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Abstract. Graphs are an effective tool for planetary gear trains (PGTs) synthesis and for the enumeration of all possible PGTs for 
transmission systems. In the past fifty years, considerable effort has been devoted to the synthesis of PGTs. To date, however, 
synthesis results are inconsistent, and accurate synthesis results are difficult to achieve. This paper proposes a systematic 
approach for synthesizing PGTs depending on spanning trees and parent graphs. Trees suitable for constructing rooted graphs are 
first identified. The parent graphs are then listed. Finally, geared graphs are discovered by inspecting their parent graphs and 
spanning trees. To precisely detect spanning trees, a novel method based on two link assortment equations is presented. Transfer 
vertices and edge levels are detected without the use of any computations. This work develops the vertex matrix of the rooted 
graph, and its distinctive equation is used to arrange the vertex degree arrays according to the vertex levels and eliminate the 
arrays that violate the distinctive equations. The precise results of the 5-link geared graphs are confirmed to be 24. The disparity 
between the recent and previous synthesis results can be attributed to the fact that the findings of the current method, which 
employs rooted graphs, are more comprehensive than those obtained with graphs lacking multiple joints. A novel algorithm for 
detecting structural isomorphism is proposed. By comparing the vertex degree listings and gear strings, non-isomorphic geared 
graphs are obtained. The algorithm is simple and computationally efficient. The graph representation is one-to-one with the 
vertex degree listing and gear string representation. This allows for the storage of a large number of graphs on a computer for 
later use. 

Keywords: Displacement graph, link assortment array, rooted parent graph, pseudo-isomorphism graph, structure synthesis, 
spanning tree. 

1. Introduction 

1.1 Background 

Planetary gear trains (PGTs) are one of the earliest mechanical systems still in use today and are frequently found in 
machinery. PGTs have significant size and weight advantages over conventional gear trains. A PGT is profitable in that it can 
achieve a high transmission ratio and a small design. PGTs are therefore widely utilized in contemporary machinery such as tool 
machine gearboxes, wind turbines, hoists, robotic wrists, etc.  

Planetary gear mechanisms (PGMs) are the subject of a large amount of scientific literature, which attests to their expanding 
industrial importance. For each unique design task in the development of PGMs, achieving a better-performing kinematic 
structure has been a challenging but crucial problem [1, 2]. For a very long time, two methods were employed: first, researchers 
relied significantly on the concept of potential structures and selected one based on their experience and intuition. Second, based 
on the experience of researchers in creative design methods [3], it is possible to imagine potential PGMs that meet the needs of a 
specific design challenge. However, in this manner, it is difficult to imagine all of the conceivable PGM kinematic structures for 
any design challenge. Only after all possible kinematic structures of PGMs have been analyzed can the appropriate PGM for a 
specific design challenge be chosen [4]. 

The conceptual design of PGMs is accomplished by listing all of the alternatives of a kinematic chain with the goal of creating 
an atlas that can be used as a source of suggestions for PGMs designers. The kinematic structure of a PGM involves vital 
information such as the number of links, whether the links are linked to other links and the category of joints that connect them. 
PGMs have a kinematic structure that is distinguished by the presence of only revolute and geared joints. An abstract graph 
representation is easily used to represent the kinematic structure. Graphs are also used to represent PGTs. The parent graph is the 
graph obtained if all edges in the graph are assumed to be of the same type. The spanning-tree represents a connected graph with 
all of the original graph's vertices but no circuits [5]. An edge-labeled spanning-tree is referred to sometimes as an acyclic graph 
when the edge labels are known implicitly. 
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Input N and F 

Determine and solve the spanning tree equations 

�1 + �2 + �3 + ⋯+ �� = 	 �1 + 2�2 + 3�3 + ⋯+ 
�� = 2(	 − 1) 
Determine and solve the parent graph equations 

�2 + �3 + �4 + ⋯+ �� = 	 2�2 + 3�3 + 4�4 + ⋯+ 
�� = 2� 

Obtain the vertex degree arrays and 
arrange them in families 

Synthesize parent graphs 

Obtain graphs of the spanning trees 
corresponding to their vertex degree arrays  

Synthesize spanning tree 

Obtain the vertex degree arrays and 
arrange them in families 

Determine the distinctive equation from 
the vertex matrix for each vertex degree 

array 

Eliminate the vertex 
degree arrays that 

violate the distinctive 
equations 

Arrange the vertex 
degree arrays 

according to the 
vertex levels 

Draw the feasible parent graphs 

Find the geared edges by comparing parent graphs and spanning trees from the same 
family. 

Obtain the feasible geared graphs  

Detect isomorphism 

Obtain all of the feasible PGMs 

Fig. 1. The primary steps of the structural synthesis method. 

1.2 Formulation of the Problem 

Graphs are demonstrated to be an effective tool for assisting in the synthesis of PGTs, in addition to enumerating all possible 
PGTs that meet strict design criteria. To derive the entire collection of geared graphs for N-links and F-DOF while utilizing the 
rooted graph representation [6], a method involving the use of the parent graphs and spanning trees is used. The enumeration of 
PGTs is broken into three steps. The initial step is to identify trees that are suitable for the construction of rooted graphs.  The 
parent graphs are then listed. Geared graphs are detected from parent graphs and spanning trees in the third step. For a given 
number of vertices, the entire collection of parent graphs and spanning trees is exhaustive. As a result, it is justified that using all 
of the distinct parent graphs and spanning trees for generation eventually leads to the enumeration of combinatorially complete 
geared graphs.  

To systematically enumerate kinematic structures of the exact nature, a computational technique, combinatorial analysis, and 
graphical approach can be used. The primary goal of this study is to present a novel method for PGTs structural synthesis. The 
major steps of the approach are depicted in Figure 1. 

The new method avoids greatly the generation of degenerate structures and isomorphic graphs because it relies on link 
assortment arrays that are already different. To facilitate the automation of the methodology, various matrix representations of 
graphs were introduced. This approach is both analytical and algorithmic, and it appears to be promising for identifying all 
possible PGTs. 

1.3 Literature Survey 

PGT modeling employs graph-based techniques, including contour graphs, admissible graphs, acyclic graphs, and bond graphs 
[7-11]. Buchsbaum and Freudenstein [12] are the first to use graphs to represent the structure of PGTs, as well as to identify the 
notion of transfer vertex and the fundamental properties that the graph of a PGT must possess. In a later paper [13], Freudenstein 
found the relationship between the rotation and displacement graphs. Chatterjee and Tsai [14, 15] represented PGTs using a graph 
notation that precluded the formation of pseudo-isomorphic graphs. Hsu and Lam [16, 17] proposed a graph model for PGTs that 
differentiates between multiple and simple revolute joints. As a result, all pseudo isomorphic graphs are represented by the same 
graph. Yang et al. [18] suggested a graph model with solid and hollow vertices to avoid pseudo isomorphic graphs entirely. 

The objective of the structural synthesis of PGTs was to catalogue all displacement graphs [19-22] for N-links and F-DOF. PGTs 
are typically synthesized using one of two methods: recursive [23-29] or non-recursive [12, 21, 30-32]. The non-recursive method is 
based on either the parent graph [12, 30, 31] or the acyclic graph of a PGT [21, 32, 33]. The problem of identifying transfer vertices 
is one of the challenges encountered by the traditional non-recursive method, which is typically difficult to automate. The 
recursive method derived n(n-1) unlabeled graphs with (n+1) vertices from the generic graph, a known unlabeled graph with (n) 
vertices [23]. However, since some graphs cannot be derived using the recursive method [21, 34, 35], the complete collection of 
graphs cannot be generated. By assigning geared pairings to a parent graph, the parent graph approach is utilized to build geared 
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graphs. The work of [18] is more or less restricted to the inspection process and computer algorithms and does not depend on 
mathematical theories. The addition of geared pairs to acyclic graphs enables the acyclic graph-based technique to create 
displacement graphs of PGTs directly. In [36], the various algorithms utilized in the structural synthesis of PGTs are discussed. The 
enumeration results obtained using the aforementioned methods are inconclusive [34]. As a result, a more straightforward 
method for finding the entire set of combinatorially complete displacement graphs is required. 

In all previous works, the synthesis process of PGTs involved methods to detect and eliminate isomorphic graphs [12, 13, 18-
20, 27, 37]. Two graphs are isomorphic if their vertices and edges have a 1-1 correspondence and their incidences are preserved. 
Since vertices and edges are involved in the definition of isomorphism, they are usually used in the graph isomorphism test. 
Therefore, two graphs are isomorphic, if their vertices and edges preserves adjacency properties. 

1.4 Scope and Contributions 

PGTs structural synthesis can contribute to the development of new transmission systems. The majority of synthesis 
techniques are restricted to 1-DOF PGTs with less than ten links. However, the results of the synthesis are incompatible [34, 36]. 
The synthesis results are far from complete because the discrepancy in the results has yet to be resolved. By merging spanning 
trees with parent graphs, a new technique for methodically synthesizing PGTs is established. Using link assortment arrays, the 
spanning trees of an N-link, F-DoF PGT are first enumerated. Secondly, all the v-vertex parent graphs are counted. By comparing 
the parent graphs to the spanning trees and coloring the mismatched edges differently, the geared edges are identified. The 
method is built on algebraically representing the graphs through their vertex matrices. The matrix representation makes it easier 
to implement graphs on a digital computer. Thus, the entire set of 1-DOF geared graphs with five links is successfully constructed. 
A novel algorithm called trail and graph marking is proposed for first renumbering the graphs to be tested, and then identifying 
the isomorphism by comparing the corresponding geared strings.  

The approach of Shanmukhasundaram et al. [20] that uses the conventional PGT graphs yields pseudo-isomorphic graphs; 
thus, according to Pathapati et al. [35], the number of graphs in [31] exceeds the number of graphs believed to be exact. Because 
the new model is based on the rooted graph representation, we can entirely avoid pseudo-isomorphic graphs.  

Previous publications show that when the number of links is 5 or less, the synthesis results of 1-DOF PGTs are consistent. 
Thirteen displacement graphs are enumerated in references [12, 18, 23, and 32], to name a few. But in fact, the 5-link PGT is 
relatively simple and not convincing. PGTs with more than 5 links can be studied, but the object here is to present the method in 
as simple a form as possible. A comparison with the current results validates the accuracy of the 5-link graph results. In Refs. [18, 
19, and 34], for example, the PGTs are represented by two types of graphs: graphs with at least one hollow vertex (multiple joint) 
and graphs with no hollow vertices. As a result, the results of the current method, which used rooted graphs, differed from those 
graphs with no hollow vertex. However, the results are identical to those graphs with one or more hollow vertices. The source of 
the disparity in existing synthesis results is dealt with effectively.  

The following is a summary of the main novelty in the current work. A method based on two link assortment equations is 
introduced to precisely detect spanning trees. Transfer vertices and edge levels are inherent in spanning trees and can be 
detected without any computations. Another novelty of the synthesis methodology is the identification of the geared edges by 
setting the difference between parent graphs and spanning trees of the same family. We call the process which maps the 
spanning tree into a graph a genetic compatibility. Under the genetic compatibility hypothesis, a connected graph may have 
several spanning trees. The exact results of the 5-link geared graphs have been confirmed as 24. 

1.5 Structure of the Paper 

This paper has the following structure: Section 2 briefly reviews the fundamentals of graph representation, including the 
rooted graph, parent graph and spanning tree. Later the vertex matrix of the rooted graph is defined as well as how it can be 
partitioned by vertex levels, and how the matrix equation could be used to synthesize all potential graphs as detailed in Section 3. 
Section 4 details with the synthesis method for spanning trees corresponding to all link assortments. Section 5 details with the 
synthesis method for parent graphs. Section 6 is dedicated to genetic compatibility; geared graphs of PGTs can be synthesized by 
considering the parent graphs and spanning trees separately. Given a geared graph vertex degree listing, the graphs for each 
vertex degree listing must be synthesized first, followed by all possible combinations of the parent graphs and spanning trees, 
which become the graphs synthesized for the given graph vertex degree listing. Section 7 proposes a complete isomorphism 
identification method, including numbering rules, identification logic, and the identification process. Section 8 provides a 
numerical example of the essential steps of the new methodology. Finally, in section 9, the work done in the paper is summarized, 
certain conclusions are formed, and some potential future research directions are outlined. 

2. Kinematic Structure of PGTs 

In a graph representation of PGTs, edges correspond to joints and vertices to links. For example, Figure 2(c) illustrates a 
graphical representation of the PGM shown in Figure 2(a). The double-lined edges in Figure 2(c) represent gear pairs, while the 
single-lined edges represent turning pairs. The rooted graph is similarly described, with one exception: the fixed link representing 
the root is denoted by symbol 0. Figure 2(a) depicts the functional representation of the Ravigneaux PGT with the fixed link added 
to the geared kinematic chain depicted in Figure 2(b). Figure 2(d) depicts a rooted graph representation of the Ravigneaux PGM 
depicted in Figure 2(a). The single-line edges are labeled as a, b, and c based on their spatial location.  

Figure 2(d) illustrates how the vertices of a rooted graph are divided into levels. Depending on the number of single-line edges 
between the vertex and the root, it is referred to as the first, second, or third-level vertex, and so on. A single-line edge connects a 
vertex at one level to a vertex at another level. Single-line edges of the same label all stem from the same lower-level vertex [3]. 
PGMs with links distributed higher than the second level are impractical in terms of mechanical complexity because they contain 
one or more floating carriers. Also, to simplify the conceptualization, only the vertices distributed up to the third level are 
considered. 

Figure 2(e) depicts the parent graph of the PGM depicted in Figure 2(a). Figure 2(f) shows how to create a rooted spanning tree 
from a geared graph by removing all of the geared edges. The problem of identifying transfer vertices is one of the difficulties 
encountered in the traditional non-recursive method, which is generally difficult to automate. In contrast, the transfer vertices in 
the newly developed method can be easily identified using a spanning tree. A transfer vertex is any vertex of a spanning tree 
(other than the root vertex) that is incident with at least two single-line edges. Vertex-4 is the transfer vertex in the 6-vertex 
spanning tree in Figure 2(f), and thus it is the carrier. When a geared edge is inserted into a tree, only one circuit is formed. The 
collection of all circuits relative to a spanning tree is used to build a collection of fundamental circuits. The rooted graph, shown 
in Figure 2(d), contains eight vertices, three vertex levels, seven revolute edges, and five geared edges. Five fundamental circuits 
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exist: 0-1-7-4-0, 0-2-7-4-0, 4-7-6, 0-3-6-4-0, and 0-5-6-4-0. The two revolute edges linked to the ground vertex with the same label 
constitute a single joint. 

Following is a definition for the vertex matrix of the rooted graph: 

� = [��,�]�×� = { 1 �  	�!"�# � �$ %&''�%"�( "& 	�!"�# ) *+ ,' �(-�(� �  � =  ) ,'( ( �$ "ℎ� (�-!�� &  	�!"�# �0 &"ℎ�!0�$�  (1) 

In graph theory, the vertex matrix Q can be expressed as follows: 

� = 1 + 2 = 334  (2) 

where 1 represents the adjacency matrix, 2 represents the vertex degree matrix, 3 represents the incidence matrix and 34  
represents the transpose of the incidence matrix 3. The vertex matrix can be partitioned into 
2 submatrices �11, �12, …�1m, …  �21, … �mm according to the 
6ℎ-vertex level as following:  

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡�11 ⋮ �12 ⋮ �13 ⋮ ⋯ �1�⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋯�21 ⋮ �22 ⋮ �23 ⋮ ⋯ �2�⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋯�31 ⋮ �32 ⋮ �33 ⋮ ⋯ �3�⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋯⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮��1 ⋮ ��2 ⋮ ��3 ⋮ ⋯ ���⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤
 (3) 

For instance, the portioned vertex matrix of the graph depicted in Figure 2(e) is as follows: 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  	0 ⋮ 	1 	2 	3 	4 	5 ⋮ 	6 	7	0 5 ⋮ 1 1 1 1 1 ⋮ 0 0⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯	1 1 ⋮ 2 0 0 0 0 ⋮ 0 1	2 1 ⋮ 0 2 0 0 0 ⋮ 0 1	3 1 ⋮ 0 0 2 0 0 ⋮ 1 0	4 1 ⋮ 0 0 0 3 0 ⋮ 1 1	5 1 ⋮ 0 0 0 0 2 ⋮ 1 0⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯	6 0 ⋮ 0 0 1 1 1 ⋮ 4 1	7 0 ⋮ 1 1 1 0 0 ⋮ 1 4 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (4) 

From Eq. (4), we can deduce the structural characteristics associated with the vertex matrix Q:  
1. The vertex matrix Q is a symmetric matrix in which the sum of all off-diagonal elements in the �6ℎ row equals the �6ℎ 

diagonal element. 
2. The �6ℎ diagonal element represent the vertex degree.  
3. The off-diagonal elements in the Q matrix represent the number of edges connecting two vertices.  
4. The �11 submatrix is a one element matrix corresponding to the degree of the root vertex (�11 = (EFF6). 

 

  
 

(a) Functional representation of a PGM (b) Functional representation of a PGT (c) Conventional rooted graph representation 

   

(d) Rooted graph representation (e) Parent rooted graph (f) Rooted spanning tree 

Fig. 2. A seven-link Ravigneaux planetary gear train. 
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5. The number of second level vertices 	GH (and higher) equals the total number of vertices minus the first level vertices 	IH 
along with the root vertex which can be written as: 

	GH = 	 − 	IH − 	EFF6 (5) 

6. Since all first-level vertices are linked to the ground-level vertex but not to one another, their sum equals the vertex degree 
of the root.  

	IH = (EFF6 (6) 

Also, all elements of the sub-matrix �22 are zero except for the diagonal elements. Since the second-level vertices are not 
adjacent to the ground-level vertex, all elements of �13 and �31 are zero. 

Let ��,� represent the (i, j) element of �, and keep in mind that ��,� corresponds to 1 or 0, ��,� corresponds to the vertex degree (� 
and ��,� equals ��,�, then the potential graphs can be generated using the matrix equation below. 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  	0 ⋮ 	1 	2 ⋯ 	IH ⋮ ⋯ 	J−1 	J	0 (0 ⋮ 1 1 ⋯ 1 ⋮ ⋯ 0 0⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯	1 1 ⋮ (1 0 ⋯ 0 ⋮ ⋯ �1,J−1 �1,J	2 1 ⋮ 0 (2 ⋯ 0 ⋮ ⋯ �2,J−1 �2,J⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0 ⋮ ⋯ ⋯ ⋯	IH 1 ⋮ 0 0 ⋮ (IH ⋮ ⋯ �IH,J−1 �IH,J⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋯ ⋯	J−1 0 ⋮ �1,J−1 �2,J−1 ⋮ �IH,J−1 ⋮ ⋮ (J−1 �J−1,J	J 0 ⋮ �1,J �2,J ⋮ �IH,J ⋮ ⋮ �J−1,J (J ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (7) 

⎩{{⎨
{{⎧ (1 = 1 + ⋯+ �1,J−1 + �1,J(2 = 1 + ⋯+ �2,J−1 + �2,J…(IH = 1 + ⋯+ �IH,J−1 + �IH,J

 (8) 

{
…(J−1 = �1,J−1 + �2,J−1 + ⋯+ �IH,J−1 + ⋯+ �J−1,J        (J = �1,J + �2,J + ⋯+ �IH,J + ⋯+ �J−1,J                    (9) 

{(1 + (2 + ⋯+ (IH = (0 + (J                                               Q&! R =  S + 1(1 + (2 + ⋯+ (IH = (0 + (J + (J−1 + ⋯+ 2 × �J−1,J + ⋯     Q&! R >  S + 1  (10) 

3. Systematic Synthesis Methodology 

The degrees of freedom F of a PGT are determined by equation Q = 3(R − 1) − 2UE − 1 × UV, where R  is the number of links and Ur = R − 1 and  Ug = R − 1 − F are the number of revolute and geared joints, respectively. A v-vertex, F-DOF rooted graph contains 
(N + 1) vertices, (v − 2 – F) geared edges and (v − 1) revolute edges. Therefore, the sum of all the edges is: 

� = 2	 − Q − 3 (11) 

and 

	 = R +  1 (12) 

and the number of fundamental circuit or loops is: 

Z = 1 + � − 	 (13) 

One can classify links in a PGT based on the number of edges they contain. Whether a vertex has two, three, or four edges 
determines whether it is binary, ternary, or quaternary. If �� is the number of vertices with � edges, then [�2, �3, … , ��] is a link 
assortment array of a kinematic chain. As a result, the following equations can be used to derive all possible link assortments for 
a rooted parent graph with 	-vertices. 

�2 + �3 + �4 + ⋯+ �� = 	 (14) 

2�2 + 3�3 + 4�4 + ⋯+ 
�� = 2� (15) 

where 
 =  Z +  1 is the maximal vertex degree. Corresponding to all of the link assortments, all the parent graphs of F-DOF 
PGTs with N-links are first synthesized. 

A rooted spanning tree is a subgraph of a rooted parent graph that contains all the vertices of a graph, despite the edges being 
distinct. Every rooted graph has a minimum of one spanning tree.  The tree depicted in Figure 2(f) has multiple pendant vertices (a 
degree one vertex is a pendant vertex). In a v-vertex tree, there are (v-1) edges, and thus 2(v-1) degrees must be distributed among 
the v vertices. 

All possible link assortments for a rooted spanning tree with 	-vertex can be derived from the following equations: 

�1 + �2 + �3 + ⋯+ �� = 	 (16) 

�1 + 2�2 + 3�3 + ⋯+ 
�� = 2(	 − 1) (17) 
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             (a) Parent graph               (b) Spanning tree                (c) geared edges 

Fig. 3. Detection of the geared edges from the difference between the parent graph and the spanning tree. 

Equations (16) and (17) can be solved for all possible combinations of the link assortment arrays [�1, �2, �3, �4,… , R
] of a 
rooted spanning tree where �� represent the number of vertices with � edges. For the rooted spanning tree shown in Figure 2(f), a 
particular solution to these equations is found to be �1 = 6, �3 = 1, and �5 = 1. This solution is known as link assortment and is 
represented by [6, 0, 1, 0, 1], and its vertex degree array is [5, 3, 1, 1, 1, 1, 1, 1]. Corresponding to a spanning tree, the edges of a 
rooted parent graph can be subdivided into two subgraphs, one containing revolute edges and the other containing geared edges. 
The revolute edges include all edges that comprise the spanning tree, whereas the geared edges include all edges that do not 
comprise the spanning tree. The revolute edges are those that form the spanning tree, whereas the geared edges are those that do 
not. Hence, geared graphs can be generated from parent graphs and spanning trees by setting the difference between them as 
geared edges. Also, the union of the spanning trees and geared edges constitutes the rooted geared graphs. 

Relying on their parent graphs and spanning trees, a novel algorithm for structural synthesis of PGTs is proposed: 
Step 1. Enumerate all the v-vertex spanning trees. 
Step 2. Enumerate all the vertex degree arrays of the parent graphs. 
Step 3. Arrange the vertices according to their degrees and levels, and eliminate the vertex degree arrays that violate the 

distinctive equations. 
Step 4. Enumerate all the v-vertex parent graphs. 
Step 5. Determine the geared edges by setting the difference between parent graphs and spanning trees, as shown in Fig. 3. 
Step 6. Repeat Step 5 until all the v-vertex spanning trees have been used, then the graphs of N-link F-DOF PGTs will be 

created. 
 

Table 1. Graphs of the spanning trees corresponding to the vertex degree arrays. 

Family 1 Family 2 

[4, 2, 1, 1, 1, 1] [3, 3, 1, 1, 1, 1] [3, 2, 2, 1, 1, 1] 

   

  [3, 2, 2, 1, 1, 1] 

  

 
Family 3 

[2, 4, 1, 1, 1, 1] [2, 3, 2, 1, 1, 1] [2, 2, 2, 2, 1, 1] 

   

[2, 2, 3, 1, 1, 1] [2, 3, 2, 1, 1, 1] [2, 2, 2, 2, 1, 1] 
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Table 2. Graphs of the spanning trees suitable for double-planet PGTs. 

Family 2 Family 3 

[3, 3, 1, 1, 1, 1] [2, 4, 1, 1, 1, 1] [2, 3, 2, 1, 1, 1] [2, 2, 3, 1, 1, 1] [2, 3, 2, 1, 1, 1] 

     
 

Table 3. Graphs of the spanning trees suitable for triple-planet PGTs. 

Family 3 

[2, 4, 1, 1, 1, 1] 

 

4. Enumeration of Spanning Trees 

The new synthesis method begins by listing all of the v-vertex spanning trees that can be used to create rooted graphs. 
Equations (16) and (17) can be solved for all possible combinations of [�1, �2, �3, �4,… , R
].  

Since PGTs with revolute and gear joints are the concern of this work, the number of vertices 	 and edges � can be calculated 
from Eqs. (11) and (12), respectively. For a PGT with 5 links (R = 5) and 1-DOF (Q = 1), its number of vertices 	 is 6 and its number 
of edges � is 8. The number of revolute edges �E is 5, the number of geared edges �g is 3, and the maximal degree of a vertex 
 is 4. 
Equations (16) and (17) can be written as: 

�1 + �2 + �3 + �4 = 6 (18) 

�1 + 2�2 + 3�3 + 4�4 = 10  (19) 

For a 6-vertex spanning tree, four link assortments can be acquired from Eqs. (18) and (19), namely; [4, 1, 0, 1], [4, 0, 2, 0], [3, 2, 1, 
0], and [2, 4, 0, 0]. The first digit in the link array represents the number of vertices with degree one, the second the number of 
vertices with degree two, and so on. The vertex degree array of a spanning tree is a list of integers representing the vertex degrees 
in descending order. The vertex degree arrays corresponding to the above link assortments are: [4, 2, 1, 1, 1, 1], [3, 3, 1, 1, 1, 1], [3, 2, 
2, 1, 1, 1], and [2, 2, 2, 2, 1, 1]. Table 1 shows the graphs of the ten spanning trees corresponding to these vertex degree arrays. The 
vertex degree array corresponding to each spanning tree is listed above it. 

The new method can be used to create a spanning tree atlas with v-vertices. In the following sections, we will not be limited 
to graphs with a vertex distribution beyond the second level. Hence, the graph corresponding to level 3 and 4 will be discussed. 
Graphs of the spanning trees suitable for double-planet PGTs (two vertices in the same level connected by a geared edge) are 
shown in Table 2. Some geared edges are incorporated into the spanning trees to draw the reader's attention to them. 

Table 3 shows graphs of the spanning trees suitable for triple-planet PGTs (three vertices in the same level connected by 
geared edges). 

5. Parent Graph Enumeration 

Equations (14) and (15) can be solved for all possible combinations of the v-vertex parent graphs [�2, �3, �4, … ,R
]. For 	 = 6 
and � = 8, we get: 

�2 + �3 + �4 = 6 (20) 

2�2 + 3�3 + 4�4 = 16 (21) 

Three link assortment arrays can be acquired from Eqs. (20) and (21), namely; [4, 0, 2], [3, 2, 1], and [2, 4, 0]. The vertex degree 
arrays corresponding to the above link assortments are: [4, 4, 2, 2, 2, 2], [4, 3, 3, 2, 2, 2], and [3, 3, 3, 3, 2, 2].   

For the purpose of classification, vertex degree arrays are grouped into families. Each family is distinguished by vertex degree 
arrays with the same vertex degree at the root, and not necessarily the maximum. 

Family 1: [4, 4, 2, 2, 2, 2], [4, 3, 3, 2, 2, 2]. 
Family 2: [3, 4, 3, 2, 2, 2], [3, 3, 3, 3, 2, 2]. 
Family 3: [2, 4, 4, 2, 2, 2], [2, 4, 3, 3, 2, 2], [2, 3, 3, 3, 3, 2]. 

5.1 Identification  of Parent Graphs By Distinctive Equations 

The third step is to arrange the vertex degree arrays according to the vertex levels and eliminate the arrays that violate the 
distinctive equations that can be obtained from the vertex degree arrays enumerated in the second step. Since 	 = 6,  	EFF6 = 1  and 	IH = (EFF6, we can calculate the number of the second level vertices and above for each family from Eq. (	GH = 	 − 	IH − 	EFF6) in the 
following way:  
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Family 1: 	IH = (EFF6 = 4, hence,  	GH = 5 − 4 = 1 
Family 2: 	IH = (EFF6 = 3, hence,  	GH = 5 − 3 = 2 = 2 + 0 = 1 + 1 
               Case 1 (up to the second level): 	GH = 2 
               Case 2 (up to the third level): 	GH = 1 + 1 
Family 3: 	IH = (EFF6 = 2, hence,  	GH = 5 − 2 = 3 = 3 + 0 = 2 + 1 = 1 + 2 = 1 + 1 + 1 
From Eq. (10), the vertex matrix for family 1 can be written as follows: 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  	0 ⋮ 	1 	2 	3 	4 ⋮ 	5	0 (0 ⋮ 1 1 1 1 ⋮ 0⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯	1 1 ⋮ (1 0 0 0 ⋮ �1,5	2 1 ⋮ 0 (2 0 0 ⋮ �2,5	3 1 ⋮ 0 0 (3 0 ⋮ �3,5	4 1 ⋮ 0 0 0 (4 ⋮ �4,5⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯	5 0 ⋮ �1,5 �2,5 �3,5 �4,5 ⋮ (5 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (22) 

From Eqs. (10) the distinctive equation for family 1 is: 

(1 + (2 + (3 + (4 = (0 + (5 (23) 

subject to the constraints that (1, (2, (3, (4  ≤ 2, (5 ≤ 4 and (0 = 4.  
Any vertex degree array that satisfies the distinctive equation of family one represents a feasible solution. For the vertex 

degree array [4, 4, 2, 2, 2, 2], we get: (0 = 4, (1 = 2, (2 = 2, (3 = 2, (4 = 2, and (5 = 4. The second vertex degree array ([4, 3, 3, 2, 2, 2]) 
should be excluded because it does not satisfy the distinctive equation. Hence, the first vertex degree array is the only feasible 
solution. Therefore, there is only one parent graph, as shown in column 1 of Table 4. The vertex matrix for family 2 (up to the 
second level) can be written as follows: 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  	0 ⋮ 	1 	2 	3 ⋮ 	4 	5	0 (0 ⋮ 1 1 1 ⋮ 0 0⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯	1 1 ⋮ (1 0 0 ⋮ �1,4 �1,5	2 1 ⋮ 0 (2 0 ⋮ �2,4 �2,5	3 1 ⋮ 0 0 (3 ⋮ �3,4 �3,5⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯	4 0 ⋮ �1,4 �2,4 �3,4 ⋮ (4 �4,5	5 0 ⋮ �1,5 �2,5 �3,5 ⋮ �4,5 (5 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (24) 

From Eqs. (10) the distinctive equation for family 2 is: 

(1 + (2 + (3 = (0 + (4 + (5 + 2�4,5 (25) 

subject to the constraints that (1, (2, (3  ≤ 3,  (4, (5 ≤ 4 and (0 = 3. When �4,5 = 0, no edge connects the two vertices of the second-
level and the distinctive equation becomes: 

(1 + (2 + (3 = (0 + (4 + (5 (26) 

For the vertex degree array [3, 3, 3, 3, 2, 2], we get: (0 = 3, (1 = 3, (2 = 3, (3 = 2, (4 = 3, and (5 = 2. As a result, we obtain another 
parent graph as shown in column 2 of Table 4. 

When �4,5 = 1, an edge connects the two vertices of the second level and the distinctive equation becomes: 

(1 + (2 + (3 = (0 + (4 + (5 − 2 (27) 

For the vertex degree array [3, 3, 3, 3, 2, 2], we get: (0 = 3, (1 = 3, (2 = 2, (3 = 2, (4 = 3, and (5 = 3. As a result, we obtain another 
parent graph as shown in column 3 of Table 4. 

For the vertex degree array [3, 4, 3, 2, 2, 2], we get: (0 = 3, (1 = 3, (2 = 2, (3 = 2, (4 = 2, and (5 = 4. As a result, we obtain another 
parent graph as shown in column 4 of Table 4. The vertex matrix for family 2 (up to the third level) can be written as follows: 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

 	0 ⋮ 	1 	2 	3 ⋮ 	4 ⋮ 	5	0 (0 ⋮ 1 1 1 ⋮ 0 ⋮ 0⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯	1 1 ⋮ (1 0 0 ⋮ �1,4 ⋮ �1,5	2 1 ⋮ 0 (2 0 ⋮ 0 ⋮ �2,5	3 1 ⋮ 0 0 (3 ⋮ 0 ⋮ �3,5⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯	4 0 ⋮ �1,4 0 0 ⋮ (4 ⋮ 1⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋮ ⋯ ⋮ ⋯	5 0 ⋮ �1,5 �2,5 �3,5 ⋮ 1 ⋮ (5 ⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (28) 

The distinctive equation can be obtained easily from the vertex degrees as: 

(1 + (2 + (3 = 3 + �1,4 + �1,5 + �2,4 + �3,4 (29) 

(4 + (5 = 2 + �1,4 + �1,5 + �2,4 + �3,4 (30) 

From Eqs. (29) and (30), we get: 

(4 + (5 = (1 + (2 + (3 − 1 (31) 
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Subject to the constraints that (2, (3, (5  ≤ 2, (1 ≤ 3, (4 ≤ 4 and (0 = 3. 
For the vertex degree array [3, 4, 3, 2, 2, 2], we get: (0 = 3, (1 = 3, (2 = 2, (3 = 2, (4 = 2, and (5 = 4. As a result, we obtain the same 

parent graph as that shown in column 4 of Table 4. The vertex matrix for family 3 can be written as follows: 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  	0 ⋮ 	1 	2 ⋮ 	3 	4 	5	0 (0 ⋮ 1 1 ⋮ 0 0 0⋯ ⋯ ⋮ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯	1 1 ⋮ (1 0 ⋮ �1,3 �1,4 �1,5	2 1 ⋮ 0 (2 ⋮ �2,3 �2,4 �2,5⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯	3 0 ⋮ �1,3 �2,3 ⋮ (3 �3,4 0	4 0 ⋮ �1,4 �2,4 ⋮ �3,4 (4 �4,5	5 0 ⋮ �1,5 �2,5 ⋮ 0 �4,5 (5 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (32) 

From Eqs. (10) the distinctive equation for family 3 is: 

(1 + (2 = (0 + (3 + (4 + (5 + 2�3,4 + 2�4,5 (33) 

subject to the constraints that (1, (2,  (4 ≤ 4, (3, (5 ≤ 3 and (0 = 2. Table 4 shows the graphs of the ten feasible parent graphs 
satisfying the distinctive equations. The vertex degree array corresponding to each parent graphs is listed above it.  

6. Geared Graphs Enumeration 

The fourth step is to find the geared edges by comparing parent graphs and spanning trees from the same family. We call the 
process which maps the spanning tree into a graph a genetic compatibility. Under the genetic compatibility hypothesis, a 
connected graph may have several spanning trees. 

 

Table 4. The feasible parent graphs [(0, (1, (2, (3, (4, (5]. 
Family 1 Family 2 

[4, 2, 2, 2, 2, 4] [3, 3, 3, 2, 3, 2] [3, 3, 2, 2, 3, 3] [3, 3, 2, 2, 2, 4] 

    
Family 3 

[2, 4, 4, 2, 2, 2] [2, 4, 3, 3, 2, 2] [2, 4, 2, 3, 3, 2] [2, 4, 2, 4, 2, 2] 

    
[2, 3, 2, 4, 3, 2] [2, 3, 3, 3, 3, 2]   

  

  

Table 5. The feasible geared graphs. 

Family 1 

[4, 2, 2, 2, 2, 4] [4, 2, 1, 1, 1, 1] 
[4, 2, 2, 2, 2, 4] 

[4, 2, 1, 1, 1, 1] 
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Table 5. Continued. 

Family 2 

[3, 3, 3, 2, 3, 2] [3, 3, 1, 1, 1, 1] 
[3, 3, 3, 2, 3, 2] 

[3, 3, 1, 1, 1, 1] 

 

 
 

[3, 2, 1, 2, 1, 1] 
[3- 3, 3, 2- 3, 2] 

[3- 2, 1, 2- 1, 1] 

  

[3, 2, 2, 1, 1, 1] 
[3- 3, 3, 2- 3, 2] 

[3- 2, 2, 1- 1, 1] 

 
 

[3, 3, 2, 2, 3, 3] [3, 3, 1, 1, 1, 1] 
[3, 3, 2, 2, 3, 3] 

[3, 3, 1, 1, 1, 1] 

 
 

 

[3, 3, 2, 2, 2, 4] [3, 3, 1, 1, 1, 1] 
[3, 3, 2, 2, 2, 4] 

[3, 3, 1, 1, 1, 1] 

 

 
 

[3, 2, 1, 1, 1, 2] 
[3, 3, 2, 2, 2, 4] 

[3, 2, 1, 1, 1, 2] 

 
 

 Family 3  

[2, 4, 4, 2, 2, 2] [2, 4, 1, 1, 1, 1] 
[2, 4, 4, 2, 2, 2] 

[2, 4, 1, 1, 1, 1] 

 

 
 

[2, 3, 2, 1, 1, 1] 
[2, 4, 4, 2, 2, 2] 

[2, 3, 2, 1, 1, 1] 
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[2, 4, 3, 3, 2, 2] [2, 4, 1, 1, 1, 1] 
[2, 4, 3, 3, 2, 2] 

[2, 4, 1, 1, 1, 1] 

 

 

 
[2, 4, 3, 2, 2, 3] 

[2, 4, 1, 1, 1, 1] 

 

[2, 3, 2, 1, 1, 1] 
[2, 4, 3, 3, 2, 2] 

[2, 3, 2, 1, 1, 1] 

 
 

[2, 2, 2, 2, 1, 1] 
[2, 4, 3, 3, 2, 2] 

[2, 2, 2, 2, 1, 1] 

 
 

[2, 3, 1, 2, 1, 1] 
[2, 4, 3, 3, 2, 2] 

[2, 3, 1, 2, 1, 1] 

  

[2, 4, 2, 3, 3, 2] [2, 4, 1, 1, 1, 1] 
[2, 4, 2, 3, 3, 2] 

[2, 4, 1, 1, 1, 1] 

 

  

[2, 3, 1, 1, 2, 1] 
[2, 4, 2, 3, 3, 2] 

[2, 3, 1, 1, 2, 1] 
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[2, 3, 1, 1, 2, 1] 

[2, 4, 2, 3, 2, 3] 

 
[2, 3, 1, 1, 2, 1] 

[2, 4, 2, 3, 2, 3] 

 

[2, 4, 2, 4, 2, 2] [2, 4, 1, 1, 1, 1] 
[2, 4, 2, 4, 2, 2] 

[2, 4, 1, 1, 1, 1] 

 

 
 

[2, 2, 1, 3, 1, 1] 
[2, 4, 2, 4, 2, 2] 

[2, 2, 1, 3, 1, 1] 

 
 

[2, 3, 1, 2, 1, 1] 
[2, 4, 2, 4, 2, 2] 

[2, 3, 1, 2, 1, 1] 

 

 

[2, 3, 2, 4, 3, 2] [2, 2, 1, 3, 1, 1] 
[2, 3, 2, 4, 3, 2] 

[2, 2, 1, 3, 1, 1] 

 

 

 

[2, 2, 1, 2, 2, 1] 
[2, 3, 2, 3, 4, 2] 

[2, 2, 1, 2, 2, 1] 
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[2, 3, 3, 3, 3, 2] [2, 3, 1, 1, 2, 1] 
[2, 3, 1, 1, 2, 1] 

[2, 3, 3, 3, 3, 2] 

   
 
The precise results of the 5-link geared graphs are confirmed to be 24. The synthesis results in this study do not match those 

in the literature. One possible explanation is that some PGTs cannot be generated from graphs with no multiple joint. All of the 
methods that rely on the parent graph and the acyclic graph generate graphs without multiple joints. According to the findings of 
this paper, every graph has at least one multiple joint that is designated as a root vertex. Therefore, the results of this paper are 
greater than the previous ones. 

7. Identification of Isomorphism  

Graphs are classified into families depending on their link assortment arrays. Of course, graphs from various families cannot 
be isomorphic. The vertex degree arrays of parent graphs and spanning trees provide the necessary condition to check graph 
isomorphism. If the degrees of vertices of two graphs are not equivalent, they are not isomorphic because there is no one-to-one 
correspondence between their vertices. If they are equivalent, there exists a finite number of isomorphic possibilities. The finite 
number of isomorphic possibilities and geared strings provide the sufficient condition to check graph isomorphism. As a result, 
the trail and graph marking procedure described here provides both the required and sufficient conditions for graph isomorphism 
tests. 

The trail and graph marking procedure to check graph isomorphism is described below: 
Step 1: Check the vertex degree array of both parent graphs, if they are not equivalent, then the two graphs are not 

isomorphic, if they are equivalent, proceed to step 2. 
Step 2: Examine the vertex degree array of their spanning trees, if they are not equivalent, then the two graphs are not 

isomorphic, if they are equivalent, proceed to step 3. 
Step 3: Determine the weighted vertex degree of each vertex in the graph. The weighted vertex degree is obtained by assigning 

edge weights of one for revolute edges and two for geared edges.  
Step 4: Find a trail, which is a series of edges connecting all of the graph's vertices. Vertex and edge repetition is permitted.  
Step 5: Find the weighted vertex degree array of the trail found in step 4. 
Step 6: Number the vertices of the trail in ascending order, beginning at the root. 
Step 7: Since the weighted vertex degree array of two graphs is the same, follow the trail and label the vertices of the second 

graph according to weighted vertex degree array found in step 5 in ascending order, beginning at the root. 
Step 8: Check the numbering of the geared strings of both geared graphs, if they are not equivalent, then the two graphs are 

not isomorphic, if they are equivalent, then the two graphs are isomorphic.  
This is accomplished by generating a list of vertex degrees for each geared graph. The first and second rows of the vertex 

degree listing represent the degrees of vertices of the parent graphs and spanning trees respectively. 
In general, two graphs having the same vertex degree listing are not necessary to be isomorphic. This is because the vertex 

degree listing of a graph only shows the listing of degrees of vertices of the graph, the listing itself does not take into account the 
connections between vertices.  

 

 
(a)                                                            (b) 

Fig. 4. Numbering the graph according to the weighted vertex degree array of the trail. 
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Table 6. Graphs sharing the same vertex degree listing [3 4 4 3 2 2 2 23 2 3 2 1 1 1 1] 
Weighted Vertex Degree= [3 6 5 4 3 3 3 3] 

Trail [3 6 3 5 3 4 3 6   3] 

    

Numbering the graphs according to the weighted vertex degree array of the trail. 

    

Geared Strings 

ab1 = [3,2,8] [4,5] [6,7] ab2 = [3,2,8] [4,5] [6,7] ab3 = [3,4][7,2,8] [5,6] ab4 = [3,4][7,2,8] [5,6] 
(a) (b) (c) (d) 

   

Table 6 shows four graphs sharing the same vertex degree listing [3 4 4 3 2 2 2 23 2 3 2 1 1 1 1], but there are isomorphic 

possibilities, as explained below.  
For the four graphs in Table 6, the weighted vertex degree array is [3 6 5 4 3 3 3 3]. For example, in Figure 4(b) edges �12, �23, �27, and �28 are incident with vertex 2. The weights of the four edges are 1, 2, 1, and 2, respectively. As a result, vertex 2 has 

a weighted vertex degree of 2 +  1 +  1 +  2 =  6. 
The trail [3 6 3 5 3 4 3 6   3] is chosen as a possible trail connecting all of the vertices of the first graph in Table 6 and 

is depicted in Figure 4(a). Any other trail can be chosen. The numbered graph is shown in Figure 4(b) 
 

  

(a) Two graphs having the same vertex degree listing with same numbering 

  

(b) Graphs with vertices labeled with the weighted vertex degree. 

Fig. 5. The steps of the trail and graph marking procedure for identifying isomorphism for two graphs with the same vertex degree listing 

[3 3 3 3 2 23 2 2 1 1 1]. 
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(c) The trail [3 5 3 4 5 2] is chosen as a possible trail connecting all of the vertices of the first graph. Vertices are numbered accordingly. 

  

(d) New numbering 

 

[4 5 2 3] 
 

[4 5 2 3] 

(e) Geared Strings 

Fig. 5. Continued. 

 
Table 7. The feasible geared graphs for a numbered parent graph. 

Family 2 

[3, 3, 3, 2, 3, 2] [3, 3, 1, 1, 1, 1] 
[3, 3, 3, 2, 3, 2] 

[3, 3, 1, 1, 1, 1] 

 

  

[3, 2, 1, 2, 1, 1] 
[3, 3, 3, 2, 3, 2] 

[3, 2, 1, 2, 1, 1] 

  

[3, 2, 2, 1, 1, 1] 
[3, 3, 3, 2, 3, 2] 

[3, 2, 2, 1, 1, 1] 
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The geared strings of the four graphs are designated as ab1, ab2, ab3, and ab4, respectively. We have ab1 = [3,2,8] [4,5] [6,7], ab3 = [3,4][7,2,8] [5,6], ab1 = ab2, and ab3 = ab4. The two graphs in columns (a) and (b) are isomorphic because ab1 = ab2. In 
addition, the graphs in columns (c) and (d) are isomorphic. Even though the four graphs in Table 6 have the same vertex degree 
listing, the two graphs in columns (a) and (c) are not isomorphic due to different geared strings. Furthermore, the graphs in 
columns (b) and (d) are not isomorphic. References [38, 39] corroborate this result. 

Figure 5 depicts the steps of the trail and graph marking procedure for identifying isomorphism for two graphs with the same 

vertex degree listing [3 3 3 3 2 23 2 2 1 1 1]. The two graphs are isomorphic because the geared strings are satisfied. 

Graphically and mathematically, structural isomorphism can be identified by the adjacency properties of geared graphs. The 
adjacency properties of a parent graph are determined by the spanning tree contained within the graph or by the arrangement of 
the geared edges. For example, the geared graphs in Table 7 represent different gear trains but use the same labeling. The 
difference is due to the spanning trees in the graphs. This avoids the time-consuming and complex process required by other 
methods. The main advantages of this method are compact notations, high accuracy, and ease of use. Another advantage is that 
the method eliminates the vast majority of isomorphic structures automatically.  

8. Demonstrative Example 

For a PGT with five links (R = 5) and 1-DOF (Q = 1), from Eq. (12), the number of vertices 	 is 6, from Eq. (11), the number of 
edges � is 8, from Eq. (13), the number of fundamental circuit or loops Z is 3, and  the maximal degree of a vertex 
 =  Z +  1 = 4. 

For a 6-vertex spanning tree, four link assortment arrays can be acquired from Eqs. (18) and (19), namely; [4, 1, 0, 1], [4, 0, 2, 0], 
[3, 2, 1, 0], and [2, 4, 0, 0]. For example, a spanning tree with V1 = 4, V2 = 1, V3 = 0 and V4 = 1 has a link assortment array of [4, 1, 0, 
1], and a vertex degree array of [4, 2, 1, 1, 1, 1] (or there are four vertices with degree one, one with degree two, and one with degree 
four). The vertex degree arrays corresponding to the above four link assortments are: [4, 2, 1, 1, 1, 1], [3, 3, 1, 1, 1, 1], [3, 2, 2, 1, 1, 1], 
and [2, 2, 2, 2, 1, 1]. 

For the purpose of classification, vertex degree arrays are grouped into families. Each family is designated by (EFF6.  
Family 1 ((EFF6 = 4): [4, 2, 1, 1, 1, 1]. 
Family 2 ((EFF6 = 3): [3, 3, 1, 1, 1, 1], [3, 2, 2, 1, 1, 1]. 
Family 3 ((EFF6 = 2): [2, 4, 1, 1, 1, 1], [2, 3, 1, 1, 1, 1], [2, 2, 2, 2, 1, 1]. 
Given a vertex degree array, it is possible to enumerate all the spanning trees.  
Since all first-level vertices are connected to the root but not to one another, their total number equals the vertex degree of 

the root. For the vertex degree array [4, 2, 1, 1, 1, 1] where (0 = (EFF6 = 4, (1 = 2, (2 = 1, (3 = 1, (4 = 1, and (5 = 1. The number of first 
level vertices 	IH equals the vertex degree of the root (0. From Eq. (6), 	IH = (EFF6 = 4, and from Eq. (5), the number of second level 

vertices 	GH equals the total number of vertices minus the first level vertices 	IH along with the root vertex which can be written as: 	GH = 	 − 	IH − 	EFF6 = 6 − 4 − 1 = 1.                                 
Figure 6 illustrates the spanning tree corresponding to the vertex degree array [4, 2, 1, 1, 1, 1]. There are 4 vertices in the first 

level (	1, 	2, 	3, 	4), 1 vertex in the second level (	5), and the root vertex of degree four (	0) in the ground level.  
Transfer vertices are readily apparent from a spanning tree. A transfer vertex is any vertex of a spanning tree (other than the 

root vertex) that is incident with at least two single-line edges. For the spanning tree depicted in Figure 6, vertex 1 is the transfer 
vertex because it is the only vertex (other than the root vertex) that is incident with two single-line edges. 

Using Eqs. (14) and (15), all link assortment arrays for parent graphs can be determined. For 	 = 6 and � = 8, three link 
assortment arrays can be acquired from Eqs. (20) and (21), namely; [4, 0, 2], [3, 2, 1], and [2, 4, 0]. The vertex degree arrays 
corresponding to these link assortments are: [4, 4, 2, 2, 2, 2], [4, 3, 3, 2, 2, 2], and [3, 3, 3, 3, 2, 2]. 

The vertex degree arrays are grouped into families: 
Family 1 ((EFF6 = 4) : [4, 4, 2, 2, 2, 2], [4, 3, 3, 2, 2, 2]. 
Family 2 ((EFF6 = 3) : [3, 4, 3, 2, 2, 2], [3, 3, 3, 3, 2, 2]. 
Family 3 ((EFF6 = 2) : [2, 4, 4, 2, 2, 2], [2, 4, 3, 3, 2, 2], [2, 3, 3, 3, 3, 2]. 
The most important step in the new method is to arrange the vertex degree arrays according to the vertex levels and 

eliminate the arrays that violate the distinctive equations. Parent graphs and spanning trees are classified into families 
depending on their link assortment arrays. Of course, parent graphs and spanning trees from various families cannot be 
compatible. The vertex degree arrays of parent graphs and spanning trees with the same root vertex degree provide the necessary 
condition for checking graph compatibility. Only family 1 will be utilized to illustrate the new method. 

The vertex matrix for family 1 can be constructed based on the structural characteristics of vertex matrix Q.  
 
 

 

Fig. 6. Spanning tree corresponding to the vertex degree array [4, 2, 1, 1, 1, 1]. 
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Fig. 7. The feasible parent graph corresponding to the vertex degree array [4; 2, 2, 2, 2; 4]. 

   

(a) Parent graph (b) Spanning tree (c) geared graph 

Fig. 8. Detection of the geared edges from the difference between the parent graph and the spanning tree. 

  

(a) (b) 

  

(c) (d) 

Fig. 9. Functional diagrams that correspond to Figure 7(c). 

From Eq. (7), we can write Eq. (22). From Eqs. (8) and (9) the distinctive equation for family 1 can be obtained as follows: 

⎩{{
⎨{
{⎧(1 = 1 + 1 = 2(2 = 1 + �2,5  (3 = 1 + �3,5(4 = 1 + �4,5

 (34) 

(5 = 1 + �2,5 + +�3,5 + �4,5 (35) 

From Eqs. (34) and (35), we get 

(1 + (2 + (3 + (4 = (0 + (5 (36) 
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subject to the constraints that  (2, (3, (4  ≤ 2, (5 ≤ 4 and (0 = 4.  
Any vertex degree array that satisfies the distinctive equation of family one represents a feasible solution. For the vertex 

degree array [4, 4, 2, 2, 2, 2], we get: (0 = 4, (1 = 2, (2 = 2, (3 = 2, (4 = 2, and (5 = 4. There are 4 vertices of degree two in the first level 
(	1, 	2, 	3, 	4), 1 vertex of degree four in the second level (	5), and the root vertex of degree four (	0). First-level vertices correspond 
to coaxial sun (ring) gears, or carriers, whereas second-level vertices correspond to planet gears. Figure 6 depicts the parent graph 
associated with the vertex degree array [4; 2, 2, 2, 2; 4]. 

The second vertex degree array [4, 3, 3, 2, 2, 2] should be excluded because it does not satisfy the distinctive equation. Hence, 
the first vertex degree array is the only feasible solution. Therefore, there is only one parent graph, as shown in Figure 7. The 
revolute edges are those that form the spanning tree, whereas the geared edges are those that do not. Hence, the geared graph 
can be generated from the parent graph (shown in Figure 8(a)) and the spanning tree (shown in Figure 8(b)) by setting the 
difference between them as geared edges. 

For the spanning tree depicted in Figure 8(b), vertex 1 is the transfer vertex and is thus the planet gear carrier. For the geared 
graph depicted in Figure 8(c), vertices 2, 3, and 4 are coaxial sun gears or ring gears, whereas vertex 5 is the planet gear. Figure 9 
depicts functional diagrams that are compatible with Figure 8(c).  

Figure 9(c) is a functional schematic diagram of the Minuteman cover drive, a well-known transmission. In this transmission, 
the input, output, and fixed links are the sun gear, link 4, the first ring gear, link 2, and the second ring gear, link 3. The compound 
planet, link 5, is supported by a revolving joint on link 1, the carrier. It meshes with sun gear number 4 and both ring gears. The 
joints connecting link 4 to links 1, 2, and 3 are revolute joints. On the whole, it forms a compound PGT with a 1-DOF. 

9. Conclusion 

Kinematic structures with the same number of degrees of freedom and links can be represented by graphs, configured with 
combinatorial configuration analysis, and enumerated with computer algorithms. The following are the research contributions of 
this work: 

1. The rooted graph definition is improved to make the graph representation appropriate for graphs with and without 
multiple joints. 

2. A novel method for synthesizing 1-DOF PGTs is described. Trees suitable for constructing rooted graphs are first identified. 
The parent graphs are then listed. Finally, geared graphs are discovered by inspecting their parent graphs and spanning 
trees. This approach is both analytical and algorithmic, and it appears to be promising for identifying all possible PGTs. 
The new approach avoids greatly the generation of degenerate structures and isomorphic graphs because it relies on link 
assortment arrays that are already different. The current genetic compatibility method is anticipated to be used in the 
future to synthesize PGTs with more DOF and links. 

3. A novel method based on two link assortment equations is introduced to precisely detect spanning trees. Transfer vertices 
and edge levels are inherent in spanning trees and are detected without the use of any computations. 

4. This work develops the vertex matrix of the rooted graph whose distinctive equation is used to arrange the vertex degree 
arrays according to the vertex levels and eliminate the arrays that violate the distinctive equations. 

5. The precise results of the 5-link geared graphs are confirmed to be 24. In Refs. [18, 19, 34], for example, the PGTs are 
represented by two types of graphs: graphs with at least one hollow vertex (multiple joint) and graphs with no hollow 
vertices. As a result, the results of the current method, which used rooted graphs, differed from those graphs with no 
hollow vertex. However, the results are identical to those graphs with one or more hollow vertices. The source of the 
disparity in existing synthesis results is dealt with effectively. 

6. According to the findings of this paper, every graph has at least one multiple joint that is designated as a root vertex. As a 
result, the results of this paper outperform the previous ones, and PGTs that cannot be generated using other methods are 
identified. The literature is examined for possible explanations for the contradictory synthesis results. 

7. A novel algorithm called trail and graph marking is proposed for first renumbering the graphs to be tested, and then 
identifying the isomorphism by comparing the corresponding geared strings. When identifying isomorphism, it is not 
necessary to test graphs from various families of parent graphs or spanning trees, which greatly improves the efficiency of 
detection. The algorithm is straightforward and computationally efficient. It can be modified to function with other 
kinematic structures. 

8. Structural isomorphism can be identified uniquely because the vertex degree listing and gear string representation have a 
one-to-one correspondence with the graph representation. This allows for the storage of a large number of graphs on a 
computer for later use. The vertex degrees listing outperforms most other methods where no classification is involved and 
all candidate graphs must be tested.  

9. The current approach can be employed to synthesize PGTs with multiple degrees of freedom. 
10. The complete PGT database allows for the generation of new transmission configurations. 
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Nomenclature 

A The adjacency matrix aij The (�, )) elements of the adjacent matrix 3 The incidence matrix 34  The transpose of the incidence matrix 3 2 The vertex degree matrix (EFF6 The degree of the root vertex 
e Number of edges  Ur The number of revolute joints 
F Number of degrees of Freedom Ug The number geared joints ab Geared string ��,� The (�, )) element of � 
L Number of independent loops �2, �3, … , �� Number of binary, ternary…m-nary vertices of parent graph 
 The maximal degree of vertex [�1, �2, �3,… , ��] Link assortment array for spanning tree 
N Number of Links 	IH The number of first level vertices & Root or the ground vertex 	GH The number of second level vertices � Vertex matrix 	EFF6 The root vertex 
V Vertices DOF Degree of Freedom 	 Number of vertices PGT Planetary gear train 
  PGM Planetary gear mechanism 
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