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Abstract. This article aims to investigate the free vibration of axial and bi-directional functionally graded (2D-FG) two-dimensional 
plane stress strip by using finite element method. The rule of mixture based on Vogit model is proposed to describe the change in the 
volume fractions of metal and ceramics constituents. The materials are graded continuously and smoothly in both axial and thickness 
directions according to the power law formula. Two-dimensional plane stress constitutive equations are proposed to describe the stress 
and strain across the beam domain. Finite element model using ANSYS software is developed to discretize the spatial domain of strip 
and modal solution is exploited to evaluate the eigenvalues (natural frequencies) and mode shapes of 2D FG strip beam. The effects of 
materials gradation in axial and bi-directional and boundary conditions on the natural frequencies are investigated. The proposed 
model can be used in design and analysis of 2D-FG structures manufactured from two different constituents and selecting the optimum 
gradation parameter based on the natural frequency’s constraints, such as naval, nuclear and aerospace structures.   

Keywords: Functionally Graded Strip; Plane stress problem; Free vibration analysis; Axial gradient; 2D gradient; Finite element analysis.  

1. Introduction 

Functionally graded material refers to the composite material, where the material composition varied from layer to layer or varied 
in a certain direction in which the material achieved the required material properties. The FGM can be designed for specific applications 
and functions. The term FGM was discovered in the last of the 20th century by two experts in Japan. After that, the power to continue 
the invention and discover new materials with high resistance using FGM.  

The FGM is made from a mixture of ceramic and metal, according to that gradation of material the FGM enhanced thermal resistance 
with low thermal conductivity due to ceramic material and improve mechanical properties due to metal material. The FGM is fabricated 
by a certain process like bulk processing. The FGM is commonly used in aerospace and nuclear applications, cutting tools, and engine 
components [1-3]. According to the variety used of FGM, many researchers studied the FGM statically and dynamically as plate [4-7], 
shells [8-11], microbeam [12-16], and nanobeams [17-18] shapes. The effort of studying the FGM as a beam structure is limited compared 
with other shapes, so beam shape will be considered in this paper. FGM properties could be changed through the thickness or 
longitudinal axis, in recent studies they employed the material gradation in two dimensional (2D).  

Many studies utilized the gradation of material as a layered beam or through the thickness [18-28]. For the thermal application and 
layered FG beam, Bashiri et al. [19] have introduced the dynamic response of a multilayered FG beam where the beam is proposed to 
temperature change. Power law formulation was used to define the material gradation through the thickness of each layer. The stress 
continuum model was also used and the equation of motion was derived. The Newmark method was applied to solve the time domain 
incrementally. Alnujaie et al. [20] introduced the dynamic response of a porous FG beam under a sinusoidal point load. Asiri et al. [21] 
analyzed the dynamic viscoelastic response of FG thick beam under a dynamic load. Jena et al. [22] introduced the vibration of FG 
nanobeam which contains a porosity in beam structure. Shabani and Cunedioglu [23] introduced free vibration by using Timoshenko 
beam theory of multilayered symmetric sandwich beam. The beam consisted of 50 layers and each layer had a different material than 
the other. The FG beam cracked on two edges and they used power-law exponential formula for material distribution of the beam. To 
obtain the natural frequency of cracked beam, they used a developed code showing good agreement compared with the results in the 
literature. Su et al. [24] studied the multiple-stepped FG beam and assumed the material gradation by power-law formulation by using 
the first-order shear deformation theory. Lee and Lee [25] analyzed free vibration of FG beam by applying Bernoulli beam theory using 
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an exact transfer matrix for obtaining the natural frequencies. Jing et al. [26] studied the static and free vibrations of FG beam and used 
a combination of finite volume and Timoshenko beam theories. The FG beam equation of motion was derived by Hamilton’s principle. 
Li et al. [27] studied the free vibration of the FG beam by using both classical and the first-order shear deformation beam theories. Liu 
and Shu [28] carried out the free vibration of the FG beam which the material properties had the exponential gradation. 

In the case of longitudinal (Axial) gradation, more studies were conducted in recent years [29-33]. Cao et al. [29] carried out the free 
vibration analysis of the FG beam and utilized the asymptotic development method to investigate the dynamic behavior of FG beam. Li 
et al. [30] investigated the free vibration of the FG beam where the beam properties changed according to the exponential formulation. 
Akgöz and Civalek [31] analyzed free vibration of FG strain bar and employed the Rayleigh-Ritz method for determining free vibrations 
mode shapes of the bar. Shahba and Rajasekaran [32] studied the free vibration of tapered Bernoulli FG beam. They used finite element 
method for obtaining the natural frequencies. Alshorbagy et al. [33] studied the dynamic characteristics of FG beams. The beam 
condition was simply supported adopting the Euler-Bernoulli’s theory of beams and the principle of virtual work was used to achieve 
the system’s governing equations.  

In recent years, the material gradient in both directions means the material properties change simultaneously in axial and thickness 
directions. A few researchers carried out that type of material change [34-37]. Fariborz and Batra [34] analyzed the free vibration of 
curved beams by applying the shear deformation theory. They used the Hamilton’s principle to derive the equation of motion. Ahlawat 
[35] studied the vibrations of bi-directional circular plate by assuming the Kirchhoff’s plate theory. The equation of motion was derived 
by a differential quadratic method. The power-law formula was also used to define the material changes through the plate’s thickness. 
Pydah and Sabale [36] analyzed the static behavior of a circular beam subjected to various tip loads.  

In this study, free vibration of 2D gradation FG strip beam is studied where the material properties change according to the power-
law formulation. Finite element analysis by ANSYS software is exploited to evaluate the natural frequencies and mode shapes of bi-
directional functionally graded material. This research carries out the material gradation of the 2D plane stress strip with FG gradation 
through two dimensions simultaneously. The obtained results are compared with the current results in the literature. Finally, the 
natural frequencies and the effect of boundary conditions are comprehensively investigated.  

2. Functionally Graded Beam 

A FGM beam with uniform cross-section has been considered in this study. The beam’s dimensions are denoted by L for length, B 
for width and H for height with a coordinate system (Oxyz) as shown in Fig. 1. 

The material properties of the beam such as Young’s modulus (E) and density () changing smoothly through the axial (-x/L to x/L) 
and thickness directions (-y/H to y/H) (2D direction), as shown in Fig. 2. The material gradient is according to the power law index [35], 
so the material properties of the beam are given as: 

�(�, �) = �(�	 − ��)(�
� + 1

2)�� + ��� ��� �� (1) 

where (�	, ��) is the material properties (Young’s modulus and density) of the ceramic and metal segments, respectively, �� and �� are 
the non-negative material gradient indexes (0, 0.2, 0.4 …10) in the axial and thickness directions, respectively. 

The variation of the beam material along the axial axis is shown in Fig. 3. In this situation, the material gradient is changed from 
left (-x/L) to the right (x/L) (axial gradient). The variation of Young modulus is along the beam axis with different gradient index (�) as 
presented in Fig. 4. Therefore, the thickness gradient will not be considered in this case (�� = 0) and the material properties of the beam 
is given by: 

�(�, �) = �(�	 − ��)(�
� + 1

2)�� + ��� (2) 

 

 

Fig. 1. Geometry and coordinate systems of beam. 

 

Fig. 2. FG beam (2D gradient). 
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Fig. 3. FG beam (axial gradient). 

 

Fig. 4. Variation of the material properties (axial gradient). 

3. Results and Discussion 

In this section, two cases of material gradient results have discovered respectively. The FG beam consists of two materials 
(Aluminum (AL) and Zirconia (ZrO2)). The left side of the beam is pure aluminum as a metal segment whereas the right side of the beam 
is pure zirconia as a ceramic part. The material properties of FG beam are shown in Table 1. Beam dimensions in this study are L = 0.2 
m, H = 0.02 m and B = 0.001 m. 

3.1. FGM through the axial direction 

Free vibrations of the FG beam are analyzed in this work by computing the natural frequencies of a uniform beam. Different 
boundary conditions of the beam are considered by performing a finite element analysis using the program ANSYS (APDL). The beam 
element type is based on (SHELL-181). The definition of material properties such as Young’s modulus and density are based on ("*DO" 
Command) [29]. The beam is divided into small segments in which each one has a different material property according to the material 
gradient stated in Eq. (2) as shown in Fig. 5. The number of elements that will be used in this case is 50 to enhance the convergence and 
mesh refinement elements. The obtained non-dimensional frequencies of the FG beam for two classical boundary conditions (Clamped-
Pinned (C-P) and Simply-Supported (S-S)) are compared with the results reported in the literature [29]. The computed frequencies with 
gradient index (� = 3) show a satisfactory agreement with the previous findings as tabulated in Table 2. 

Table 1. The beam’s material properties. 

Properties Unit Aluminum (AL) Zirconia (ZrO2) 

E GPa 70 200 

ρ kg/m3 2702 5700 
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Table 2. The first four non-dimensional frequencies λ�  of FG beam when α = 3. 

N 
S-S  C-P 

Ref. [ 27] Present analysis  Ref. [27] Present analysis 

1 10.37 9.89  15.718 15.542 

2 41.97 39.66  52.807 50.482 

3 94.51 89.63  110.611 105.75 

4 168 160.29  189.356 181.827 

Table 3. First four non-dimensional frequencies λ� of FG beam with C-F conditions and gradient index (α). 

 

 

 

 

 

 

Table 4. The first four non-dimensional frequencies λ� of FG beam with C-C conditions and gradient index (α). 

 
 
 
 
 
 
 
 
 
 

Table 5. The first four non-dimensional frequencies λ� of FG beam with C-P conditions and gradient index (α).  

 
 
 
 
 
 

 
 
 
 

Table 6. The first four non-dimensional frequencies λ� of FG beam at S-S with gradient index (α).  

 

 

 

 

 

 

Fig. 5. Finite segment model of the FG beam. 

 

BCs N 
α (gradient index) 

0.2 0.5 1 2 4 10 

C-F 

1 4.119 3.965 3.826 3.601 3.542 3.539 

2 25.803 24.840 23.973 22.562 22.192 22.172 

3 72.294 69.595 67.165 63.210 62.179 62.120 

4 141.859 136.562 131.793 124.034 122.009 121.894 

BCs N 
α (gradient index) 

0.2 0.5 1 2 4 10 

C-C 

1 26.347 25.363 24.477 22.938 22.661 22.639 

2 72.611 69.900 67.459 63.487 62.451 62.392 

3 142.433 137.116 132.325 124.537 122.501 122.388 

4 235.725 226.933 218.996 206.099 202.746 202.558 

BCs N 
α (gradient index) 

0.2 0.5 1 2 4 10 

C-P 

1 18.058 17.384 16.777 15.789 15.532 15.501 

2 58.557 56.371 54.401 51.199 50.362 50.256 

3 122.340 117.772 113.658 106.968 105.220 104.837 

4 209.595 201.771 194.724 183.263 180.270 179.757 

BCs N 
α (gradient index) 

0.2 0.5 1 2 4 10 

S-S 

1 11.492 11.063 10.676 10.048 9.884 9.875 

2 46.035 44.316 42.768 40.202 39.593 39.547 

3 103.800 99.924 96.435 96.435 89.275 89.098 

4 185.008 178.098 171.750 171.750 159.120 158.973 
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Fig. 6. The first four mode shapes, w, versus X/L for axial graded beams (Clamped-Free (CF)). 

 

Fig. 7. The first four mode shapes, w, versus X/L for axial graded beams (Clamped-Clamped (CC)). 
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Fig. 8. The first four mode shapes, w, versus X/L for axial graded beams (Clamped-Pinned (CP)). 

 

Fig. 9. The first four mode shapes, w, versus X/L for axial graded beams (Simply-Supported (SS)). 
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Tables 3 to 6 show the non-dimensional frequencies of functionally graded beam at classical boundary conditions (Clamped-Free 
(C-F), Clamped-Clamped (C-C), Clamped-Pinned (C-P), and Simply-Supported (S-S)) with the variation of material gradient index (�). 
When the gradient index (�) increase, the non-dimensional frequencies decrease until the gradient index become (� = 10) which the 
material considered as a homogenous material.  

The equation used to derive a non-dimensional equation is (�� = �� � !"#$/&#') where �� is the angular frequency for each case of 
boundary conditions with gradient index (�). Four mode shapes have been computed for different boundary conditions and different 
material gradients along the FG beam. The mode shape changes according to the material gradient index, which changes smoothly 
from aluminum to zirconia by increasing the gradient parameter. It is noticed that the deflection of the beam changed as the material 
changed. When � = 0, the beam material is considered as a homogenous beam because it contains more constituents of zirconia 
material than aluminum material, which gives the small value of beam deflection (w) because it has a large stiffness compared to the 
aluminum side. As the material gradient increases, the beam deflection (w) also increases as much as the beam stiffness decreased, 
which affects the mode shapes of the FG beam. However, the axial gradient has an obvious effect on FG beam mode shapes, as shown 
in Figures 6 through 9. 

3.2. FGM through the axial & thickness directions (2D direction) 

In Tables 7 to 10, the results are computed for 2D direction beam with a variety of gradient index in the axial (��) and thickness 
directions (�� ), also the beam studied at different boundary conditions (Clamped-Free (CF), Clamped-Clamped (CC), Clamped-Pinned 
(CP) and Simply-Supported (SS) conditions). The non-dimensional frequency decreases as much as the axial gradient (��) of the FG 
beam increases. The material gradient through the thickness (��) has an obvious effect on the beam’s frequency. As can be seen, the 
material gradient in the axial direction has a much greater influence than that of the thickness gradient. Due to material behavior 
changing from left to right (Zirconia (ZrO2) side), the material properties became softer and the stiffness of the FG beam started to 
decrease as much as the axial gradient increased. 

Table 7. Non-dimensional natural frequency (λ�) of 2D material gradient at C-F beam. 

BCs () 
(* 

0.2 0.4 0.6 0.8 1 2 5 

C-F 

0 4.207 4.186 4.168 4.154 4.143 4.111 4.093 

0.2 3.909 3.889 3.873 3.860 3.849 3.819 3.802 

0.4 3.725 3.706 3.691 3.678 3.668 3.640 3.624 

0.6 3.651 3.632 3.617 3.605 3.595 3.567 3.552 

0.8 3.626 3.608 3.593 3.581 3.571 3.543 3.528 

1 3.619 3.600 3.585 3.573 3.563 3.535 3.520 

2 3.615 3.597 3.582 3.570 3.560 3.532 3.517 

5 3.612 3.594 3.579 3.566 3.556 3.529 3.514 
 

Table 8. Non-dimensional natural frequency (λ�) of 2D material gradient at C-C beam. 

BCs () 
(* 

0.2 0.4 0.6 0.8 1 2 5 

C-C 

0 26.848 26.698 26.576 26.477 26.397 26.085 26.042 

0.2 24.944 24.804 24.691 24.599 24.523 24.311 24.195 

0.4 23.773 23.639 23.531 23.444 23.372 23.170 23.059 

0.6 23.299 23.169 23.063 22.977 22.907 22.709 22.599 

0.8 23.141 23.011 22.905 22.822 22.751 22.555 22.447 

1 23.092 22.962 22.857 22.772 22.704 22.507 22.399 

2 23.070 22.941 22.837 22.751 22.681 22.486 22.379 

5 23.064 22.936 22.832 22.746 22.676 22.481 22.353 
 

Table 9. Non-dimensional natural frequency (λ�) of 2D material gradient at C-P beam. 

BCs () 
(* 

0.2 0.4 0.6 0.8 1 2 5 

C-P 

0 18.422 18.335 18.263 18.205 18.159 18.022 17.947 

0.2 17.115 17.034 16.968 17.085 16.870 16.744 16.673 

0.4 16.312 16.234 16.171 16.120 16.078 15.958 15.891 

0.6 15.987 15.911 15.849 15.799 15.757 15.640 15.574 

0.8 15.878 15.803 15.742 15.691 15.651 5.271 15.469 

1 15.845 15.769 15.708 15.658 15.617 15.501 15.436 

2 15.830 15.755 15.694 15.644 15.603 15.486 15.421 

5 15.829 15.754 15.693 15.643 15.602 15.485 15.398 
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Table 10. Non-dimensional natural frequency (λ�) of 2D material gradient at S-S beam. 

BCs () 
(* 

0.2 0.4 0.6 0.8 1 2 5 

S-S 

0 11.702 11.664 11.633 11.607 11.586 11.524 11.488 

0.2 10.872 10.837 10.808 10.784 10.764 10.706 10.673 

0.4 10.362 10.328 10.300 10.277 10.258 10.203 10.172 

0.6 10.155 10.122 10.095 10.073 10.054 10.000 9.969 

0.8 10.086 10.054 10.027 10.004 9.986 9.932 9.901 

1 10.065 10.032 10.005 9.983 9.965 9.911 9.880 

2 10.056 10.023 9.996 9.974 9.955 9.902 9.871 

5 10.032 9.996 9.962 9.941 9.922 9.884 9.857 

4. Conclusions 

Free vibration of a functionally graded strip beam was analyzed in this work. The Finite element model using ANSYS software was 
used to evaluate the natural frequencies of the 2D FG strip beam. The FG beam was made of two materials (Aluminum and Zirconia). 
Two types of material gradation were studied (Axial and 2D gradation) with different material gradient index ( = 0, 0.1, 0.3, 10). The 
non-dimensional frequencies were derived at different boundary conditions and material gradient index. It was shown that the axial 
gradient has more effect on the FG beam’s natural frequency than the thickness gradient based on the rule of mixture equation. The 
convergence of results increased as much as the number of divided segments of the FG beam increased. 
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