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Abstract. General solution of the time-dependent strain energy release rate for delamination cracks in multilayered functionally 
graded load-bearing beam structures which exhibit non-linear creep is derived. The material is functionally graded along the 
length of layers. The Ramberg-Osgood stress-strain relation is used by assuming that the material in each layer behaves 
differently in tension and compression. The second term in the Ramberg-Osgood relation includes time dependence to treat the 
non-linear creep. The solution derived holds for multilayered functionally graded beams with arbitrary number of layers which 
have different width and material properties. The solution is applied for a delamination in a multilayered beam with a built-in 
end. An analysis is performed also by considering the balance of the energy in the multilayered beam configuration for the sake 
of verification. The effect of time is also studied. It is found that the strain energy release rate grows with the time. The results 
obtained here are useful for understanding the time-dependent delamination in multilayered functionally graded structural 
components subjected to non-linear creep.        

Keywords: Beam, Functionally graded material, Multilayered structure, Material non-linearity, Fracture, Time-dependent 
behaviour.  

1. Introduction 

The most important feature of functionally graded engineering materials is that their properties vary smoothly in the volume 
of solid [1-5]. In fact, these materials are made of several phases [6-11]. One of the advantages of these materials over the 
homogeneous engineering materials is the possibility the properties of functionally graded materials to be formed 
technologically [12-17]. Also, since the material properties vary smoothly without sudden changes, the risk of failure from 
interfacial stress concentrations is significantly reduced.  

Multilayered engineering materials refer to inhomogeneous materials which consist of layers of dissimilar materials. The 
interest towards the multilayered inhomogeneous engineering structures is due mainly to the fact that they have higher 
strength-to-weight and stiffness-to-weight ratios compared to the homogeneous structures. Thus, the multilayered materials are 
very suitable for use in various light-weight load-carrying structural applications. As the use of multilayered materials increases, 
the requirements for integrity, reliability and durability of multilayered engineering structures increases too.  

The major treat to the integrity of multilayered inhomogeneous structures is the delamination fracture. Delamination, or 
separation of layers, reduces the strength and stiffness and affects the performance and safety of multilayered structures. 
Therefore, delamination problems of multilayered materials and structures are an important subject of research [18-22]. It is 
known that the strain energy release rate (SERR) is the driving force of delamination in multilayered structural components. This 
circumstance underlines the significance of deriving of SERR solutions for various delamination problems. Useful delamination 
analysis of a multilayered beam configuration is presented in [21]. The beam under consideration is bended transversely to the 
layers. A notch is cut on the upper surface of the beam in the mid-span such that the upper delamination arm is free of stresses. 
The strain energy stored in the beam as a result of bending is analyzed in order to obtain the SERR for the delamination crack. 
The solution found in [21] expresses the SERR as a function of the lower delamination arm thickness, the bending moment, the 
layer number, the thickness and the modulus of elasticity of layers (the case of a multilayer beam structure made of layers of 
different materials is considered in [21]). Various aspects of delamination problem are extensively researched in [22]. Useful 
solutions of the SERR for delamination in different load-carrying beam-like engineering structures subjected to static bending 
transversely to the layers are obtained and thoroughly discussed. The problems of delamination behaviour of beams in which the 
delamination arms have different thickness are successfully tackled in [22]. Longitudinal cracks in layers loaded along edges are 
also studied in [22]. It is shown that the SERR solutions derived can be applied also to deal with the problem of debonding of thin 
films [22].  

The literature survey indicates that, usually, the delamination problem of multilayered structural components is treated by 
using concepts of linear-elastic fracture mechanics which are based on the hypothesis for linear nature of the constitutive stress-
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strain relationship. Multilayered components, however, may have also non-linear elastic behaviour. In such cases, delamination 
problem should be analyzed by taking into account the material non-linearity. This leads to indispensability of applying 
constitutive stress-strain relationships which have non-linear character.                            

Recently, delamination analyses of non-linear elastic multilayered beams by the Ramberg-Osgood relationship have been 
carried-out [23-25]. The analyses are focused on separate beam configurations [23-25]. Therefore, the main aim of the present 
paper is to develop general analysis of delamination in multilayered functionally graded beams by using the Ramberg-Osgood 
relation. The material is functionally graded along the length of the layers. General solution of the time-dependent strain energy 
release rate (TDSERR) is derived here assuming that the material behaves differently in tension and compression in contrast to 
[23-25] where it is assumed that the behavior of the multilayered material in tension and compression is identical. Besides, it is 
known that many load-carrying engineering structures have time-dependent behavior by reason of creep [27]. Therefore, time-
dependent delamination induced by non-linear creep is analyzed here in contrast to previous paper [25] which is concerned with 
delamination under linear creep. A specific modification of the Ramberg-Osgood stress-strain relationship that is meant for 
treating of non-linear creep is used in the present paper. This modification is taken from Dowling’s work [27].                             

                            

2. General Solution of the TDSERR under Nonlinear Creep 

In order to obtain the TDSERR, a portion of a multilayered functionally graded beam with the delamination crack front is 
considered (Fig. 1). The layers of the beam are made of different functionally graded materials. The beam is loaded in bending 
(the bending moment ahead of the delamination is 3 ).M  The width and the height of the beam are b  and ,h  respectively. The 
widths of the cross-sections of delamination arms 1 and 2 are denoted by 1b  and 2.b  Concerning the loading of the beams, it 
should be specified that the beams studied in the present work are bent around the horizontal centric axis. In what follows, we 
will show that the TDSERR can be derived by considering only a beam portion with delamination front (Fig. 1) provided that the 
bending moments about the horizontal centric axis in sections ahead and behind the delamination front are known (these 
bending moments for a particular beam structure can be determined by analyzing the equilibrium of the beam). The solution 
derived here can be used to treat delamination in beam structures which supports are located so that the sections ahead and 
behind the delamination front are bent around the horizontal centric axis.                             

The behavior of the material in the tension and compression zones of i-th layer is treated by the Ramberg-Osgood relation 
written in the following form which is meant for treating of non-linear creep [27]: 

1

1 1
itm

it it

it itE H

σ σ
ε

  = +   
, (1) 

1

11
icm

icic

ic icE H

σσ
ε

  = +   
, (2) 

where ε  is the longitudinal strain, 1itσ  and 1icσ  are the longitudinal  stresses in the tension and compression zones, itE  
and icE  are the moduli of elasticity in the tension and compression, itH  and icH  are material constants which include time 
dependence in tension and compression, respectively, itm  and icm  are strain hardening exponents.  

The material is functionally graded along the length of the layers. The variations of itE  and icE  along the length of layers 

are given by: 
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Fig. 1. Beam part with delamination crack front. 
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where 0itE  and 0icE  are the values of itE  and icE  in the left-hand end of the beam, iψ  and iρ  are material constants, 4x  
is the centroidal axis of the beam ( 40 x l≤ ≤ ), l  is the beam length.     

 Due to the non-linear creep behavior, itH  and icH  are time dependent [27]: 

( )1 /

1
it

it
it

it

H
D t

δ
ϕ

= , (5) 

( )1/

1
ic

ic
ic

ic

H
D t

δ
ϕ

= , (6) 

where ,itD ,itϕ itδ  and ,icD ,icϕ icδ  are material constants in the tension and compression, respectively, t  is time (the values of 
the  exponents, itϕ and ,icϕ  are between zero and unity [27]). The material constants, itm  and ,icm  which are involved in (1) 
and (2) are expressed as [27]: 

1
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δ

= , (7) 

1
ic

ic

m
δ
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It should be mentioned that the first terms of the right-hand sides of equations (1) and (2) treat the instantaneous elastic 
strain while the non-linear creep is treated by the second terms of the right-hand sides (1) and (2) [27].   

The distribution of the strain, ,ε  that is involved in (1) and (2) is treated by the Bernoulli’s hypothesis since beams under 
consideration have high length to height ratio. Therefore, the strains in the cross-section of delamination arm 1 are distributed 
linearly: 

( )
11 1 1nz zε κ= − , (9) 

where 1κ  is the curvature, 1z  is the vertical centroidal axis, 
11nz  is the coordinate of the neutral axis.  

The quantities, 1κ  and 
11 ,nz  are determined by using the equations for equilibrium: 
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where 1N  and 1M  are, respectively, the axial force and the bending moment in delamination arm 1 behind the delamination 
front 1( 0N =  since the beam is loaded in bending), 1n  is the layers number in delamination arm 1, 1itA  and 1icA  are, 
respectively, the areas of the tension and compression zones. The stresses, 1itσ  and 1 ,icσ  have to be obtained in functions of 

1z  in order to perform the integration in (10) and (11). However, it is obvious that itσ  and icσ  cannot be determined explicitly 
from the stress-strain relations (1) and (2). Therefore, by using (1), (2) and (9) the coordinate, 1,z  is expressed in a function of 

1itσ  and 1 .icσ  In the tension zone, 1z  is obtained as:  
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Fig. 2. Cross-section of delamination arm 1
1 1

(
n n

n n− is the neutral axis). 
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In the compression zone, 1z  is found as: 
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By substituting of (12) and (13) in (10) and (11), one arrives at:   
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where 1iy  and 1 1iy +  are the coordinates of the lateral surfaces of the layer, 1iDσ  and 1iLσ  are the stresses in the upper and 
the lower surfaces of the layer. There are 12 2n +  unknowns, 1,κ  

11 ,nz 1iDσ  and 1iLσ  where 11, 2, ..., ,i n=  in equations (14) 
and (15). Further 12n  equations are composed by using formula (7) and the stress-strain relations (1) and (2):   
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where  

11, 2, ...,i n= . (18) 

Equations (16) and (17) take into account that the lower surface of delamination arm 1 is loaded in tension while the upper 
surface is in compression (Fig. 2). Equations (14), (15), (16) and (17) are solved with respect to 1,κ  

11 ,nz 1iDσ  and 1iLσ  where 

11, 2, ...,i n=  by the MatLab.    
By applying the approach from [22], the TDSERR, ,G  for the delamination problem shown in Fig. 1 is written as: 

( )* * *
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Where *
1,U *

2U and *
3U  are the time-dependent complementary strain energies (TDCSE) in the cross-sections of the delamination 

arms 1 and 2 behind the delamination front and in the beam cross-section ahead of the delamination front, respectively.  
 The quantity, *

1,U  is:     
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where *
01itu  and *

01icu  are the time-dependent complementary strain energy densities (TDCSED) in the tension and 
compression zones of the layer.   

 The TDCSED in the tension and compression zones are expressed, respectively, as [21]: 
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By substituting of (12), (13), (21) and (22) in (20), one obtains: 
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The quantities, *
2U  and *

3,U  can be calculated by performing relevant replacements. In what follows we explain these 
replacements. For instance, formula (23) is applied also to calculate *

2.U  For this purpose, 1,κ 1 ,iDσ 1 ,iLσ 1 ,iy 1 1iy +  and 1n  are 
replaced with 2 ,κ 2 ,iDσ 2 ,iLσ 2 ,iy 2 1iy +  and 2,n  respectively, in (23). Equations (14), (15), (16) and (17) are used to determine 2κ  
and 

22 .nz  For this purpose, 1,κ 11 ,nz 1 ,iDσ 1 ,iLσ 1,N 1,M 1 ,iy 1 1iy +  and 1n  are replaced with 2 ,κ 22 ,nz 2 ,iDσ 2 ,iLσ 2 ,N 2 ,M 2 ,iy 2 1iy +  
and 2,n  respectively. Here, 2N  and 2M  are the axial force and the bending moment in delamination arm 2 where 2 0N =  
because the beam is loaded in bending.   

The TDCSE, *
3,U  is obtained by replacing of 1,κ 1 ,iDσ 1 ,iLσ 1 ,iy 1 1iy +  and 1n  with 3,κ 3 ,iDσ 3 ,iLσ 3 ,iy 3 1iy +  and n  in formula 

(21).  
The quantities, 3κ  and 

33 ,nz  are found after performing relevant replacements in equations (14), (15), (16) and (17). For 
instance, after replacing of 1,κ 11 ,nz 1 ,iDσ 1 ,iLσ 1,N 1,M 1 ,iy 1 1iy +  and 1n  with 3,κ 33 ,nz 3 ,iDσ 3 ,iLσ 3,N 3,M 3 ,iy 3 1iy +  and ,n  
equations (14), (15), (16) and (17) are solved with respect to 3,κ 33 ,nz 3iDσ  and 3iLσ  by the MatLab.  

The general analysis of the TDSERR developed here can be applied at any moment of time because itH  and icH  are 
continuous functions of .t     

3. TDSERR in a Multilayered Functionally Graded Beam with a Built-in End 

In what follows a particular example that illustrates the utility of the general solution of the TDSERR worked out in section 2 
is presented. The example deals with delamination of a multilayered functionally graded beam that is built-in at its right-hand 
end.   

The multilayered beam under consideration is shown in Fig. 3. A delamination of length, ,a  is located between the layers. 
The beam has width, ,b  and height, .h  The widths of delamination arms 1 and 2 are 1b  and 2 .b  The beam is loaded by one 
bending moment, ,M  at the free end of delamination arm 1. Apparently, the delamination arm 2 is stress free. 

The TDSERR for the delamination problem in Fig. 3 is found by formula (19). The TDCSE, 1,U  is obtained by applying (23). 
Equations (14), (15), (16) and (17) are used to determine 1,κ 11 ,nz 1iDσ  and 1iLσ  for 1 .M M=  Since crack arm 2 is free of stresses, 

2U  is zero. Formula (22) is applied also to obtain 3U  by replacing of 1,κ 1 ,iDσ 1 ,iLσ  1 ,iy 1 1iy +  and 1n  with 

3,κ 3 ,iDσ 3 ,iLσ 3 ,iy 3 1iy +  and .n  The quantities, 3,κ 3 ,iDσ 3 ,iLσ 3 ,iy 3 1iy +  and ,n  are found by equations (14), (15), (16) and (17). For 
this purpose, 1,κ 11 ,nz  1 ,iDσ 1 ,iLσ 1,N 1,M 1 ,iy 1 1iy +  and 1n  are replaced with 3,κ 33 ,nz 3 ,iDσ 3 ,iLσ 3,N 3,M 3 ,iy 3 1iy +  and n  where 

3 .M M=  

 

Fig. 3. Multilayered cantilever with a delamination crack. 

  

Fig. 4. Cantilever beam delaminated (a) between layers 2 and 3 and (b) between layers 1 and 2. 
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The TDSERR in the cantilever beam configuration in Fig. 3 is derived also by considering the balance of the energy for 
verification. The energy balance is written as: 

U
M a Gh a

a
δφ δ δ
∂
= +
∂

, (24) 

where the increases of the delamination length and of the angle of rotation of the free end of delamination arm 1 are denoted by 
aδ  and ,δφ  U  is the time-dependent strain energy (TDSE) cumulated in the beam. 

From (22), the TDSERR is obtained as: 

1M U
G

h a h a

φ∂ ∂
= −
∂ ∂

. (25) 

The angle, ,φ  is determined by applying the integrals of Maxwell-Mohr. The result is: 

( )1 3a l aφ κ κ= + − . (26) 

The TDSE in the beam is obtained as: 

1 3U U U= + , (27) 

where 1U  and 3U  are, respectively, the TDSE in delamination arm 1 and in the un-cracked portion of the cantilever, 

4 .a x l≤ ≤   
The TDSE cumulated in crack arm 1 is written as: 
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where 01itu  and 01icu  are the time-dependent strain energy densities (TDSED) in the tension and compression zones of layer of 
delamination arm 1 behind the delamination front.   

The quantities, 01itu  and 01icu , are obtained as [22]: 
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By substituting of (29) and (30) in (28), one derives: 
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 (31) 

 
 

 

Fig. 5. Variation of the TDSERR with time (curve 1 – for the beam delaminated between layers 1 and 2, and curve 2 - for the beam delaminated 
between layers 2 and 3). 
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Fig. 6. Variation of the TDSERR with

1 1
/

c t
D D ratio (curve 1 – for 30M= Nm, curve 2 – for 40M= Nm and curve 3 – for 50M= Nm).    

 

Fig. 7. Variation of the TDSERR with
1 1

/
c t
ϕ ϕ ratio (curve 1 – at

1 0 1 0
/ 0.5,

c t
E E = curve 2 – at

1 0 1 0
/ 1.0

c t
E E = and curve 3 – at

1 0 1 0
/ 2.0).

c t
E E =  

 

The TDSE, 3,U  in the un-cracked part of the beam is found by replacing of ,a 1,κ 1 ,iDσ 1 ,iLσ 1 ,iy 1 1iy +  and 1,n  respectively, 
with ,l a− 3,κ 3 ,iDσ 3 ,iLσ 3 ,iy 3 1iy +  and n  in (31).  

It should be mentioned that the TDSERR found by substituting of φ  and U  in (25) matches that found by (17). This fact 
verifies the delamination analysis of multilayered beams under creep.   

4. Numerical Results 

The influence of the location of the delamination along the beam width on the TDSERR is examined. Two beam 
configurations are studied (Fig. 4). The TDSERR is written in normalized form as ( )1 0/ .N tG G E b=  A beam delaminated between 
layers 2 and 3 is depicted in Fig. 4a. A beam delaminated between layers 1 and 2 is also studied (Fig. 4b). The width of each layer 
in the three-layered beam shown in Fig. 4 is .s  Here, 0.0025s= m, 0.010h= m and 50M= Nm. The material parameters in the 
layers are 1 0 161000tE = MPa, 2 0 85000tE = MPa, 3 0 150000tE = MPa, 11

1 1.58 10tD −= × hours, 9
2 4.26 10tD −= × hours, 

6
3 2.42 10tD −= × hours, 1 4.15,tδ =  2 4.05,tδ =  3 2.50,tδ =  1 0.40,tϕ =  2 0.87tϕ =  and 3 0.28tϕ =  (the values of material parameters 

in layers 1, 2 and 3 are for steel, copper and nickel, respectively [27]).   
The influence of creep on the delamination behavior is evaluated. For this purpose, the TDSERR in normalized form is plotted 

against the normalized time in Fig. 5. 
From the curves depicted in Fig. 5 one can conclude that the TDSERR increases with the time. This finding is related to the 

creep and agrees well with previous observations [25] which is a proof for the reliability of the current analysis. It can also be 
concluded from Fig. 5 that the TDSERR for the beam delaminated between layers 2 and 3 is higher in comparison with that in the 
beam delaminated between layers 1 and 2. This is attributed to the change in the stiffness of the right-hand delamination arm 
(the left-hand delamination arm is stress free). Analogical behaviour is observed in previous studies [24] which is a conformation 
for the correctness of the present solution. 
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The effect of 1 1/c tD D  ratio on the TDSERR is investigated. The beam delaminated between layers 2 and 3 is considered (Fig. 

4a). The variation of the TDSERR with 1 1/c tD D  ratio for three bending moments is examined in Fig. 6. The conclusion that can 
be drawn from Fig. 6 is that the TDSERR increases with increasing of 1 1/c tD D  ratio. The increase of the bending moment 
induces increase of the TDSERR (Fig. 6).   

In order to study the influence of 1 1/c tϕ ϕ  ratio, the TDSERR is presented as a function of 1 1/c tϕ ϕ  ratio in Fig. 7 at three 

1 0 1 0/c tE E  ratios. The beam delaminated between layers 2 and 3 is analyzed. It can be concluded that the TDSERR increases with 
increasing of 1 1/c tϕ ϕ  ratio (this observation is explained by decrease of the beam stiffness). Concerning the influence of 

1 0 1 0/c tE E  ratio, it is evident from Fig. 7 that the increase of 1 0 1 0/c tE E  ratio leads to decrease of the TDSERR (this correlates with 
previous studies [26] which is an indication for the reliability of the current analysis).       

The influence of 1 1/c tδ δ  ratio on the delamination is considered too. The beam delaminated between layers 2 and 3 is 
studied. One can get an idea about the influence of 1 1/c tδ δ  ratio on the delamination from Fig. 8 where the variation of the 
TDSERR with 1 1/c tδ δ  ratio is depicted at three /h b  ratios. From Fig. 8, one can draw the conclusion that the TDSERR 
decreases with increasing of 1 1/c tδ δ  ratio. The curves in Fig. 8 indicate also that the increase of /h b  ratio induces decrease of 
the TDSERR (this finding is in a good agreement with observations published in [25] which is an indication for the correctness of 
the current analysis).  

The variation of the TDSERR with increase of 3ψ  and 3ρ  is displayed in Fig. 9. It can be seen that the TDSERR reduces when 

3ψ  and 3ρ  increase (Fig. 9). The cause for this behaviour is the increase of the beam stiffness.   
Concerning the practical usage of the theoretical model presented in this paper, the following should be noticed. In 

multilayered functionally graded beam structures with delamination under creep, the onset of delamination growth can occur at 
any value of the external load, if the structure is subjected to loading for a sufficiently long time. Therefore, one of the basic tasks 
when dealing with such creep delamination problems is to obtain the critical time (the latter is the time at the onset of 
delamination growth). The present theoretical model can be applied to calculate the critical time for a particular beam 
configuration with delamination under non-linear creep. For this purpose, the TDSERR has to be calculated by the model at 
various t  and check-up for delamination growth has to be performed by comparing the TDSERR with the fracture toughness. 
The value of t  at which the TDSERR reaches the fracture toughness is the critical time.                     
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5. Conclusion 

 Delamination in multilayered functionally graded beam configurations was studied in terms of TDSERR assuming different 
non-linear creep behavior in tension and compression. The analysis of the TDSERR uses the Ramberg-Osgood stress-strain 
relation. The time dependence induced by the non-linear creep behavior was described by the second term of the Ramberg-
Osgood stress-strain relation. General solution of the TDESERR was found. The solution was applied to study delamination of a 
multilayered functionally graded beam with a built-in end. The TDSERR in the beam under consideration was derived also by 
analyzing the time-dependent balance of the energy for verification. The study revealed that the non-linear creep induced 
increase of the TDSERR with time. It was found that increasing of 1 1/c tD D  and 1 1/c tϕ ϕ  ratios induced also increase of the 
TDESRR. The increase of 1 0 1 0/c tE E  and 1 1/c tδ δ  ratios induced decrease of the TDSERR. The present paper was a contribution 
towards the understating of the delamination in multilayered functionally graded materials and structures under non-linear 
creep. The results obtained in the present study can be useful in structural design of multilayered functionally graded structural 
members and components subjected to creep when the delamination issue has to be addressed (for instance, the solution can be 
used to determine the critical time as explained in section 4 of this paper). The limitations of the applicability of the general 
solution stem from the circumstance that the solution was derived by using the model of prismatic beams whose geometry is 
characterized by high length to height ratio, i.e. the solution is applicable for beams of high aspect ratio.        
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Nomenclature 

A1ic Area of layer cross-section in compression [m2] s Layer width [m] 

A1it Area of layer cross-section in tension [m2] t Time [hour] 

a Delamination length [m] U1 Strain energy [Nm] 

b Beam width [m] u01ic Strain energy density in compression [N/ m2] 

Dic Constant in the time-dependent expression of Hic [hour] u01it Strain energy density in tension [N/ m2] 

Dit Constant in the time-dependent expression of Hit [hour] x1 Centroidal axis [m] 

Eic Modulus of elasticity in compression [MPa] y1 Horizontal centric axis [m] 

Eit Modulus of elasticity in tension [MPa] z1 Vertical centric axis [m] 

G Strain energy release rate [MN/m] z1n1 Neutral axis coordinate [m] 

Hic Material constant in Ramberg-Osgood equation which includes  icδ  Material const. the time-dependent expression of Hic [-] 

 time dependence in compression [MPa] itδ  Material const. in time-dependent expression of Hit [-] 

Hit Material constant in Ramberg-Osgood equation which includes  ε  Strain [-] 

 time dependence in tension [MPa] 1κ  Curvature [m-1] 

h Beam height [m] iρ  Material constant controlling the distribution of Eic along the beam  

l Beam length [m]  length [-] 

M Bending moment [Nm] icσ  Stress in compression [MPa] 

mic Strain hardening exponent in Ramberg-Osgood equation in  itσ  Stress in tension [MPa] 

 compression [-] icϕ  Exponent in the time-dependent expression of Hic [-] 

mit Strain hardening exponent in Ramberg-Osgood equation in itϕ  Exponent in the time-dependent expression of Hit [-] 

 tension [-] φ  Angle of rotation [rad] 

N Axial force [N] iψ  Material constant controlling the distribution of Eit along the 

n Number of layers [-]  beam length [-] 

n1n Neutral axis [-]   
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