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Abstract. Residual stress may have an important influence on the mechanical response of residually stressed materi-
als. This paper is concerned with the effects of residual stress on the stability of inflated, axially extended, residually
stressed circular cylindrical tube. To this end, the theory of small incremental deformations superimposed on a large
underlying finite deformation is used. Asymmetric and axisymmetric types of bifurcation are considered. It is found
that for residual stress parameter γ̂ of the same sign the effect of the residual stress is different depending on the
type of bifurcation. For example, for asymmetric bifurcations with mode number m = 1 and with positive γ̂ inclusion
of residual stress makes the tube more stable, on the other hand, for axisymmetric bifurcations inclusion of residual
stress, corresponding to positive residual stress parameter γ̂, leads to increase of instabilities. In all cases, residual
stress with positive and negative residual stress parameter γ̂ leads to a symmetric character of bifurcation curves.
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1. Introduction

The problem of extension and inflation of a thick-walled elastic tube under internal pressure and external pressure was exten-
sively studied in [1].

The aforementioned contribution does not take into consideration the possible existence of residual stresses, which can be
important as we elaborate on it below. In bush mountings for the support of engines residual stresses are often introduced during
the vulcanization process or in manufacturing (see [2, 3]). In this case the residual stresses may have a negative impact on the
material performance. On the other hand, in soft biological tissues, specifically in aortas and the heart, residual stresses may have
a positive impact on the mechanical performance of these tissues.

Bifurcation analysis of a thick-walled cylindrical shell [4] was given in the context of a biomechanical problem concerned with
the development of aneurysms of an arterial wall. This physiological abnormality may lead to very dangerous and even fatal conse-
quences resulting from arterial wall tearing. Motivated by the desire to avoid arterial wall tearing, the authors [4] find the conditions
for the onset of instabilities in the arterial wall in patients with marfan syndrome. However, as it was mentioned earlier, residual
stresses, while often presented in arterial walls, were not considered by [4] in their analysis.

In this paper the bifurcation analysis of an inflated, axially extended, residually stressed circular cylindrical tube is given for sim-
ple strain-energy function. Apart from mentioned applications in mechanical engineering and biomechanics, due to the generality
of this analysis it may be relevant for other applications as well, specifically for structures having a circular cylindrical geometry.

It is well known that a tube made of a rubber material under symmetrical load after passing a certain critical (bifurcation) point
of deformation may take a final configuration which will deviate from perfect circular cylindrical geometry. Relevant experimental
data and theoretical analysis can be found in [5, 6] and [7, 1], respectively. However, the bifurcation analysis which takes into account
the presence of residual stress, to authors knowledge, is limited in literature. We mention recent work [8], where the stain-energy
function based on invariant I5 was used. The results obtained in [8] are different from those presented here for the strain-energy
function based on I6 invariant. See other references in [8] for the analytical bifurcation analysis. A numerical approach was used
for a similar problem studied in [9].

In order to determine when deviations from the perfect cylindrical configuration are possible we use the theory of small incre-
mental deformations superimposed on an underlying finite deformation.

This paper has the following structure. In Section 2, we summarize the most important definitions of the theory of elasticity
relevant to the considered problem. The deformation from the reference to the current configuration is described in terms of re-
spective polar cylindrical coordinates. Residual stress and equilibrium equations are introduced in Section 3, certain assumptions
pertinent to the problem about residual stress tensor are made which simplify and reduce residual stress tensor to circumferential
and radial components. In Section 4, for incompressible material strain energy is introduced generally as a function of nine invari-
ants which account for deformation, residual stress and coupling between them. A general expression of Cauchy stress is given,
and by evaluating it in the reference configuration, certain restrictions associated with residual stress for strain energy function
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are derived. In Section 5, invariants are presented in terms of principal stretches and residual stress components for the specified
problem of extension and inflation of the tube. Connections for stress differences and derivatives of the strain energy function with
respect to the principal stretches are provided. Specified form of the equilibrium equation is presented and integrated to find a
general formula for pressure difference P at the boundaries of the tube. Along with formula for P , expressions for axial load N and
reduced axial load F are given generally in terms of integrals as well. In Section 6, a simple form of strain-energy function and spe-
cific functions for components of residual stress are introduced. In Section 7, we summarize the equations governing incremental
deformations superimposed on a deformed configuration. A general expression for elastic tensor accounting for residual stress is
also provided. Then, in Section 8, we present a bifurcation analysis for the residually stressed elastic tube. First, general asymmet-
ric bifurcations are analyzed. In this case the components of displacements due to superimposed deformation are dependent on
the axial location along the tube, the radius and the angle in cylindrical polar coordinates. Second, axisymmetric bifurcations are
considered. These are the configurations of the tube for which cross-sections remain circular (i.e. there is no dependence on the
angle), but with the radius being depended on the axial location. The details of non-dimensionalization of the governing equations
and respective boundary conditions are also presented. In Section 9, we discuss numerical results for asymmetric and axisymmetric
types of bifurcations. The results are compared with cases where residual stress is not present.

For each of the asymmetric and axisymmetric bifurcations numerical results are based on the usage of the MATLAB code.

2. Kinematics and geometry

Let us consider an unstressed and unstrained continuum body in the reference configuration Br. A material point in this configu-
ration is labelled by its position vectorX. The corresponding position vector is denoted by x in the deformed (or current) configuration
B, and the transformation from Br to B is written x = χ(X), where the vector function χ is referred to as the deformation (attention
is confined to quasi-static deformations here). The deformation gradient tensor, denoted F, is defined by

F = Gradχ(X) (1)

where Grad is the gradient operator definedwith respect to variableX in the reference configurationBr. Other important deformation
tensors are right and left Cauchy-Green deformation tensors, denoted by C and B, respectively, are defined by the formulas

C = FTF = U2, B = FFT = V2 (2)

where T signifies the transpose of a second-order tensor, U and V, respectively, are the right and left stretch tensors, which are
positive definite and symmetric and come from the polar decomposition F = RU = VR, R being a proper orthogonal tensor. For
a homogeneous incompressible nonlinearly isotropic elastic solid, the elastic stored energy (defined per unit volume) depends on
only two invariants, which are the principal invariants of C (equivalently of B), defined by

I1 = tr (C) = λ21 + λ22 + λ23, I2 =
1

2
[(trC)2 − tr (C2)] = λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1 (3)

where λi > 0, i ∈ {1, 2, 3} are the principal stretches, i.e. the eigenvalues of U and V. The incompressibility of the continuum body
results in the constraint which may be written as

detF = 1 or λ1λ2λ3 = 1, (4)

equivalently in terms of components of F or in terms of the principal stretches, respectively.

2.1 Extension and inflation of the tube

We now consider a circular cylindrical tube, which, in terms of cylindrical polar coordinates (R,Θ, Z), is defined by the inequal-
ities

A ⩽ R ⩽ B, 0 ⩽ Θ ⩽ 2π, 0 ⩽ Z ⩽ L (5)

in the reference configuration Br , where A and B are the internal and external radii and L in the length of the tube. In the reference
configuration the position vector X of a point of tube is given by

X = RER + ZEZ , (6)

where ER and EZ are the unit basis vectors associated with radial and axial directions, R and Z, respectively. We also denote by EΘ
the corresponding unit vector associated with circumferential (azimuthal) direction.

Provided that the deformation, experienced by the tube, preserves its cylindrical circular shape, in the deformed configuration
each material point will be located at the place, given by the position vector x

x = rer + zez , (7)

where we make use of cylindrical polar coordinates (r, θ, z) in the current configuration B, which are associated with unit basic
vectors er , eθ , ez , respectively. The volume-preserving deformation consisting of axial extension, radial inflations is defined by

r =

√
a2 + λ−1

z (R2 −A2), θ = Θ, z = λzZ, (8)

where λz is the (uniform) axial stretch of cylinder. The current deformation geometry of the tube defined by

a ⩽ r ⩽ b, 0 ⩽ θ ⩽ 2π, 0 ⩽ z ⩽ l = λzL. (9)

For this deformation, the deformation gradient can be expressed as

F = λrer ⊗ ER + λθeθ ⊗ EΘ + λzez ⊗ EZ , (10)

where λr , λθ and λz are the principal stretches in the radial, azimuthal and axial directions. In particular, azimuthal stretch can be
found as λθ = r/R. In terms of principal stretches the incompressibility constraint (4) takes form

λrλθλz = 1. (11)

The right and left Cauchy-Green deformation tensors (2) are calculated as

C = λ2rER ⊗ ER + λ2θEΘ ⊗ EΘ + λ2zEZ ⊗ EZ ,

B = λ2rer ⊗ er + λ2θeθ ⊗ eθ + λ2zez ⊗ ez .
(12)
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3. Equilibrium and residual stress

Throughout this paper, we assume that no body forces and no intrinsic couple stresses are present. Therefore, the Cauchy stress
tensor σσσ (symmetric) and the nominal stress T satisfy the equilibrium equations

divσσσ = 0, DivT = 0, (13)

respectively, where div and Div are the divergence operators with respect to x ∈ B and X ∈ Br , respectively, and are connected by

σσσ = FT . (14)

If the traction is specified on all or part of the boundary we write the traction boundary condition as

TTN = tA on ∂Br, (15)

where tA is the applied traction per unit area of ∂Br and N is the unit outward normal on ∂Br.
We now assume that the reference configuration Br is residually stressed, with the residual stress tensor denoted by τττ . In this

configuration, T = σσσ = τττ , i.e. there is no difference between measures of stress since the deformation is measured from Br .
The residual stress τττ may associated with some prior material processing, plastic deformation or manufacturing process and it

assumed to be known. It arises in the absence of body forces and surface tractions on the boundary ∂Br of the material body Br . It
is also assumed that it is not accompanied by intrinsic couple stresses, so that it is symmetric (τττT = τττ ) and therefore the rotational
balance equations are satisfied in Br (not shown here) along with the equilibrium equation

Divτττ = 0. (16)

Due to the nature of residual stress there are no surface tractions, therefore, τττ must satisfy the boundary condition

τττN = 0 on ∂Br. (17)

Note that τττ is a residual stress is defined according to Hoger [10] and is different from other types of initial stress, which may
associatedwith surface tractions. It is important to note that residual stresses are necessarily non-uniformand geometry dependent,
and therefore the elastic response of a residually stressed material body is inhomogeneous.

For the considered circular cylindrical geometry, we assume that only diagonal components of residual stress τRR, τΘΘ, τZZ are
present, i.e. there is no residual shear stress, which is also compatible with the boundary condition (17). The Z component of the
equilibrium eq. (16) implies that τZZ may be assumed to be constant. Furthermore, for consistency with boundary condition (17)
we obtain that τZZ ≡ 0. The remaining components, τRR and τΘΘ, are assumed to be dependent only on R, and therefore the
component of the equilibrium eq. (16) is the following radial equation which needs to be satisfied non-trivially

dτRR

dR
+

1

R
(τRR − τΘΘ) = 0. (18)

According to (17) equilibrium eq. (18) is appended by

τRR = 0 on R = A,B. (19)

For known expression of τRR, τΘΘ can be obtained from eq. (18) as d(RτRR)/dR.

4. Constitutive equations

For a residually stressed elastic solid, the strain energy is a function of the deformation gradient F and residual stress τττ , therefore
we write the strain energy function asW (F, τττ) per unit volume, remembering that by objectively,W depends on F through the right
Cauchy-Green tensor C defined in expression (2). For residually stressed incompressible elastic body the Cauchy and nominal stress
tensors σσσ and T are obtained by

σσσ = F
∂W

∂F
(F, τττ)− pI, T =

∂W

∂F
− pF−1, (20)

where p is a Lagrange multiplier associated with the incompressibility constraint (4)1 and I is the identity tensor in the current
configuration B.

We note thatW (F, τττ) is automatically objective since τττ is unaffected by rotation in the deformed configuration B andW depends
on F only through C = FTF.

If the material has preferred directions in Br associated with τττ (its eigenvectors), then the elastic properties of the material
relative to Br are no longer isotropic, i.e. they are anisotropic.

In the reference configuration where deformation gradient tensor is an identity expression (20) reduces to

τττ =
∂W

∂F
(I, τττ)− p(r)I, (21)

where p(r) is value of p in Br . Equation (21) imposes some restrictions on W and τττ , which will be given at the end of the next
subsection.

4.1 Invariant formulation

Following [12] for an incompressible material, we adopt that W depends on nine invariants of C, τττ and their combinations.
Therefore, invariants defined in terms of C,

I1 = trC, I2 =
1

2

[
(trC)2 − trC2

]
, (22)

which are basically standard invariants used for isotropic material. The absence of the third invariant is due to the incompressibility
constraint resulting in I3 = detC = 1. Similarly for residual stress tensor τττ we can define

I4 = {I41, I42, I43} ≡
{
trτττ ,

1

2

[
(trτττ)2 − tr (τττ2),detτττ

] }
, (23)
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which are collectively denoted I4. Of course, here incompressibility constraint has no effect on invariant I43 = detτττ related to
residual stress. The set of independent invariants is completed by the invariants which include coupling of C and τττ

I5 = tr (τττC), I6 = tr (τττC2), I7 = tr (τττ2C), I8 = tr (τττ2C2). (24)

Therefore,W is taken as a function of the above nine invariants. We use the notationWi ≡ ∂W/∂Ii, where i = 1, 2, 4, 5, 6, 7, 8 for
concise writing. By evaluation of derivatives ∂Ii/∂F, i = 1, 2, 4, 5, 6, 7, 8, the Cauchy stress tensor (20)1 then expands out as

σσσ =2W1B+ 2W2(I1B− B2) + 2W5ΣΣΣ+ 2W6(ΣΣΣB+ BΣΣΣ)

+2W7ΣΣΣB−1ΣΣΣ+ 2W8(ΣΣΣB−1ΣΣΣB+ BΣΣΣB−1ΣΣΣ)− pI,
(25)

where we have introduced the new Eulerian tensor ΣΣΣ, defined by FτττFT, which is push a forward of τττ from Br to B. In the reference
configuration Br where deformation gradient is an identity, i.e. F = I, the set of invariants reduces to

I1 = I2 = 3, I5 = I6 = trτττ , I7 = I8 = tr (τττ2). (26)

We obtain the specialized expression of (21) by evaluating (25) in the reference configuration Br

τττ = (2W1 + 4W2 − p(r))I+ 2(W5 + 2W6)τττ + 2(W7 + 2W8)τττ
2, (27)

where allWi, i ∈ {1, 2, 4, 5, 6, 7, 8}, are evaluated for the invariants given by (26). The previous relation (27) implies that the following
residual stress-dependent restrictions must be satisfied for the strain-energy function in Br

2W1 + 4W2 − p(r) = 0, 2(W5 + 2W6) = 1, W7 + 2W8 = 0. (28)

5. Application to specific deformation: extension and inflation

In terms of principal stretches and residual stress components, τRR and τΘΘ, from (12)1 for the considered deformation we
obtain invariants

I1 = λ2r + λ2θ + λ2z , I2 = λ2θλ
2
z + λ2rλ

2
z + λ2rλ

2
θ,

I41 = τRR + τΘΘ, I42 = τRRτΘΘ, I43 = 0,

I5 = λ2rτRR + λ2θτΘΘ, I6 = λ4rτRR + λ4θτΘΘ,

I7 = λ2rτ
2
RR + λ2θτ

2
ΘΘ, I8 = λ4rτ

2
RR + λ4θτ

2
ΘΘ.

(29)

Taking into consideration incompressibility condition (11) we observe that invariants (29) depend on two independent strain
variables, and we take them as λθ , λz , together with τRR and τΘΘ, the third variable λr being given by λr = λ−1

θ λ−1
z . This

allows us to write the strain energy as a function of these variables, specifically as W̄ (λθ, λz , τRR, τΘΘ), which we connect to
W (I1, I2, I4, I5, I6, I7, I8) by writing

W̄ (λθ, λz , τRR, τΘΘ) =W (I1, I2, I4, I5, I6, I7, I8), (30)

where invariants I1, I2, I4, I5, I6, I7, I8 are given by (29). Then, using (30) and the expression for Cauchy stress (25), we obtain con-
nections

σθθ − σrr = λθ
∂W̄

∂λθ
,

σzz − σrr = λz
∂W̄

∂λz

(31)

with σrθ = σrz = σθz = 0.

5.1 Equilibrium and boundary load

Since σzz is uniform along the z axis and σθθ and σrr depend only on r (or equivalently R) with no shear stress σrθ = σrz =
σθz = 0, the equilibrium eq. (13)1 reduces to one scalar equation, namely

r
d

dr
(σrr) + σrr − σθθ = 0, (32)

which can be integrated

σrr(b)− σrr(a) =

∫ b

a
(σθθ − σrr)

dr

r
, (33)

where σrr(a) and σrr(b) are the values of σrr at the internal boundary surface r = a and external boundary surface r = b in the
current configuration B.

The situation in which the inner surface r = a is subject to a pressure Pa on r = a and the external surface r = b is subject to a
pressure Pb on r = b leads to the boundary conditions

σrr(a) = −Pa and σrr(b) = −Pb. (34)

Therefore, using previous boundary conditions (34) and connection (31)1, eq. (33) can be rewritten as

P = Pa − Pb =

∫ b

a
λθ
∂W̄

∂λθ

dr

r
. (35)

The axial load N on any cross section is given by

N =

∫ b

a

∫ 2π

0
σzzrdrdθ = 2π

∫ b

a
σzzrdr. (36)

The usage of (32), the boundary values of σrr and (31), leads to an expression for the so-called reduced axial load F , which is defined
as the total load N on the end of tube with closed ends reduced by the contributions Pa and Pb. This results in expression

F ≡ N − πa2Pa + πb2Pb = π

∫ b

a

(
2λz

∂W̄

∂λz
− λθ

∂W̄

∂λθ

)
rdr. (37)
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6. A simple model accounting for residual stress

In order to proceed further and obtain numerical results we need to choose a model. To this end, we construct strain energy
function using a basic neo-Hookean isotropic energy function with the term linear in I6 accounting for the coupling of deformation
and residual stress. Also we take into consideration restriction (28)2. This leads to

W =
1

2
µ(I1 − 3) +

1

4
(I6 − trτττ) (38)

where µ(> 0) is a constant, which corresponds to the shear modulus in the reference configuration of a neo-Hookean (isotropic)
material.

For the presented strain energy function (38), we obtain the Cauchy stress from (25)

σσσ = µB+
1

2
(ΣΣΣB+ BΣΣΣ)− pI. (39)

We note that the residual stress is accounted by the second term in (39) and we remind that ΣΣΣ = FτττFT.
The chosen model (38) must be also supplemented by the expression of the residual stress component τRR depending on R in

the reference configuration. The boundary conditions (19) suggest that we can write

τRR = γ(R−A)(R−B). (40)

The other component, τΘΘ, can be easily obtained from (18) as

τΘΘ = γ[3R2 − 2(A+B)R+AB], (41)

where γ is constant which defines the strength of the residual stress. Depending on the sign of γ we obtain inequalities for τRR.
Therefore, from (40) τRR < 0(> 0) for γ > 0(< 0).

We write strain energy function in terms of principal stretches and components of residual stress

W̄ =
1

2
µ
(
λ2θ + λ2z + λ−2

θ λ−2
z − 3

)
+

1

4

[
(λ−4

θ λ−4
z − 1)τRR + (λ4θ − 1)τθθ

]
.

This leads to the expressions of stress differences

σθθ − σrr = λθW̄λθ
= µ(λ2θ − λ−2

θ λ−2
z ) + λ4θτΘΘ − λ−4

θ λ−4
z τRR,

σzz − σrr = λzW̄λz = µ(λ2z − λ−2
θ λ−2

2 )− λ−4
θ λ−4

z τRR.
(42)

7. Incremental formulation

In this section we summarize the equations governing incremental deformations superimposed on a current deformed config-
uration. A more detailed discussion of this theory can be found in [11].

7.1 Incremental equations and boundary conditions

We denote the increment of each variable by a superimposed dot. For example, increment ẋ can be viewed as a small displace-
ment of the current position x. Operations Grad and obtaining increments commute so that increment in deformation gradient can
be written as Ḟ = Grad ẋ. The increment Ṫ must satisfy the incremental governing equation

Div Ṫ = 0. (43)

For incompressible case (J = 1) the incremental form of the boundary condition (15) is

ṪTN = ṫA on ∂Br. (44)

Now it is convenient to work in terms of the push-forward version of the increment in Ṫ defined by (since J = 1)

Ṫ0 = FṪ. (45)

Note that (45) can be considered as the incremental counterpart of (14), and also referred to as a quantity updated from the reference
configuration Br to the deformed configuration B, with updated quantity identified by a zero subscript. A detailed discussion of the
concept of updating variables can be found in [11], and here we use this approach throughout the rest of the paper.

It can be shown that the governing eq. (43) is then updated to

div Ṫ0 = 0, (46)

and the corresponding boundary condition is updated to

ṪT
0n = ṫA0 on ∂B. (47)

Incrementing J = detF, we obtain J̇ = Jtr (ḞF−1), and for an incompressible material J̇ = 0, which leads to the incremental
form of the incompressibility condition (4)

trL ≡ divu = 0, (48)

where L = ḞF−1 = gradu, u (= ẋ) being a function of x.
Let us introduce orthogonal curvilinear coordinate system with e1, e2, e3 being unit basis vectors in this coordinate system.

Then, in component form, eq. (46) is equivalent to the three scalar equations

Ṫ0ji,j + Ṫ0jiek · ej,k + Ṫ0kjei · ej,k = 0, i = 1, 2, 3, (49)

in which summation over repeated indices j and k from 1 to 3 is implied and the notation ,j represents the derivative associated
with the jth curvilinear coordinate, and is made explicit in Section 8 for cylindrical polar coordinates.
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7.2 Incremental constitutive equations

Increment Ṫ in the nominal stress is a result of increment Ḟ in the deformation gradient, which leads to the following incremental
form of the constitutive law. Incrementing constitutive eq. (20)2 we obtain

Ṫ = AḞ+ pF−1ḞF−1 − ṗF−1, (50)

where A, which is a fourth-order tensor, denotes elastic moduli associated with the strain energyW . The component form of it is
written

Aαiβj =
∂2W

∂Fiα∂Fjβ
, (51)

which enjoy the symmetries
Aαiβj = Aβjαi (52)

as a consequence of equality of mixed partial derivatives.
The component form of equations (50) are then

Ṫαi = Aαiβj Ḟjβ + pF−1
αk ḞkβF

−1
βi − ṗF−1

αi , (53)

where F−1
αi is defined as (F−1)αi. The updated version of (50) is

Ṫ0 = A0L+ pL− ṗI, (54)

and in component form the connections between the elastic moduli tensor (51) and its updated form is

A0piqj = FpαFqβAαiβj . (55)

The symmetry (52) carries over to the updated version of the moduli.
In terms of invariants the updated elasticity tensor can be expanded in its component form as

A0piqj =
∑
r∈I

WrFpαFqβ
∂2Ir

∂Fiα∂Fjβ
+

∑
r,s∈I

WrsFpαFqβ
∂Ir

∂Fiα

∂Is

∂Fjβ
, (56)

whereWrs = ∂2W/∂Ir∂Is and I is again the index set {1, 2, 5, 6, 7, 8}. For the specific model (39) we obtain elasticity tensor

A0piqj = µBpqδij +
1

2
(ΣpqBij + (ΣΣΣB)pqδij

+(BΣΣΣ)pqδij +ΣijBpq +ΣpjBiq +ΣqiBjp) . (57)

We also write here the useful connection

A0jisk −A0ijsk = (σjs + pδjs)δik − (σis + pδis)δjk. (58)

8. Bifurcation of a residually stressed circular cylinder

In this section, for consistency with the analysis in [1], which does not consider the effect of residual stress, we re-order the
coordinates r, θ, z as θ, z, r, associated with the stretches λ, λz , λr , respectively. We also use the notation λ1, λ2, λ3 for these stretches
in the same order.

The unit basis vectors associated with the cylindrical polar coordinates θ, z, r are denoted e1, e2, e3, and the derivatives (·),k in
(49) denoted by subscripts with commas become ∂/r∂θ, ∂/∂z, ∂/∂r for k = 1, 2, 3, respectively. For the cylindrical polar coordinates
the only non-zero scalar products ei · ej,k in (49) are

e1 · e3,1 = −e3 · e1,1 =
1

r
. (59)

The incremental displacement ẋ = u is written
u = ve1 + we2 + ue3, (60)

and the matrix of components of L = gradu with respect to the basis vectors e1, e2, e3 is

[Lij ] =

(u+ vθ)/r vz vr

wθ/r wz wr

(uθ − v)/r uz ur

 , (61)

where the subscripts θ, z, r without a preceding comma indicate the corresponding partial derivatives.
The incremental incompressibility condition (48) specializes to

(u+ vθ)/r + wz + ur = 0. (62)

In the next subsections we will consider asymmetrcic and axisymmetric bifurcations. Schematic representation of the configu-
rations of the tube corresponding to asymmetric and axisymmetric bifurcations are given at Fig. 1.
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Z, z Z, z

Fig. 1. Schematic representation of the configurations of the tube corresponding to asymmetric (left) and axisymmetric bifurcations (right).

8.1 Asymmetric bifurcations

Three scalar equations corresponding to i = 1, 2, 3 can be obtained from (49), using (59)

Ṫ011,1 + Ṫ021,2 + Ṫ031,3 +
1

r
(Ṫ031 + Ṫ013) = 0, (63)

Ṫ012,1 + Ṫ022,2 + Ṫ032,3 + Ṫ032/r = 0, (64)

Ṫ013,1 + Ṫ023,2 + Ṫ033,3 +
1

r
(Ṫ033 − Ṫ011) = 0. (65)

For the considered underlying cylindrical configuration the components of Ṫ0 in the three above equations are given by

Ṫ011 = A01111L11 +A01122L22 +A01133L33 + pL11 − ṗ, (66)

Ṫ022 = A02211L11 +A02222L22 +A02233L33 + pL22 − ṗ, (67)

Ṫ033 = A03311L11 +A03322L22 +A03333L33 + pL33 − ṗ, (68)

Ṫ012 = A01212L21 +A01221L12 + pL12, (69)

Ṫ021 = A02121L12 +A02112L21 + pL21, (70)

Ṫ013 = A01313L31 +A01331L13 + pL13, (71)

Ṫ031 = A03131L13 +A03113L31 + pL31, (72)

Ṫ023 = A02323L32 +A02332L23 + pL23, (73)

Ṫ032 = A03232L23 +A03223L32 + pL32, (74)

where the components of the elastic moduli tensors A0 are obtained from the general expression given by (57) for the specific
underlying deformation.

Substitution of the expressions (66)–(74) into (63), (64) and (65) and use of the incompressibility condition (62) results in the
expressions

ṗθ = (rA′
03131 +A03131)(uθ + rvr − v)/r + (A01111 −A01122 −A02112)(uθ + vθθ)/r

+ A02121rvzz +A03131rvrr + (A01133 −A01122 −A02112 +A03113)urθ, (75)

ṗz = (rA′
03232 +A03232)(uz + ωr)/r +A01212(ωθθ − ruz)/r

2 +A03232ωrr

+ (A02222 −A01221 −A01122)ωzz + (A02233 +A03223 −A01221 −A01122)urz , (76)

ṗr = A01313(uθθ − vθ)/r
2 + (rA′

01133 − rA′
02233 −A01111 +A01122 +A03223)(vθ + u)/r2

+ (A01331 +A01133 −A03223 −A02233)vrθ/r + (A03333 −A02233 −A03223)urr

+ A02323uzz + (rA′
03333 + rp′ − rA′

02233 +A03333 − 2A02233 +A01122 −A03223)ur/r,

(77)

respectively, where prime denotes differentiation with respect to r.
We recall that the tube is loaded by different internal and external pressures, Pa and Pb. Therefore, the boundary condition (47)

is specialized to

ṪT
0n = ṫA0 =

{
PaLTn− Ṗan on r = a

PbLTn− Ṗbn on r = b
(78)

where Ṗa and Ṗb are prescribed constant increments in Pa and Pb, which we set here to zero on the boundaries r = a, r = b. In terms
of components this gives

Ṫ031 =

{
PaL31 on r = a

PbL31 on r = b,
Ṫ032 =

{
PaL32 on r = a

PbL32 on r = b,
Ṫ033 =

{
PaL33 on r = a

PbL33 on r = b.
(79)
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It is reasonable to assume that A03131 ̸= 0, A03232 ̸= 0. Therefore, by using (72), (58) and the boundary conditions (79), the first
of these can be written as

L13 + L31 = 0 on r = a, b, (80)

using (74) the second of these can be written as

L23 + L32 = 0 on r = a, b, (81)

while on use of (68) the third can be rewritten as

A01133L11 +A02233L22 + (A03333 +A03131 −A01331)L33 − ṗ = 0 on r = a, b. (82)

We now write displacements in the form

u = f(r) cosmθ sinαz, (83)

v = g(r) sinmθ sinαz, (84)

ω = h(r) cosmθ cosαz, (85)

ṗ = k(r) cosmθ sinαz, (86)

where integersm ⩾ 0 and α ⩾ 0. From the incompressibility condition (62) we obtain

h(r) =
rf ′(r) + f(r) + g(r)m

αr
. (87)

Substitution of expressions (83)–(86) into (75)–(77) and elimination of h(r) by means of (87) leads to the governing equations

(rA′
03131 +A03131 +A01111 −A01122 −A02112)mf(r)

+(A01133 −A01122 −A02112 +A03113)rmf
′(r) + [rA∗′

03131 +A03131

+m2(A01111 −A01122 −A02112) + α2r2A02121]g(r)− (rA∗′
03131 +A03131)rg

′(r)

−r2g′′(r)A03131 −mrk(r) = 0, (88)

[rA′
03232 −A03232 +m2A01212 − α2r2(rA′

03232 +A03232 −A01212 −A02222 +A01221 +A01122)]f(r)

−[rA′
03232 −A03232 −m2A01212 − α2r2(A02222 −A02233 −A03223)]rf

′(r)

−(rA′
03232 + 2A03232)r

2f ′′(r)−A03232r
3f ′′′(r)

+[rA′
03232 −A03232 +m2A01212 + α2r2(A02222 −A01221 −A01122)]mg(r)

−(rA′
03232 −A03232)mrg

′(r)−A03232mr
2g′′(r) + α2r3k(r) = 0, (89)

(rA′
01133 − rA′

02233 −A01111 +A01122 +A03223 − α2r2A02323 −m2A01313)f(r) +

+(rA′
03333 + rp′ − rA′

02233 +A03333 − 2A02233 +A01122 −A03223)rf
′(r)

+(A03333 −A02233 −A03223)r
2f ′′(r)

+(rA′
01133 − rA′

02233 −A01111 +A01122 +A03223 −A01313)mg(r)

+(A01331 +A01133 −A03223 −A02233)mrg
′(r)− r2k′(r) = 0. (90)

Using (83)–(87) boundary condition (80) becomes

rg′(r)− f(r)m− g(r) = 0 on r = a, b, (91)

using the previous expression boundary condition (81) can be rewritten as

r2f ′′(r) + rf ′(r) + (α2r2 +m2 − 1)f(r) = 0 on r = a, b, (92)

and boundary condition (82) becomes

[f(r) +mg(r)](A01133 −A02233) + rf ′(r)(A03333 +A03131 −A01331 −A02233)

− rk(r) = 0 on r = a, b. (93)

In order to tackle this problem numerically we need to rearrange governing equations (88)–(90) and boundary conditions (91)–(93).
To this end, let us introduce new variables

y1 = f(r), y2 = f ′(r), y3 = f ′′(r), y4 = g(r), y5 = g′(r), y6 = k(r). (94)
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Therefore, governing equations (88)–(90) can be rewritten as a system of 6 first-order ordinary differential equations:

y′1 = y2, y′2 = y3, y′4 = y5,

A03232r
3y′3(r) +A03232mr

2y′5(r) = [rA′
03232 −A03232 +m2A01212

−α2r2(rA′
03232 +A03232 −A01212 −A02222 +A01221 +A01122)]y1(r)

−[rA′
03232 −A03232 −m2A01212 − α2r2(A02222 −A02233 −A03223)]ry2(r)

−(rA′
03232 + 2A03232)r

2y3(r)

+[rA′
03232 −A03232 +m2A01212 + α2r2(A02222 −A01221 −A01122)]my4(r)

−(rA′
03232 −A03232)mry5(r) + α2r3y6(r),

A03131r
2y′5(r) = (rA′

03131 +A03131 +A01111 −A01122 −A02112)my1(r)

+(A01133 −A01122 −A02112 +A03113)rmy2(r) + [rA′
03131 +A03131

+m2(A01111 −A01122 −A02112) + α2r2A02121]y4(r)− (rA′
03131 +A03131)ry5(r)

−mry6(r),
r2y′6(r) = (rA′

01133 − rA′
02233 −A01111 +A01122 +A03223 − α2r2A02323 −m2A01313)y1(r) +

+(rA′
03333 + rp′ − rA′

02233 +A03333 − 2A02233 +A01122 −A03223)ry2(r)

+(A03333 −A02233 −A03223)r
2y3(r)

+(rA′
01133 − rA′

02233 −A01111 +A01122 +A03223 −A01313)my4(r)

+(A01331 +A01133 −A03223 −A02233)mry5(r). (95)

Boundary conditions (91)–(93) become

ry5(r)− y1(r)m− y4(r) = 0 on r = a, b, on r = a, b, (96)

r2y3(r) + ry2(r) + (α2r2 +m2 − 1)y1(r) = 0 on r = a, b, (97)

[y1(r) +my4(r)](A01133 −A02233) + ry2(r)(A03333 +A03131 −A01331 −A02233)

− ry6(r) = 0 on r = a, b. (98)

To proceed further with the numerical solution we need to use incremental boundary conditions at the end of the tube. We
assume that there are no radial and rotational displacements and the axial component of the increment in the nominal stress
tensor is also zero. Therefore, we write

u = v = 0, Ṫ022 = 0 on z = 0, l. (99)

From (83) and using the previous incremental boundary condition (99) we obtain

α =
πn

λzL
, n = 1, 2, 3... (100)

The numerical solutions are obtained for the non-dimensionalized form of the system of governing ordinary differential equa-
tions (95) and corresponding boundary conditions (96)–(98). The essence of the numerical scheme and the details of the non-
dimensionalization procedure are discussed in the next section detailing axisymmetric bifurcations.

8.2 Axisymmetric bifurcations

Axisymmetric bifurcations imply that v = 0 and u and w are independent of θ, therefore the components of the displacement
gradient specialize to

[Lij ] =

u/r 0 0

0 wz wr

0 uz ur

 , (101)

and the incompressibility condition (48) can be obtained as

u/r + wz + ur = 0. (102)

For axisymmetric incremental deformations with v = 0 and no dependence on θ the component of the equilibrium eq. (49) for i = 1
is satisfied automatically. Equations for i = 3, 2 specialize, respectively, to

Ṫ023,2 + Ṫ033,3 +
1

r
(Ṫ033 − Ṫ011) = 0, (103)

Ṫ022,2 + Ṫ032,3 +
1

r
Ṫ032 = 0, (104)

where the components

Ṫ023 = A02323L32 +A02332L23 + pL23, (105)

Ṫ032 = A03232L23 +A03223L32 + pL32, (106)

Ṫ011 = A01111L11 +A01122L22 +A01133L33 + pL11 − ṗ, (107)

Ṫ022 = A02211L11 +A02222L22 +A02233L33 + pL22 − ṗ, (108)

Ṫ033 = A03311L11 +A03322L22 +A03333L33 + pL33 − ṗ (109)
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are obtained by specializing (54)1. Substitution of these into (103) and (104) and use of incremental incompressibility condition (102)
leads to

ṗr = (rA′
01133 −A01111)u/r

2 + (rA′
03333 + rp′ +A03333)ur/r +A03333urr

+ A02323uzz + (rA′
02233 +A02233 −A01122)wz/r + (A02233 +A03223)wrz , (110)

ṗz = A03232wrr + (rA′
03232 +A03232)wr/r +A02222wzz + (A02233 +A03223)urz

+ (rA′
03223 + rp′ +A03223 +A01122)uz/r. (111)

We note that, alternatively, expressions (110) and (111) can be obtained directly from (77) and (76), recalling that for axisymmetric
case v = 0 and there is no dependence on θ.

The traction boundary condition again has the form (78) but now specializes to

Ṫ032 =

{
PaL32 on r = a

PbL32 on r = b,
Ṫ033 =

{
PaL33 on r = a

PbL33 on r = b.
(112)

Proceeding further, by using the components (106) and (109), we obtain, provided that A03232 ̸= 0

L23 + L32 = 0 on r = a, b. (113)

The use of (109) and the incompressibility condition L11 + L22 + L33 = 0,

(A03333 −A02233 + p)L33 + (A01133 −A02233)L11 − ṗ =

{
PaL33 on r = a

PbL33 on r = b.
(114)

We seek for solutions of displacements in the form

u = f(r) sinαz, (115)

ω = h(r) cosαz. (116)

We cross-differentiate expressions (110) and (111) with respect to z and r. This leads to elimination of second-order cross derivatives
of ṗ. Furthermore, the use of incompressibility condition (102) allows us to eliminate h(r) from the resulting expression. Thus, we
obtain a single governing equation for f(r)

r4[A03232f
′′′ + (rA′

03232 + 2A03232)f
′′/r + (rA′

03232 −A03232)f
′/r2 − (rA′

03232 −A03232)f/r
3]′

+ α2r2[(2A02233 + 2A03223 −A03333 −A02222)r
2f ′′

+ (2rA′
03223 + 2rA′

02233 − rA′
03333 − rA′

02222 −A03333 −A02222 + 2A02233 + 2A03223)rf
′

+ (r2A′′
03223 + r2p′′ + rA′

03223 + rA′
01122 − rA′

01133 − rA′
02222 + rA′

02233

+A01111 +A02222 − 2A01122 − 2A03223)f ] + α4r4A02323f = 0, (117)

and the corresponding two boundary conditions (113) and (114) as

r2f ′′ + rf ′ + (α2r2 − 1)f = 0 on r = a, b (118)

and

A03232r
3f ′′′ + (rA′

03232 + 2A03232)r
2f ′′ + (rA′

03232 −A03232)rf
′

− (rA′
03232 −A03232)f − α2r2[(A03333 +A02222 − 2A02233 − 2A03223 +A03232)rf

′

− (rA′
03232 +A01122 −A02222 +A02233 −A01133 +A03223 +A03131 −A01313)f ] = 0 on r = a, b. (119)

Boundary condition (119) was obtained by differentiating (114) with respect to z and then by substituting expression for ṗz from (111)
into the resulting expression.

8.2.1 Numerical solution

In order to obtain numerical results we use incremental boundary condition

u = 0 on z = 0, l. (120)

Thus, radial displacements at the ends of the cylinder are not permitted and the increment Ṫ022 in the axial load is not present.
Therefore, we obtain from (120) and (115)

α =
πn

l
=

πn

λzL
, (121)

where n = 1, 2, 3, ... is the mode number. We observe from (121) that α may be changed either by mode number n or the length of
the cylinder L. Therefore, it is convenient to fix n = 1 and to perform the analysis for different lengths of the cylinder, recognizing
that the effect of increasing the mode number n can be equivalently substituted by a decrease in the value of L.

We introduce the dimensionless variables and material constants defined by

r̂ = r/A, â = a/A, b̂ = b/A, f̂(r̂) =
f(r)

A
,

ĝ(r̂) = g(r)/A, k̂(r̂) = k(r)/µ, p̂(r̂) = p(r)/µ, α̂ = αA,

γ̂ = γA2/µ, σ̂ = σ/µ, τ̂ = τ/µ, Â0 = A0/µ. (122)
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We note that nondimensional ĝ(r̂) and k̂(r̂) were used in Section 8.1 for more general case of asymmetric bifurcations.
Also we define the nondimensional variables

ŷ1(r̂) = f̂α(r̂), ŷ2(r̂) = f̂ ′α(r̂), ŷ3(r̂) = f̂ ′′α(r̂), ŷ4(r̂) = f̂ ′′′α (r̂) (123)

so that we can rewrite governing eq. (117) as a system of first-order ordinary differential equations

ŷ′1 = ŷ2, ŷ′2 = ŷ3, ŷ′3 = ŷ4,

r̂4Â03232ŷ
′
4 = −[3(r̂Â′

03232 − Â03232)− r̂2Â′′
03232 + α̂2r̂2(r̂2Â′′

03223 + r̂2p̂′′ + r̂Â′
03223 + r̂Â′

01122

− r̂Â′
01133 − r̂Â′

02222 + r̂Â′
02233 + Â01111 + Â02222 − 2Â01122 − 2Â03223) + α̂4r̂4Â02323]ŷ1

− [r̂3Â′′
03232 − 3r̂2Â′

03232 + 3r̂Â03232 + α̂2r̂3(2r̂Â′
03223 + 2r̂Â′

02233 − r̂Â′
03333 − r̂Â′

02222

− Â03333 − Â02222 + 2Â02233 + 2Â03223)]ŷ2

− [r̂3(3Â′
03232 + r̂Â′′

03232)− 3r̂2A03232 + α̂2r̂4(2Â02233 + 2Â03223 − Â03333 − Â02222)]ŷ3

− (2r̂4Â′
03232 + 2r̂3Â03232)ŷ4

(124)

with corresponding boundary conditions, obtained from (118) and (119),

r̂2ŷ3 + r̂ŷ2 + (α̂2r̂2 − 1)ŷ1 = 0, on r = â, b̂, (125)

Â03232r̂
3ŷ4 + (r̂Â′

03232 + 2Â03232)r̂
2ŷ3 + (r̂Â′

03232 − Â03232)r̂ŷ2 − (r̂Â′
03232 − Â03232)ŷ1

− α̂2r̂2[(Â03333 + Â02222 − 2Â02233 − 2Â03223 + Â03232)r̂ŷ2 − (r̂Â′
03232 + Â03223 + Â03131 − Â01313

+ Â01122 − Â02222 + Â02233 − Â01133)ŷ1] = 0, on r = â, b̂. (126)

Expressions for the elastic moduli specialized for the energy function (38) are given by (57).
We write the initial values for the system (124) in the form

ŷi(â) = δik, i = 1, ..., 4, (127)

where δik is the Kronecker delta. Each k (= 1, ..., 4) in (127) corresponds to the solution yk of the system (124), the general solution
of which can be written in the form

ŷ =
4∑

k=1

ckŷk, (128)

where ck are constants.
We require the solution (128) to satisfy boundary conditions (125)–(126). Substitution of (128) into (125)–(126) leads to a 4 × 4

determinant of coefficients of ck, vanishing of which represents the bifurcation criterion for this problem.

9. Numerical results

9.1 Asymmetric bifurcation

In this section we consider the results for asymmetric bifurcations for most likely mode numberm = 1 and moderate values of
residual stress parameter γ̂. Bifurcation curves are denoted by continuous lines with corresponding zero pressure curves denoted
by dashed lines. We use red color for positive values of γ̂ for the respective bifurcation curves and we use blue color for the negative
values of γ̂. Black color corresponds to the case without residual stress. We see from Fig. 2 that residual stress corresponding to
negative value of parameter γ̂ has destabilizing effect for asymmetric bifurcation: for the same values of λz the values of λa are lower
than those required to achieve bifurcation without residual stress. On the other hand, residual stress corresponding to a positive
residual stress parameter γ̂ has a reverse effect andmakes the asymmetric bifurcations achievable at values of λa higher than those
values without residual stress. Thus, in this case residual stress has a stabilizing effect for asymmetric bifurcations.

Let us consider bifurcation curve corresponding to γ̂ = 0.5 with respect to regions of pressure with the same sign. We see that
at Fig. 2 zero pressure curves divide bifurcation curve into three regions. Zero pressure curves were obtained from expression (53)
for ψ∗ = 0 in [12] using ’fimplicit’ in MATLAB [13]. If we start moving upwards from the bottom of the figure, we first find that
asymmetric bifurcation for γ̂ = 0.5 happens at negative pressure (at external pressure). Then moving forward, we get to the region
of positive pressure between the two red dashed lines (here bifurcation becomes possible for internally pressurized tube). Moving
forward along the third longest part of bifurcation curve, we again get into the area of negative pressure, and thus bifurcation here
becomes possible for externally pressurized tube.

Now let us consider the bifurcation curve corresponding to γ̂ = −0.5. We can observe that the shown bifurcation curve is split
into two parts by zero pressure curves. Again, for analysis of the result we go upwards along the blue bifurcation curve. The region
below the intersection of blue zero pressure curve and bifurcation curve corresponds to negative pressure, and thus externally
pressurized tube bifurcates into asymmetric regime in this region. If we move forward upwards along the bifurcation curve, we end
up in the region of positive pressure, and thus internally pressurized tube can bifurcate into asymmetric regime for these values of
λz and λa on bifurcation curve. At Fig. 3 we show the results for much longer tube L/B = 50. The obtained results look very similar
to those shown at Fig. 2.

We also obtained bifurcation curves for m = 2 for moderate values of γ̂ = −1, 0, 1, but the effect of residual stress on these
bifurcation curves is very small, almost negligible. Therefore, we do not show these results here.

9.2 Axisymmetric bifurcation

At Fig. 4 and Fig. 5 we obtained new results for axisymmetric bifurcations for the residually stressed tube. Also, we reproduced
axisymmetric bifurcation curves obtained in [1] without residual stress. We note that values of L/B should be divided by 2 in Fig. 3
in [1] for correct caption of the figure. Again, we can observe a symmetric picture with respect to the case without residual stress.
But now unlike in the case for asymmetric bifurcations, residual stress corresponding to positive residual stress parameter γ̂ has
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λz

λa

Fig. 2. Plots of the asymmetric bifurcation curves (continuous curves) for the augmented neo-Hookean elastic material (38) for A/B = 0.8, L/B = 10,
γ̂ = −0.5, 0, 0.5, mode number m = 1. The values of γ̂ are shown next to the relevant curves. Dashed lines are zero pressure curves corresponding to
residual stress parameter γ̂ and shown with the same color as respective bifurcation curve.

λz

λa

Fig. 3. Plots of the asymmetric bifurcation curves (continuous curves) for the augmented neo-Hookean elastic material (38) for A/B = 0.8, L/B = 50,
γ̂ = −0.5, 0, 0.5, mode number m = 1. The values of γ̂ are shown next to the relevant curves. Dashed lines are zero pressure curves corresponding to
residual stress parameter γ̂ and shown with the same color as respective bifurcation curve.

a destabilizing effect: for the same fixed values of λz , axisymmetric bifurcation can happen at lower values of λa as opposed to
the case without residual stress. On the other hand, residual stress corresponding to negative residual stress parameter γ̂ has a
stabilizing effect: for the same fixed values of λz , axisymmetric bifurcations occur at larger values of λa, and thus it is more difficult
to achieve these values of λa and switch into this bifurcation regime.

Now let us discuss for what pressure (internal or external) and for which values of λa and λz axisymmetric bifurcations become
possible. At Fig. 4 for the case without residual stress, zero pressure curve divides the region of values of λa and λz into two areas.
The upper-right region corresponds to the area of positive pressure, and thus internally pressurized tube can bifurcate here into
axisymmetric regime. The lower-left area corresponds to the limited bifurcation values of λz and λa (λz ≈ 0.5, λa < 1.5), where
bifurcation is possible under external pressure.

For residually stressed tube the division of the area by zero pressure curves at Fig. 4 is more complicated. Let us first consider
bifurcation curve corresponding to γ̂ = −0.8 at Fig. 4. The middle region between blue dashed zero pressure curves corresponds to
the area of positive pressure and thus internally pressurized residually stressed tube can bifurcate into axisymmetric regime if the
tube is deformed within the values of λa and λz , which are limited by these two zero pressure curves (blue dashed lines). Outside
this region there are two zones of negative pressure on the left and right hand sides, and thus axisymmetric bifurcation is possible
under external pressure.

Now we consider bifurcation of a residually stressed tube with parameter γ̂ = 0.8. The middle region between the two red
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dashed zero pressure curves correspond to the area of positive pressure and thus bifurcation is possible under internal pressure.
The upper and lower regions correspond to the areas of negative pressure, where bifurcation of a residually stressed tube becomes
possible under external pressure. For the upper region this corresponds to the ranges 0.6 ⪅ λz ⪅ 1.6 and 1.7 ⪅ λa ⪅ 2.1. The results
for longer tube L/B = 10 are shown at Fig. 5. The character of the results is very similar to those results shown for shorter tube at
Fig. 4. We note that bifurcation curves have higher maxima for longer tube, while zero pressure curves do not depend on the ratio
L/B.

The results shown here are in agreement qualitatively with the ones obtained numerically in [9], [14], [15].

λz

λa

Fig. 4. Plots of the axisymmetric bifurcation curves (continuous curves) for the augmented neo-Hookean elastic material (38) forA/B = 0.85, L/B = 5,
γ̂ = −0.8, 0, 0.8. The values of γ̂ are shown next to the relevant curves. Dashed lines are zero pressure curves corresponding to residual stress
parameter γ̂ and shown with the same color as respective bifurcation curve.

λz

λa

Fig. 5. Plots of the axisymmetric bifurcation curves (continuous curves) for the augmented neo-Hookean elasticmaterial (38) forA/B = 0.85,L/B = 10,
γ̂ = −0.6, 0, 0.6. The values of γ̂ are shown next to the relevant curves. Dashed lines are zero pressure curves corresponding to residual stress
parameter γ̂ and shown with the same color as respective bifurcation curve.

10. Concluding remarks

In the present paper we obtained new results for axisymmetric and asymmetric bifurcations for the model (38), accounting for
residual stress. The obtained results are different from those published in [8] for different models. The present findings suggest
that the influence of residual stress, associated with positive and negative residual stress parameter, γ̂, is different and the resulting
bifurcation curves can be viewed as symmetric with respect to the bifurcation curves without residual stress. For asymmetric
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bifurcations with mode numberm = 1 inclusion of residual stress with positive γ̂ makes the tube more stable (this is shown at Fig.
2 and Fig. 3), on the other hand, for axisymmetric bifurcations inclusion of residual stress corresponding to positive residual stress
parameter γ̂ leads to increase in instabilities (see Fig. 4 and Fig. 5). For the negative values of γ̂ the effect of residual stress is reversed
for asymmetric and axisymmetric bifurcations.
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