequence of transformations and averaging by the phase of nutation angle assume 

the form: 

1 1

1 1 2 1

( ) [ ( ) ( )] ( ),

2 ( ) [ ( ) ( )] ( ) 2 ( ).

z
z

dG
A G a A Ca b r

d
dH

A Ha A Ca b r A a
d

τ τ τ τ
τ

τ τ τ τ µ τ
τ

− −

− − −

=− + −

=− + − +
 (31) 

In Figures 2, 3, the graphs of solutions of system Eq. (31) are presented for the following parameter values 

0 0 1 11.5, 1, 0.5, 1.25, 1, 0.1A C a b a bµ= = = = = = = . At the initial moment, the body received the angular velocity of rotation 
about the axis of dynamic symmetry, equal 0 3r = , based on the assumptions Eq. (8) to the initial values 0 1.73zG =  and 

0 1.5H = . As can be seen from the Figs. 2 and 3, the projection of the angular momentum vector the vertical Oz tends to zero. The 
total energy H  decreases monotonically, approaching the value H µ= .  

Approximate solution of the first Eq. (31) for projection of the angular momentum vector on the vertical Oz has a form: 

( )

1
0 0 0

1 1 1 1
1 1 1 1

2 1 11 1
0 00 0

[ (1 )]exp( ) [1 ] ( ),

, .

z zG G Cr A a Cr

A a C b A a C b

A a C bA a C b

λ τ λ ξτ τ

λ ξ

−

− − − −

− −− −

= − − − + − +

− −
= =

−−

 (32) 

6. Conclusion 

We presented some new qualitative and quantitative results of fast motion of a heavy top subject to small perturbation 
torques. The averaging method and its methodological treatment were presented and applied to the nonlinear equations of 
motion. We suggested a new procedure of the averaging method, different from works [5 (Sections 4.8.2, 11.3.1, 11.3.2), 14]. The 
main goal of this article was to extend the results of previous investigations for problem of the fast motion of a dynamically 
symmetric rigid body under the action of perturbation torques independent or dependent on the slow time. The numerical 
solution was gained and plotted in some graphs taking into consideration the case of dissipative torques. The paper presented a 
unified approach to the dynamics of rigid bodies subjected to perturbation torques of different physical nature. Our article 
contained both the foundations of rigid body dynamics and the application of the asymptotic method of averaging. Nonlinear 
equations of motion were simplified and often solved explicitly, so the description of motion was obtained. The approach 
presented in the paper is suitable for attitude dynamics of gyroscopes, spacecraft and engineering applications. 
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Nomenclature 

,a b  

am  

( ), ( )a bτ τ  

A  

C  

g  

zG  

 

H  

k  

( ), ( )K k E k  

 

l  

Constant coefficients 

Amplitude  

Positive integrable functions 

Equatorial moment of inertia  

Axial moment of inertia  

Acceleration due to gravity  

Projection the vector of angular momentum onto 

the vertical Oz 

Body’s total energy 

Modulus of ellipticy of the functions 

Complete elliptic integrals of the first and 

second kind  

Distance from the fixed point to the body’s  

center of gravity  

m  

, ,p q r  

 

sn  

1 2 3, ,u u u  

cosu θ=  

1ε<<  

iMε  

 

η  

, , ,θ ϕ ψ  

µ  

tτ ε=  

Body’s mass 

Projections of the angular velocity onto the principal 

axes of the body 

Elliptic sine 

The real roots of the cubic polynomial ( )Q u  

 

Small parameter 

Projections of the vector of the perturbation torque 

on the principal axes of inertia of the body 

Constant 

Euler angles  

Restoring torque 

Slow time  
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