
J. Appl. Comput. Mech., 9(4) (2023) 955-973  
DOI: 10.22055/jacm.2023.42530.3941  

ISSN: 2383-4536 
jacm.scu.ac.ir 

 

Published online: April 02 2023 

 

 

Shahid Chamran 

University of Ahvaz 

 
 

 

  Journal of 

     Applied and Computational Mechanics 

 

 

Research Paper  

Comparative Study of the Spectral Method, DISPERSE and Other 

Classical Methods for Plotting the Dispersion Curves in 

Anisotropic Plates 

Ismaine Zitouni , Hassan Rhimini , Abdelkerim Chouaf  
 

Laboratory of Mechanics, Engineering and Innovation, National High School of Electricity and Mechanics, Hassan II University, Casablanca, Morocco 
Email: Ismaine.zitouni.doc20@ensem.ac.ma (I.Z.); h.rhimini@ensem.ac.ma (H.R.); a.chouaf@ensem.ac.ma (A.C.)  

 

Received December 13 2022; Revised February 26 2023; Accepted for publication March 22 2023. 
Corresponding author: I. Zitouni (Ismaine.zitouni.doc20@ensem.ac.ma) 
© 2023 Published by Shahid Chamran University of Ahvaz 

Abstract. This paper presents a comparative study of different methods for obtaining the dispersion curves of ultrasonic guided 
waves in anisotropic media. First, we present the classical algorithms used to find zeros and propose some improvements. Next, 
the spectral method is explained for modeling the guided waves in anisotropic materials while presenting a technique that can 
distinguish the modes present in the structure. The dispersion curves are plotted using a Matlab program and the results are 
compared with those of the DISPERSE software. In addition, a comparison with the results obtained by Nayfeh’s works in the field 
of Nondestructive testing by ultrasonic guided waves is included. Then a discussion is developed to highlight the strengths of the 
spectral method. For proper non-destructive testing, we need reliable information about the modes that propagate in our 
waveguide. Both analytical and spectral approaches have limitations in obtaining the exact displacement and stress profiles in a 
plate media. To remedy this, normalization by the acoustic power is essential. Next, the displacement and stress fields obtained 
from the spectral method of the modes that can propagate in the plate are compared to those obtained analytically. A very good 
concordance is then noticed. Based on the results obtained, the spectral method presents a very good alternative for obtaining 
dispersion curves. It is a convergent method, stable, easy to implement with a very low calculation time. 

Keywords: Guided waves, anisotropic media, dispersion curves, spectral method, ultrasonic, normalized displacements. 

1. Introduction 

Ultrasonic Guided Waves (UGW) have been widely used in Non-Destructive Testing (NDT) of various structures. They are 
characterized by their ability to propagate over long distances while producing deformations through the entire thickness of the 
inspected piece. They, therefore, constitute a colossal way to control quickly and integrally pieces of large dimensions with 
difficult access areas without significant attenuation. However, these waves have a dispersive character making them very 
sensitive to frequency variation. 

To control defects in structures by UGW, the first essential step is the knowledge of the dispersion curves. With these, the 
frequencies of the waves susceptible to propagate in the material have been determined. Thereafter, for the generation of these 
waves, a choice of the adequate frequency is essential. In the same way, several methods are used to draw these curves. In most 
cases, these methods are based on numerical simulations [1, 2], on data provided by experiments [3, 4], and also by the 
development of programs in Matlab based on roots finding algorithms of characteristic functions [5-7]. For solving the 
characteristic dispersion equations, we found in the literature researchers who use linear or quadratic iterative algorithms 
known to be fast in finding a single root [8, 9]. Unfortunately, when the characteristic function has more than one zero or two 
near roots, these methods face difficulties and become unstable. Other algorithms use slower but safer iteration techniques, such 
as the Newton-Raphson [5, 6] and Bisection [7] algorithms. However, a large number of operations, especially in multilayer and 
cylindrical structures, make these methods limited and slow [10]. Waas [11] introduced the Semi-Analytic Finite Element (SAFE) 
method for the study of the wave propagation in elastic and viscoelastic media with a planar and axisymmetric geometries. This 
allowed the analysis of vertical and torsional vibration of a multilayer soil. Ahmad et al. [12] applied the SAFE method for plotting 
the dispersion curves of an aluminum plate and a composite structure. Salah et al. [13] extended this method for the analysis of 
materials with orthorhombic symmetry. The SAFE method was justified by Barazanchy and Giurgiutiu [14] as a robust method by 
comparing it with Disperse software [15].  

New method has been introduced for the modeling of the UGW, it is the spectral method (SM). Spectral schemas are often 
used to solve differential equations. But instead of a direct calculation, the researchers used a spectral approximation for the 
solution that satisfies the propagating differential equation and boundary conditions. So, the problem is reformulated as an 
eigenvalue problem. The derivation operators are then approximated by differentiation matrices with spectral precision, so the 
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eigenvalue problem is formulated in a matrix form. Once the eigenvalue problem is solved, it provides both eigenvalue 
(frequency) and eigenvector (displacement) solutions. Even though this method has been successfully used to solve a large range 
of differential equations, it is still under development for obtaining dispersion curves of guided waves. Adamou [16] was among 
the first to introduce the spectral method for the determination of the UGW dispersion curves. He tested the robustness of the 
method by treating anisotropic, inhomogeneous and multilayer media. Karpfinger et al. [17-18] applied the SM to multilayer 
cylindrical structures of isotropic materials. They used the SM to solve the dispersion equations for the case of cylindrical 
poroelastic structures. Yu et al. [19] characterized by the SM the dispersion curves of longitudinal modes of multilayer isotropic 
cylindrical media. Quintanilla et al. [20-22] have plotted by the SM the dispersion curves of most complex waveguides. These 
waveguides can be summarized as perfectly elastic homogeneous anisotropic materials in planar, cylindrical and multilayer 
geometry. Another method based on the Legendre formalism [23] has been used by many researchers. It is based on a polynomial 
approach for solving the equation of motion [24, 25]. There are also methods based on Cauchy formalism [26]. Based on these 
curves we can perform finite element numerical simulations of structures to detect defects. Although many methods have been 
proposed to study the dispersive character of the UGW, more reliable and robust approaches are still needed. They will improve 
the accuracy and efficiency analysis of the complex propagation of these waves. 

Our work presented here consists in realizing a comparative study of various methods for obtaining the dispersion curves, 
that is, the analytical classical methods, the spectral method and the DISPERSE software [15]. This study aims to provide a clear 
overview of the advantages and disadvantages of each method, it will make it easier for the user to choose between these 
methods. Our comparison takes into account the computation time, the convergence of these methods and the coding efforts of 
each algorithm. The mathematical formulations of each method are also presented in the following paragraphs. Moreover, the 
accuracy of the found solutions is proved by the comparison with the previous works of Nayfeh [27]. We chose this scholar 
because he was one of the first researchers to have worked on the plotting of dispersion curves analytically and also several 
references took him as a reference. The study is carried out for four types of materials: isotropic, transverse isotropic, orthotropic 
and monoclinic. In each symmetry, we have shown the most adequate method for plotting the dispersion curves.  

To generate the UGW in our structure and make an adequate control, we need an adapted choice of the frequency (dispersion 
curves) as well as information on the generated mode (displacements and stresses). Similarly, the analytical profiles of 
displacements and stresses normalized by acoustic power are plotted through the thickness of the plates and are compared to 
the profiles of the eigenvectors obtained from the spectral method for different values of the couple frequency, wave number (f,k). 

2. Guided Waves Theory in Plates 

We considered a homogeneous anisotropic plate, unlimited in the 1x  and 2x  directions and with thickness d = 2h along the 

3x  axis (Fig. 1). We limited the study to cut specimens so that the '
1x  and '

2x  axes of the crystallographic reference are 
contained in the median plane and the '

3x  axis is normal to the plate. We consider that the direction of propagation coincides 
with the 1x  axis. In the most general case, this propagation direction is not a principal direction, and the global Cartesian 
coordinate system 1 2 3( , , )x x x  used to study propagation is derived from the reference Cartesian system ' ' '

1 2 3( , , )x x x  by the 
angular rotation φ  around the 3x  axis (Fig. 1). The equations that govern the elastic waves in an anisotropic plate are written 
in the Cartesian reference system ' ' ' '

1 2 3( , , )ix x x x=  as follows: 

' 2 '

' 2'ij i
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u

x t

σ
ρ

∂ ∂
=

∂ ∂
 (1) 

We remind that Hooke's law is given by: 

' ' '
klij ijklcσ ε=  (2) 

 
and the deformation-displacement relationship is as follows: 

' '
'

' '
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= +

∂ ∂
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For the stress 'σ  and strain 'ε  symmetric tensors, we adopted the same notation of contracted indices mentioned before. As 
a result, Hooke's law is written in the following extended matrix form: 
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 (4) 

The density of the material is a scalar and stays invariant before and after the change of the reference. Therefore, the elastic 
stiffness tensor in the local coordinate system ' ' '

1 2 3( , , )x x x  will be transformed into the global system 1 2 3( , , )x x x  as follows: 

'
mnmnop ok plmi nj ijklC cβ β β β=  (5) 

where ijβ  is the transformation tensor that contains the cosine of the angles between the ix  and '
jx  axes in the general case. 

m, n, o, p = 1, 2, 3. 
 For the case of a rotation around the 3x  axis, the transformation is described by: 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1
ij

φ φ

β φ φ

 
 
 = − 
   

 (6) 
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Fig. 1. Geometry of the plate, (x1, x2, x3): Global Cartesian coordinate system. (x1’, x2’, x3’): Cartesian reference system, x1: propagation direction, grey 
rectangle: sagittal plane. 

 

Fig. 2. Transformation stiffness tensor components versus φ of orthotropic plate. 

Then the number of the non-null elasticity constant of the new tensor is larger, for example, for any φ  angle, the 
representative tensor of an orthotropic material is transformed into a representative tensor of a fictive monoclinic material.   

The equation of motion Eq. (1), Hooke's law and the deformation-displacement relationship are transformed into: 

2

2
ij i

i

u

x t

σ
ρ

∂ ∂
=

∂ ∂
 (7) 

klij ijklCσ ε=  (8) 

1
( )

2
k l
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l k

u u

x x
ε
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= +

∂ ∂
 (9) 

In order to better assimilate the behavior of the elastic constants according to the rotation angle ,φ  we will consider in the 
following the example of a material with orthotropic symmetry. 

Figure 2 shows the variation of the elastic constants of an orthotropic material (table 1) according to the φ  angle. For angles 
of 0˚, 90˚, 180˚ and 270˚ the constants C16, C26, C36 and C45 are null and the orthotropic material will be described by these nine 
constants: C11, C22, C33, C44, C55, C66, C12, C13 and C23, on the other hand for angles different from those mentioned before, the 
constants C16, C26, C36 and C45 have non-zero values. 

Table 1. Elastic stiffness tensor components of an orthotropic plate; '

ij
c (GPa) and ρ (103 kg/m3). 

'

11c  
'

12c  
'

13c  '

22c  
'

23c  
'

33c  '

44c  
'

55c  
'

66c  ρ  

128 7 6 72 5 32 18 12.5 8 2 
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To study the nature of the different guided modes that are susceptible to propagate in the plates, we consider an infinite 
anisotropic plate with triclinic symmetry. In this media, we see that symmetrical (Sn) and antisymmetrical (An) modes of 
vibration appear, which we call Lamb modes, and which are most commonly coupled to horizontally shear modes (SHn). 

The general form of the solution is: 

1 3( )ik x x ct
j ju U e α+ −=  (10) 

With k is the wave number along the 1x  direction, α  is the ratio of the wave numbers along the 1x  and 3x  directions, c is 
the phase velocity, and i (non-italic) is the imaginary unit (i2 = -1). 

The equation of motion can be written also as follows: 

,ijkl k jl iC u uρ= ɺɺ  (11) 

where ijklC  is the tensor of the elastic constants, ,k jlu  is the second derivative of the displacement vector, ρ  is the density, and 

iuɺɺ  represents the acceleration vector. 
Substituting Eq. (10) into Eq. (11), we obtain the matrix form of the Christoffel equations: 

( ) 0mnK Uα =  (12) 

where m, n = 1, 2, 3. The expressions of the elements of the matrix K [27] are: 

2 2
11 11 15 55

2
12 16 14 56 45

2
13 15 13 55 35

2 2
22 66 46 44

2
23 56 36 45 34

2 2
33 55 35 33

2

(C )

(C )

2

(C )

2

K C c C C

K C C C

K C C C

K C c C C

K C C C

K C c C C

ρ α α

α α

α α

ρ α α

α α

ρ α α

 = − + + = + + + = + + + = − + + = + + + = − + +

 (13) 

We have adopted the following contracted index notation: 1→  11, 2→  22, 3→  33, 4→  23, 5→  13 and 6→  12. 
U is the vector of amplitudes of displacements and ijC  are the components of stiffness. The existence of nontrivial solutions 

for U requires the annulation of the determinant of K, which is a sixth-degree polynomial equation in α. For any value of c, there 
are therefore six distinct solutions .qα  

Considering the mnK  terms expressed in Eq. (13), we calculate the following ratios qV  and :qW  

2 11 23 13 12

1 13 22 12 23

3 11 23 13 12

1 12 33 23 13

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q q q q q
q

q q q q q

q q q q q
q

q q q q q

U K K K K
V

U K K K K

U K K K K
W

U K K K K

α α α α

α α α α

α α α α

α α α α

 − = = − − = = −

 (14) 

The expressions of the stresses 33 13,σ σ  and 23σ  are obtained using those of qV  and qW  defined earlier and the Hooke's law: 

( ) 1 3

6
( )

33 13 23 1 2 3 1
1

, , ( , , )U ik x x ct
q q q q

q

ik D D D e α
σ σ σ

+ −

=

=∑  (15) 

where the expressions of the stress amplitudes are given by: 

1 13 35 36 34 35 33

2 15 55 56 45 55 35

3 14 45 46 44 45 34

( ) ( )

( ) ( )

( ) ( )

q q q q q q

q q q q q q

q q q q q q

D C C C C V C C W

D C C C C V C C W

D C C C C V C C W

α α α

α α α

α α α

 = + + + + + = + + + + + = + + + + +

 (16) 

Therefore, we can write the boundary conditions for the free plate, that is, the cancellation of the stresses 33 13,σ σ  and 23σ  at 
the top and bottom surfaces 3( ),x h=±  which give a system of 6 equations on the amplitudes 11U  …, 16.U  The existence of 
non-trivial solutions requires the annulation of the determinant. 

At this stage, several algorithms for finding zeros have been used [5-7]. In the following paragraphs, we will review the 
principles of roots finding methods of characteristic functions and propose refinements to improve their speed and efficiency. 

3. Roots Finding Algorithms Methods 

3.1 Bisection method 

The bisection method or dichotomy method [7, 28] belongs to the family of bracketing methods. It has the advantage of being 
robust, its algorithm is theoretically convergent and easy to program. The principle of this method is the searching for the zero of 
a continuous function on an interval in which the function changes the sign at its limits. In our case, we seek to determine the 
couple’s frequency, wave number (f, k) that allow the cancellation of the guided wave characteristic functions for a range of 
frequency and wave number. This range as well as the wave number and frequency steps for which the dispersion curves should 
be obtained are fixed. The general procedure is then to fix the first wave number step and to evaluate the characteristic function 
at each frequency step. A scan of the entire frequency range is then performed. Modal solutions are found wherever the 
characteristic functions change signs between two frequency steps. 

It should be noted that the dispersion equation shows a discontinuity, especially in the neighborhood of real roots. To avoid 
solutions resulting from these discontinuities, we check whether the absolute value of the characteristic function is a minimum 
(Fig. 3). 
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Fig. 3. (a) Evaluation of the characteristic function for antisymmetric modes at a wave number k = 500 m-1 in 2 mm thickness of an aluminum alloy 
plate. (b) The minima in the absolute value mark the modal solution. 

 

Fig. 4. Hybrid flowchart for plotting dispersion curves. 

This procedure is repeated for each step of k until the desired final value of the wave number k is attained. The dispersion 
curves are then found and plotted in the dual plane (fd, k). Other forms of the dispersion curves can be deduced from the 
expressions that relate the frequency, the wave number to other quantities such as the phase velocity and the group velocity. 
This procedure provides satisfying results for isotropic plates, but it is still very slow or even inadequate when the material is 
anisotropic or when the structure is composed of several layers. 

3.2 Newton method 

Newton's method, also called the Newton-Raphson method, is among the most famous algorithms for finding zeros [29]. It is 
distinguished by the fact that both the function and its derivative must be evaluated at arbitrary points. It has been the subject of 
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several research works to determine the dispersion curves [5, 6]. In the same way as the bisection method, we have evaluated in 
our case the characteristic function along the frequency interval at each wave number step. Therefore, this time instead of 
discretizing the frequency domain into steps of frequencies at each iteration, we used the tangent to the curve to approximate 
the solution. A procedure has been developed to eliminate the roots coming from discontinuity by checking the minima. 
Moreover, precautions have been taken to avoid iterations in infinite loops or when the zero searched is outside the frequency 
domain. Since Newton's method converges quadratically, the roots were obtained very quickly. However, in some places, the 
roots were close to each other, which made it difficult to confirm the uniticity of the solution. A jump of the solution is then 
considered, and will be subsequently recalculated by interpolation of the two solutions that frame it.  

The choice of wave number steps k and frequency f was very important to have accurate dispersion curves. Despite the 
fast convergence of the method, it can converge to zeros that are not true modes. The initial values of (k, f0) must be close to the 
zeros of the characteristic function. Therefore, it was difficult to satisfy this condition due to the complexity of the characteristic 
functions. 

3.3 Hybrid method 

Several researchers have proved that traditional root-finding algorithms are slow and require a fastidious computational time 
[10, 11]. They may have several limitations, especially when two zeros are very close, which may result in one or both of them 
being missed. In addition, these methods have been computationally intensive, have a large number of iterations, and can be 
difficult to implement especially when the material presents an anisotropy behavior or when the structure is formed of 
multilayered media. 

In this section, we have proposed a hybrid algorithm that benefits from the certitude of convergence presented by the 
bisection method and the speed of convergence proper to the Newton method. For this purpose, we first started the search for 
zeros by the bisection method for a break test 1.ε  The value of f0 was approximated by the bisection method, subsequently, we 
used Newton's method for a second break test 2ε  in which 1 2ε ε>  (Fig. 4). 

The only relevant problem that this method may have, which largely comes back to the theory of Newton's method, is the 
ignorance of the derivative of the characteristic function. This derivative is calculated numerically, but it affects the speed of 
convergence. 

4. Spectral Method 

4.1 Basic formulation 

The analysis will be conducted in the global Cartesian system, in which the ultrasonic guided wave propagates on the sagittal 
plane in the 1x  direction and retains its independence properties with respect to the 2x  coordinate 2( / 0).x∂ ∂ =  Therefore, 
the displacements that satisfy the propagation equation Eq. (11) have components of the form: 

1

1 31
( )

2 2 3

3 3 3

( )

( )

( )

i kx t

U xu

u u U x e

u U x

ω−

              = =                 

 (17) 

where ω  is the angular frequency 
The expressions of the stresses are then written in the form: 
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σ
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 (18) 

The propagation equation Eq. (11) can be written in the following form: 

2 2 2
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 ∂ ∂ + =− ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − + + + + − + + + + − + + =− ∂ ∂ ∂ ∂ ∂ ∂

 (19) 

The problem can be rewritten as an eigenvalue problem: 

1 1
2

2 2

3 3(3,3) (3,1) (3,3) (3,1)

0 0

0 0

0 0

A B C U U

D E F U U

G H K U U

ρ

ω ρ

ρ

       −                  = −                  −          

 (20) 

With the expressions of the different components of the matrix: 
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 (21) 

The boundary conditions for a stressed free-face plate are expressed as: 

33

23

13

( ) 0

( ) 0

( ) 0

h

h

h

σ

σ

σ

 ± = ± = ± =

 (22) 

In matrix notation, the boundary conditions are written: 

11 2 3

4 5 6 2

7 8 9 3(3,3) (3,1)(3,1)

( h) 0

( h) 0

0( h)

UBC BC BC

BC BC BC U

BC BC BC U

    ±                ± =                ±       

 (23) 

with the expression of the iBC  components:  
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

 (24) 

Now our matrix system is defined by three equations of motion and six equations for the boundary conditions. We will try to 
solve the eigenvalue problem by the spectral method, for this purpose in the first step we will replace the differential operators 
defined in 3x  by Chebyshev differentiation matrices (DM) based on a nonuniform distribution of N points for a bounded interval. 
With the Matlab function chebdif [30], this step has become easier and we resume it in Fig. 5. 

 

Fig. 5. Block diagram of the Chebyshev method. 
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The second step consists in obtaining our solutions using the eig procedure of Matlab dedicated to solve eigenvalue and 
eigenvector problems. We replaced the partial derivatives in 3x  by the differentiation matrices generated by the Chebyshev 
approximation and we obtained the different expressions of the components of the matrices defined in Eq. (21) and Eq. (24). Note 
that when replacing the derivatives by the differentiation matrices, we have to multiply the terms without derivatives by the 
identity matrix ( , )N NI  to avoid the problem of sizing of matrices. 

We note that in the displacement vector, the lines from 1 to N correspond to 1,U  from N+1 to 2N correspond to 2U  and from 
2N+1 to 3N correspond to 3.U  The boundary conditions at 3x h=±  are therefore respectively 1 and N for 1,U  N+1 and 2N for 

2U  and 2N+1 and 3N for 3.U  

4.2 Mode separation 

In anisotropic materials with the propagation direction along any φ  angle, the horizontally shear (SH) modes are coupled to 
the symmetrical and antisymmetrical Lamb modes. While isotropic, orthotropic, or transverse isotropic materials with φ  angles 
of 0˚ and 90˚, the SH modes are uncoupled from the Lamb modes [31]. 

When plotting the dispersion curves, whatever the algorithm used, we noticed that when the modes are close, there is always 
a crossing of modes. This phenomenon occurs especially when symmetric, antisymmetric and SH modes are coupled. In order to 
differentiate between these modes, Quintanilla [22] proposed two criteria based on the parity and the decoupling of the 
Christoffel equations. Both criteria are tested on several examples. The modes are separated and are well distinguished.   

We have developed an efficient procedure to classify the obtained results by exploiting the symmetry and antisymmetry 
properties of Lamb and SH modes. 

Pure Lamb modes are characterized by the nullity of the 2u  displacement component on either side of the plate thickness 

2 2( ( ) ( ) 0),u h u h+ = − =  to separate between symmetrical and antisymmetrical modes, you just have to check the symmetry of the 
displacements. 

The SH waves are polarized along the 2x  direction horizontally, so they are characterized by the nullity of the component’s 
displacement 1u  and 3u  through the plate thickness 1 1 3 3( ( ) ( ) ( ) ( ) 0).u h u h u h u h+ = − = + = − =  Similarly, we have identified the 
two types of symmetric and antisymmetric SH waves. In the same way, we separate symmetric and antisymmetric modes using 
the symmetry of the 2u  displacement. 

For materials with crystallographic symmetries of higher order (monoclinic), the SH modes are coupled to the Lamb modes. It 
is therefore difficult to separate them. The modes that propagate in the plate are the generalized Lamb modes. These modes are 
divided into two categories: symmetric and antisymmetric. The symmetrical modes have equal displacement components 1u  
and 2u  on both sides of the plate 1 1 2 2( ( ) ( ) 0, ( ) ( ) 0),u h u h u h u h+ × − > + × − >  and the 3u  components are opposite 

3 3( ( ) ( ) 0).u h u h+ × − <  Concerning the antisymmetric modes, they present an opposite behavior. 

4.3 Plotting the dispersion curves 

We have developed a Matlab program to plot the dispersion curves in the plane (frequency-thickness, wave number) no 
matter the order of anisotropy of the material. The other representations: phase velocity PV  and group velocity gV  as a 
function of the frequency are deduced from the frequency and the wave number k via the following expressions: 

P

g

V
k

V
k

ω

ω

 = ∂ = ∂

 (25) 

 

 

Fig. 6. Flowchart of the spectral method for plotting dispersion curves. 
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The flowchart in Fig. 6 explains the steps followed for plotting the dispersion curves. The first step is to define the mechanical 
parameters of the material and geometry of the plate: ,ijC  ρ  and ,d  as well as the size of the differentiation matrices and the 
number of collocation points. The second step is to replace the partial derivatives present in the equations of motion and 
boundary conditions with the differentiation matrices. For this purpose, a generation of N collocation points through the 
thickness is implemented. After the substitution of the partial derivatives by the differentiation matrices, the next step is the 
calculation of the eigenvalues and eigenvectors for each value of the wave number k. A classification based on the symmetric and 
antisymmetric properties of the modes is established. The final step is the plotting of the dispersion curves and the displacement 
profiles. 

5. Disperse Software 

Members of the Non-Destructive Testing Laboratory at Imperial College have developed a general use software package called 
DISPERSE that plot dispersion curves for a large range of structures. Subsequently, it allows to communicate the information 
contained in these curves efficiently. This software is based on the Global Matrix Method (GMM) which assembles both 
displacements and boundary conditions of all layers into a single global matrix (this is used to overcome the instabilities found 
by the Transfer Matrix Method developed in 1950). Isotropic and viscoelastic materials are fully supported, anisotropic materials 
are also covered, but are currently limited to the elastic plane case [15]. Once the dispersion curves are generated, DISPERSE 
provides many easy methods to explore and exploit the information from the curves. Among this information are the stress, 
displacements and energy distribution. Phase velocity, group velocity, attenuation, real wave number, incidence angle, can be 
visualized and used. 

To validate our results, we have chosen to compare them with those from this software. We remind that this software is 
based on analytical equations and has obtained satisfaction from many researchers [13, 32-35]. 

6. Dispersion Curves 

6.1 Isotropic material 

For the first application, we were interested in the case of an isotropic aluminum plate with thickness d = 2 mm, Young’s 
modulus E = 70 GPa, Poisson’s ratio ν = 0.32 and mass density ρ = 2.7 g/cm3. The plotted curves are from the bisection met
hod (Fig. 7), Newton's method (Fig. 8a), hybrid method (Fig. 8b) and spectral method (Fig. 9). 

In Fig. 7a, we have plotted the dispersion curves in the plane (frequency-thickness product, wave number) for the first 8 
modes. These curves are obtained via a Matlab program based on the algorithms of the analytical methods (bisection, Newton 
and hybrid). The frequency step is chosen equal to 50 Hz and the final frequency is 6 MHz, that is fd = 12 MHz.mm. For the wave 
number, we used a step of 100 m-1 and a final value of 120000 m-1. To obtain good dispersion curves (especially for small values of 
k), we performed our calculations in the (fd, k) plane and then converted them to the (fd, Vp) plane (Fig. 7b). 

We observe that the curves obtained by the bisection method are in very good accordance with those obtained by the 
DISPERSE software. Except for very low wave number values, the DISPERSE software could not determine the roots of the Lamb 
characteristic equations (Fig. 7a). 

 

Fig. 7. Dispersion curves plotted by the bisection method (dotted lines) compared with those obtained by the DISPERSE software (solid lines) in the 
(fd, k) plane (a) and the (fd, Vp) plane (b). 

 

Fig. 8. (a) Dispersion curves plotted by the Newton method, (b) dispersion curves plotted by the hybrid method. 
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Table 2. Root square error for different values of the wave number k; RSE = √(fdBisection-fdNewton)2. 

k S0 S1 A0 A1 

100 1.6195 10-7 1.9609 10-7 2.8089 10-7 3.5552 10-7 

300 3.8967 10-8 1.4945 10-7 2.2936 10-7 2.7764 10-7 

500 1.6147 10-8 1.6204 10-8 3.5166 10-7 1.9321 10-7 

1000 1.8611 10-7 2.9624 10-7 3.7147 10-7 1.6189 10-7 

Table 3. Root square error for different values of the wave number k; RSE = √(fdBisection-fdHybrid)2. 

k S0 S1 A0 A1 

100 1.6197 10-7 1.9607 10-7 2.8089 10-7 3.5545 10-7 

300 3.8960 10-8 1.4945 10-7 2.2936 10-7 2.7765 10-7 

500 1.6147 10-8 1.6204 10-8 3.5166 10-7 1.9321 10-7 

1000 1.8611 10-7 2.9624 10-7 3.7147 10-7 1.6189 10-7 

 
Table 4. Root square error for different values of the wave number k; RSE = √(fdBisection-fdNewton)2. 

k S0 S1 A0 A1 

100 1.6184 10-7 1.9609 10-7 2.8137 10-7 3.5551 10-7 

300 3.8981 10-8 1.4946 10-7 2.2935 10-7 2.7764 10-7 

500 1.6155 10-8 1.6202 10-8 3.5466 10-7 1.9324 10-7 

1000 1.8610 10-7 2.9625 10-7 3.7146 10-7 1.6188 10-7 

 
Table 5. Comparison between the different methods used. 

Method Bisection Newton Hybrid Spectral 

Computing time (s) 870 627 588 0.6647 

Number of iterations 6188 16843 11100 1 for each value of the wave number 

Number of loops required 4 3 5 1 

Treatment of the results No Yes No No 

 
The dispersion curves obtained by the Newton algorithm in Fig. 8a showed some weaknesses, for example the S3 and A3 

modes were not obtained completely. Moreover, the algorithm generates undesired solutions (solutions less than a product fd < 0). 
This problem has already been raised by some researchers in the case of the dispersion curve [6, 10]. 

All these problems are caused by the bad approximation of the initial value of the frequency f0 which made the algorithm 
sometimes tend towards already found solutions or undesired solutions. A treatment of the results is necessary, which consists 
in eliminating all the negative roots found (because physically a frequency is never negative) as well as eliminating the roots 
already determined. 

To overcome this problem and based on the results obtained previously, we proposed the hybrid method whose dispersion 
curves are presented in Fig. 8b. To test the convergence of these algorithms, we have presented the Tables 2 and 3 below which 
resume the RSE (Root Square Error) between the roots obtained by the bisection method and those obtained by the Newton and 
hybrid methods respectively of the first four modes. 

The hybrid method benefited from the stability of the bisection method and the speed of convergence of the Newton method. 
The values obtained showed a very good concordance between the different methods for the plotting of the dispersion curves. 

In Fig. 9, we presented the dispersion curves of the aluminum plate obtained by the spectral method using the number of 
collocation points N = 10. These were able to generate the first 16 modes defined in the whole range of the wave number. The 
quality of the dispersion curves obtained by the developed approach is approved by calculating the RSE presented in Table 4. This 
error is measured for the first four Lamb modes. 

In this section, we have presented the results of several methods for plotting the dispersion curves. In order to see which of 
these methods proves to be the most efficient. In Table 5, a comparison based on different selected criteria has been established. 

To obtain the results mentioned in Table 5, we used an Intel(R) Core(TM) i5-5200U CPU @2.20GHz with 4G of RAM. 

 

Fig. 9. Dispersion curves plotted by the spectral method. 
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Table 6. Elastic constants of a transverse isotropic plate (graphite-epoxy); '

ij
c (GPa) and ρ (103 kg/m3). 

'

11c  
'

12c  
'

13c  '

22c  
'

23c  
'

33c  '

44c  
'

55c  
'

66c  ρ  

155.6 3.7 3.7 15.95 4.33 15.95 5.81 7.46 7.46 1.6 

 

Based on the results obtained above, the spectral method presented a very good alternative for obtaining the dispersion 
curves. It is a convergent method, easy to implement with very low computational time and stability. The convergence is 
obtained from values of N that obey the condition ( 2 / )N kπ≥  presented by Adamou [16]. The gain in computation time 
provided by the spectral method is not offered by other numerical methods such as SAFE method. Therefore, the robustness of 
this method in an anisotropic environment will be tested in the following. 

In the following, we will treat the anisotropic behavior of materials. In this regard, different types of symmetries will be taken 
into account and the obtained solutions will be compared to those of the DISPERSE software. 

6.2 Transverse isotropic material 

We consider a transverse isotropic graphite-epoxy material, presenting a symmetry with invariance of the elastic constants 
around an axis of rotation, which reduces the independent number of elastic constants to 5. This class of material is widely used 
in multilayer structures [36]. The mass density and the stiffness matrix components considered are given in Table 6. 

Figure 10a shows the dispersion curves of a graphite-epoxy composite plate obtained by the spectral method with the number 
of collocation points of N = 20. With these points, we quickly obtained the first 56 modes. In the first jet of these curves, we 
noticed that it was difficult to differentiate between the symmetrical, antisymmetrical and the SH modes. Moreover, when there 
is a mode crossing [37, 38] (area marked by a circle in Fig. 10a), we observed that for example, a symmetric mode before the 
overlap point becomes an antisymmetric mode which is wrong and will lead to problems in practice. In Fig. 10b we presented a 
zoom marked by the black ellipse of a mode crossing area situated at fd  1.5 MHz.mm (Fig. 10a). We considered four points A, B, 
C and D. A and C are taken before the crossing while B and D are taken after the crossing. The profiles of the displacements 1u  

and 3u  of these four points are shown in Fig. 10b. If we take for example the path AB, we notice that the component 1u  passes 
from a symmetrical aspect to an antisymmetrical one and the same thing for the component 3u  which is false. The same 
remark was made for the path CD. The two curves must then take respectively the paths AD and CB. To overcome these 
problems, we used the mode separation, such that if the longitudinal and transverse displacement components are respectively 
on either side of the plate thickness equal and opposite then it is a symmetric Lamb mode. And if the longitudinal and transverse 
displacement components are respectively on either side of the plate thickness opposite and equal then it is an antisymmetric 
Lamb mode. For the SH modes, the same reasoning is applied but, now on the displacement 2 ,u  a symmetrical horizontally 
shear mode has the displacements u2 on both sides of the plate thickness equal. For antisymmetric modes, it is the opposite. 

In Fig. 10c we presented the dispersion curves of Lamb modes with the separate symmetric and antisymmetric modes. Fig. 
10d showed the dispersion curves of the SH modes with the separated symmetric and antisymmetric modes. With this technique, 
we were able to separate the Lamb modes from the SH modes since they are not coupled in the case of an orthotropic material 
with φ = 0˚ moreover the problem of mode changing due to mode crossing was no longer present. 

 

Fig. 10. Dispersion curves plotted by the spectral method without mode separation (a) and with mode separation (c-d) and a zoom on the first 
overlap in fd = 1.5 MHz.mm (b). 
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Fig. 11. (a and b) Dispersion curves for a graphite-epoxy composite plate of 4mm thickness and φ = 0˚, plotted by: bisection method (•), DISPERSE 
software (continuous line) and the spectral method (star). 

 

Fig. 12. (a and b) Dispersion curves for an orthotropic plate of 4mm thickness and φ = 0˚, plotted by: bisection method (•), DISPERSE software 
(continuous line) and the spectral method (star). 

We could see from Fig. 11 (a and b) that all three methods were able to plot the dispersion curves (Lamb modes and SH 
modes). Moreover, the curves are superposed on each other which reflects a very good convergence with an order error of 10-7. 
However, the DISPERSE software encountered difficulties in plotting some modes such as the S1 and SHS1 modes. Both the 
spectral method and the bisection method are capable of finding all the modes that can propagate in the plate. For a transverse 
isotropic plate with wave number ranges from 10-5 m-1 up to 12000 m-1 with a step size of 100 m-1, and frequency ranging from 10 
Hz up to 6 MHz with a step size of 50 Hz, the bisection method succeeds in obtaining the dispersion curves in a time of 1340 
seconds. While for the same type of material, the same range of wave number and the number of collocation points of N = 20, the 
spectral method obtains these curves in 2.816 seconds. This shows the great advantage of using the Spectral method for plotting 
the dispersion curves with a good convergence and an important time saving. 

6.3 Orthotropic material 

An orthotropic material has three planes of symmetry orthogonal to each other. It is characterized by nine independent 
elastic constants. This type of material has been studied by several researchers [20, 27, 39]. The mass density and the elements of 
the stiffness tensor of this material are reported in Table 7. 

Figure 12 shows the dispersion curves plotted by the three methods (DISPERSE, Bisection and Spectral). These curves are 
superposed on each other. The DISPERSE software presented some ambiguities to plot the dispersion curves. In fact, the Lamb 
mode S2 does not appear among the modes presented on Fig. 12a, however, this mode is easily plotted by the two other methods. 
Moreover, the time taken by the spectral method to obtain these curves in the case of the orthotropic material with the same 
range of wave number and the number of collocation points mentioned before is 4.540 seconds while the bisection method did it 
in 1665.4 seconds for the same frequency and wave number ranges presented before. 

6.4 Monoclinic material 

Now we consider the material used in Section 6.2 with an angle φ  varying from 0° to 90°. For different values of 0° and 90°, 
the matrix of elastic constants is similar to that of a monoclinic material. 

Table 7. Elastic constants of an orthotropic plate (graphite-epoxy); '

ij
c (GPa) and ρ (103 kg/m3). 

'

11c  
'

12c  
'

13c  '

22c  
'

23c  
'

33c  '

44c  
'

55c  
'

66c  ρ  

128 7 6 72 5 32 18 12.25 8 2 
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Fig. 13. Influence of the φ angle on the first A0 (a) and S0 (b) modes, spectral method (•) DISPERSE software (continuous line). 

 

Fig. 14. Influence of the φ angle on the first A0 (a) and S0 (b) modes, spectral method (•) DISPERSE software (continuous line). 

In Fig. 13, we have plotted the phase velocities of the fundamental modes S0 and A0 for different values of the φ  angle (0°, 
30°, 45°, 60° and 90°). The spectral method was able to generate easily the dispersion curves of a monoclinic material. These 
curves are in very good agreement with the results obtained by the DISPERSE software. We notice that there is a dependence 
between the phase velocity and the φ  angle. For the A0 mode, each value of the φ  angle is characterized by its own phase 
velocity throughout the frequency range. However, for the S0 mode (Fig.13b), we observe that we have three regions. At low 
frequencies f < 500 kHz, for each φ  angle corresponds to a very distinct phase velocity. Therefore, at the frequency f  500 kHz, 
we notice that the phase velocities of the angles 0°, 30°, 45° and 60°, meet in VP = 4400 m/s. During the control, if we have a doubt 
about the φ  angle, this velocity could be exploited to generate the S0 mode at this frequency. 

As a second example, we take the material studied in section 6.3 with the same values of the φ  angles taken earlier. 
In Fig. 14, the phase velocities of the fundamental modes A0 and S0 are plotted for the values of the φ  angle mentioned 

before. In the same way as the previous example, in the A0 mode, each value of the φ  angle corresponds to a proper phase 
velocity in the whole frequency interval. Regarding the S0 mode, the phase velocities of the angles 30˚, 45˚ and 90˚ meets for the 
couple (f = 500 kHz, VP = 4550 m/s). We can use this velocity to generate the S0 mode during a control where we have no 
information about the φ  angle. 

When the angle has a different value from 0 and 90 degrees, the stiffness matrix has a monoclinic symmetry and this affects 
the phase velocities of the modes because the Lamb modes are coupled to the SH modes. 

7. Comparison with Previous Results 

To validate the dispersion curves obtained by the spectral method, we aim in this section to compare our results with those 
obtained by previous works. Nayfeh [27] illustrated the dispersion curves obtained analytically for different types of materials 
with various classes of symmetries. In our comparison, we have chosen two types of materials: the first material (Fig. 15a) is the 
Nickel with cubic symmetry and the second one is an artificial orthotropic material at φ = 45° (Fig. 15b). 

From Fig. 15 (a and b), we observed that the curves obtained by the spectral method are in very good agreement with those of 
Nayfeh for both types of symmetries. However, we have been able to dissociate the different families of modes in our curves, 
moreover, we have succeeded to well define them around the low and high phase velocities. 

In order to perform proper non-destructive testing by ultrasonic guided waves, we need the dispersion curves that represent 
the control frequencies. In addition, we need to know the shape of the generated modes. These profiles allow us to choose the 
appropriate mode for the control according to the type of defect to detect. In the following, we will present a detailed study of the 
displacement and stress profiles of the modes that can propagate in a homogeneous and anisotropic elastic planar waveguide. 
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Fig. 15. (a-b) Comparison of the dispersion curves in the (fd, VP) plane obtained by reference [27] and the spectral method. -Red continuous lines: 
symmetrical Lamb modes. -Blue continuous lines: antisymmetric Lamb modes. -Red interrupted lines: symmetrical SH modes. -Blue interrupted 

lines: antisymmetric SH modes. -Black lines: reference solution. 

8. Displacement and Stress Field 

In this section, we will present a technique for obtaining exact amplitudes of the displacement and stress fields through the 
thickness of the plate. This technique is based on the normalization of displacement and stress fields by acoustic power [40, 41]. 
In fact, the profiles of the displacement and stress fields are calculated via the analytical expressions Eq. (10) and Eq. (15) or are 
deduced from the eigenvectors in the case of the spectral method. The amplitudes of the displacements and stresses are usually 
calculated analytically as a function of a multiplicative coefficient. While the displacement profiles of the spectral method are 
provided by the eig function of Matlab as normalized eigenvectors in amplitudes, that is, their amplitudes vary between minus 
one and one. Unfortunately, these amplitudes have no physical meaning. Normalization by acoustic power will provide a 
solution to this ambiguity. 

The normalization of acoustic fields by the acoustic power states that the wave transports a power of 1 Watt through a 
straight section perpendicular to the direction of propagation of a plate of thickness d = 2h and width 1 meter. This power is 
calculated by the following expression: 
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where P
�

 is the Poynting vector and n
�

 is a unit vector parallel to the propagation direction. acP  is a complex number. Its real 
part will be considered and denoted by :MP  
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with v i uω=−  is the velocity vector, v*  its conjugate and σ  the stress tensor. 
The normalized displacement inoru  and stress fields ijnorσ  are calculated as follows: 
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in which (i, j)=1, 2, 3. 
According to Equation (28), the analytical displacement profiles that depend on a constant are divided by the acoustic power 

that depends on the same constant. We obtain exact normalized displacement profiles (no more constant). The power 
normalization will permit to have exact amplitudes of the displacement and stress fields. It will also allow to easily compare the 
modes susceptible to propagate in a plate and to realize an energy balance during the study, for example, the interaction of a 
mode by a defect. 

Next, we will compare the displacements and stresses normalized in acoustic power to those deduced from the eigenvectors 
for the spectral method (normalized in power). For this purpose, we consider the orthotropic material defined in section 6.3 with 
an angle of φ = 0°. For this angle, the modes Sn, An, SHSn and SHAn are generated. 

At the frequency f = 500 kHz (the vertical green line marked in Fig. 16), we found the following modes: A1, S1, S0, SHA1, A0 and 
SHS0 whose wave numbers are, respectively, 306, 351, 511, 1041, 1361 and 1571 m-1. 

Figure 17 shows the displacement and stress profiles of symmetric and antisymmetric modes propagating at a frequency of 
500 kHz in the orthotropic plate. The verification of the free plate boundary conditions is assured, such that we have the nullity 
of the stresses 33 23,σ σ  and 13σ  at 3 .x h=±  Lamb modes are characterized by the nullity of the displacement 2u  and the stress 

23.σ  The symmetric character of the Sn modes is observed for displacement 1u  and stress 33.σ  Antisymmetric behavior is 
observed for displacement 3u  and stress 13.σ  The antisymmetric modes An present an opposite vibrational behavior. 

The horizontal shear modes, polarized in 2 ,x  have a null profile for the displacements 1u  and 3u  as well as for the stresses 

33σ  and 13.σ  As for the displacement 2u  and the stress 23σ  they depend on the nature of the mode (SHSn or SHAn). 
The displacement and stress profiles obtained by the spectral method are in very good agreement with those obtained 

analytically. 
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Fig. 16. Dispersion curves in the (fd, k) plane: -Red continuous lines: symmetric Lamb modes. -Blue continuous lines: antisymmetric Lamb modes. 
-Red interrupted lines: symmetrical SH modes. -Blue interrupted lines: antisymmetric SH modes. 

 

 

 

Fig. 17. Normalized displacements and corresponding stresses of the S0 (a), S1 (b), A0 (c), A1 (d), SHS0 (e) and SHA1 (f) modes localized at the frequency 
f = 500 kHz. 

(a) 

(b) 

(c) 
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Fig. 17. Continued. 

 

Fig. 18. Decimal logarithm of the RSE for the S0 and S1 modes. 

(d) 

(e) 

(f) 
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Table 8. Root square error for different values of collocation points; RSE=√(u1Analytic-u1Spectral)2. 

Collocation points N = 3 N = 5 N = 11 N = 21 N = 51 N = 101 

S0 mode - 0.0924 4.7952 10-5 5.8723 10-7 1.0067 10-7 1.0056 10-7 

S1 mode - 0.28591 6.1938 10-4 9.7846 10-6 4.8888 10-6 4.7736 10-6 

 
Table 9. Comparison between the different methods used in anisotropic media. 

Materials Control Bisection Newton Hybrid Spectral 

Transverse 

isotropic 

Computing time (s) 1340 967 905.6 2.8160 

Number of iterations 20467 55591 36636 1 for each value of the wave number 

Orthotropic 
Computing time (s) 1665.4 1197 1126 4.5400 

Number of iterations 20835 56906 37503 1 for each value of the wave number 

Monoclinic φ = 60˚ 
Computing time (s) 3718 - 2113 7.4186 

Number of iterations 25818 Inf 45637 1 for each value of the wave number 

 
 
Next, we study the influence of collocation points on the convergence of eigenvectors. To this end, we calculate the root 

square error between the analytical displacements and the eigenvectors from the SM. We restrict ourselves to the cases of 
longitudinal displacement u1 for the first two symmetric Lamb modes S0 and S1 at (f = 500 kHz, k = 511 m-1) and (f = 500 kHz,          
k = 351 m-1) couples. 

In Table 8, the RSE for each value of the collocation points (N = 3, 5, 11, 21, 51 and 101) are plotted in both modes. 
To obtain the RSE reported in the above table, we calculate the analytical displacements by the same coordinates of the 

collocation points taken in the SM.  
Starting from N = 3, the spectral method does not even provide these modes, but for higher values of N, the S0 and S1 modes 

are calculated. The convergence of the spectral method increases with the number of collocation points (Fig. 18). Arriving at a 
certain value of N (maximum convergence N  21 for our case) where the order of the squared error stabilizes (beyond N = 51). 
Many researchers [13, 17, 20] have plotted the displacements from the spectral method in the case of waveguides. The symmetry 
criteria are taken into account for the validation. We present here a well-detailed and precise study for the validation of the 
displacements and stresses obtained from the spectral method for planar waveguides. This study comes as a complement to 
previous works [17, 20] on the displacement obtained by the spectral method. 

9. Discussion 

The DISPERSE software is known for its wide use in the field of non-destructive testing by UGW to generate dispersion curves. 
Actually, in the case of an isotropic plate, we have obtained all the modes that can propagate in the selected frequency and wave 
number ranges. However, in the case of anisotropic plates, there were restrictions especially in the case of the S0 mode, the most 
commonly used mode in industry and by scientists to examine the pieces by UGW. On the other hand, DISPERSE is a very robust 
software with many options that facilitate its manipulation by the user.  

The spectral method as well as the bisection method allowed us to have accurate solutions without any jump of mode in the 
different cases studied. The spectral method showed its great advantage over the analytical method from the point of view of 
computational time so that we had a time saving of about 1337 seconds in the case of a transverse isotropic plate and about 1661 
seconds for an orthotropic plate with the same convergence and a low computational effort (Table 9). Moreover, the number of 
collocation points in the SM does not have a great effect on the accuracy of the solution, but rather on the number of the 
generated modes. For example, for anisotropic media, if we use the number of points N = 5 we have in our possession the first 9 
modes, and for N = 10 the program generates the first 24 modes. 

The comparison with the results obtained in the literature showed the efficiency and robustness of the SM. This robustness is 
expressed by the potential to properly define the modes susceptible to propagate in the anisotropic plate in the whole range of 
the wave number, and also to dissociate them which represents a great advantage. We then applied the acoustic power 
normalization method to the analytical displacement fields and the eigenvalues of the SM. It allowed us to obtain normalized 
displacement and stress profiles of the modes susceptible to propagate in a planar waveguide. The comparison of the analytical 
and spectral results proved the accuracy of the eigenvectors obtained by the SM. Moreover, we were able to validate the 
displacements obtained from the eigenvalues of the spectral method. 

10. Conclusion 

In this paper, we were interested in the study of the spectral method for planar waveguides in ultrasonic non-destructive 
testing. On this basis, we presented a comparative study between different methods of plotting the dispersion curves for various 
types of materials. The spectral method showed its robustness to represent the dispersive character of the UGW in different 
types of material symmetry. Moreover, this method has shown a gain in computational time compared to the classical root 
finding algorithms with very good convergence and a low coding effort. In addition, the comparison with the results obtained by 
Nayfeh [27] in the field of non-destructive testing by UGW was made. Very good agreement between the results was noticed. 
Using the mode separation technique presented in the article, the mode crossing phenomenon is no longer detected. The 
theoretical approach allowed the knowledge of displacements and stresses according to a constant. As for the spectral method, 
the displacements from the eigenvectors were normalized in amplitudes, they varied between minus one and one. Due to these 
incoherencies, the two approaches do not allow us to establish an energy balance on the controlled structure, and therefore the 
inability to detect the present defects. The normalization by the acoustic power of these fields allowed us to overcome these 
limits. A comparison between the analytical and spectral displacement and stress profiles has been realized. A very good 
agreement was observed between them. The study of the convergence order of these profiles as a function of the number of 
collocation points was essential to determine the optimal distribution of these points. The comparison of the analytical and 
spectral results proved the accuracy of the eigenvectors obtained by the SM, and comes as a complement to the previous work 
done by the spectral method [16-21]. As a perspective in our future work, we will establish comparisons between several 
numerical methods for obtaining dispersion curves (SM, SAFE, Legendre polynomial method, ...) for waveguides of different 
geometries (plate, cylinder and multilayered system) and character (elastic and viscoelastic) in order to specify the most 
adequate method to be used with the least coding and computation effort. 
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