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Abstract. The buckling behavior of functionally graded carbon nanotube (FG-CNT) reinforced polymer-based moderately-thick 
plates subjected to in-plane biaxial compressive loads in elastic and thermal environments in the framework of first-order shear 
deformation plate theory (FSDPT) is investigated. First, the temperature-dependent properties of CNTs and nanocomposites are 
defined and their constitutive relations are established, then the stability and strain compatibility equations in elastic media are 
derived in the framework of the FSDPT. Then, by applying the Galerkin method to the basic equations, a closed-form solution is 
obtained for the critical biaxial compressive loads. The specific numerical analyzes and interpretations are made for various plate 
sizes and CNT patterns on the Winkler elastic foundation and in thermal environments within FSDPT and classical plate theory 
(CPT). 

Keywords: Moderately-thick plate, nanocomposite, functionally graded, in-plane biaxial loads, buckling, elastic foundations. 

1. Introduction 

Among the nanomaterials used to create nanocomposites with superior mechanical and functional properties, which have 
the potential for a wide variety of industrial applications, carbon nanotubes (CNTs) maintain their leading role as reinforcement 
elements today [1]. Due to their unique structural properties that provide high chemical and thermal stability, CNTs have an 
important place in obtaining advanced engineering materials [2, 3]. The extraordinary electrical and thermal conductivity of 
CNTs as well as surface modification capabilities make it more attractive to be applied as a reinforcement element [4, 5]. Recent 
research reveals that CNTs are particularly suitable for the production of advanced electrically conductive polymer composites 
[6]. 

Reinforcing polymers using fillers, whether inorganic or organic, is common in the production of modern plastics, and 
polymeric nanocomposites represent a serious alternative to traditional filled polymers or polymer blends. Polymeric 
nanocomposites are classified as nanoclay reinforced polymer-based composites, carbon nanotube reinforced polymer 
composites, nanofiber reinforced polymer composites and inorganic particle reinforced polymer composites. Among polymer-
based composites, carbon nanotube reinforced polymer composites have the most application potential. In recent years, 
polymer-based nanocomposites are frequently used in many engineering branches and industries that use new technology, 
including the defense industry. The applications of polymer nanocomposites are very diverse, and their significant impact on the 
automotive industry can be highlighted, including in tires, fuel systems, fuel cells and seat textiles, gas separation membranes, 
mirror housings in various vehicle types, door handles, engine covers. When polymer-based nanocomposites are used as the 
main structural element, it is noteworthy that more plate-shaped elements are used. The initiative in this area, which started 
with the work of Shen [7], led to the emergence of many studies on the thermo-mechanical stability and vibration behavior of 
plates made of polymer nanocomposites [8-28]. In recent years, the use of polymer-based nanocomposite plates in various 
environments, especially in elastic and thermal environments, necessitates updating their stability and vibration behavior during 
design. The first studies on this subject were carried out with the initiatives of Liew and his colleagues [29], and the number of 
studies in this field has increased in terms of quality and quantity in recent years [30-39]. 

The review of the literature reveals that the problem of buckling of moderately-thick nanocomposite plates in elastic and 
thermal environments subjected to in-plane biaxial compressive loads in FSDPT has not been adequately investigated 
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analytically. In this study, this issue is discussed in detail. The organization of the paper is as follows: Section 2 describes the 
temperature dependent properties of moderately-thick thickness nanocomposite plates and the Winkler base. In Section 3, the 
fundamental relationships are established for nanocomposite plates on the Winkler foundation and then stability equations are 
derived in the framework of the FSDPT. In Section 4, the closed-form solution for the critical biaxial compressive load is obtained. 
After checking the accuracy of the expressions obtained in Section 5, the specific analysis and interpretation are performed for 
various plate sizes and CNT structures, in elastic and thermal environments, within FSDPT and CPT. 

2. Theoretical Developments  

2.1 Formulation of the problem 

The moderately-thick rectangular plate with CNT reinforcement with side lengths a  and ,b  and the thickness ,h  
respectively, resting on the Winkler elastic foundation and subjected in-plane biaxial forces and Oxyz coordinate system are 
illustrated in Fig. 1. The displacements of the nanocomposite plate along the ,x y  and z  axes are assumed to be , , ,u v w  
respectively, whose material properties depend on location 1( )z  and temperature ( ).T  The domain of  the plate is defined as:  

[ ] [ ] [ ]{ }, , : ( , , ) 0, 0, / 2, / 2x y z x y z a b h hΛ = ∈ × × −  (1) 

The nanocomposite plate is resting on the elastic foundation whose supporting action is described by the Winkler model, as 

wR K w=  in which R  represent the foundation reaction per unit area, and wK  represent coefficients of the spring layer or 
Winkler elastic foundation. 

2.2. Modeling of nanocomposites  

Assuming that the material properties of CNTs and matrix, which are the components of the nanocomposite plate, are 
temperature dependent, the effective elastic properties of nanocomposites can be written as follows [7]: 
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and the coefficients of thermal expansion are expressed as: 
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where ( ), ( 1,2; 1,2,3)cnt
ijY T i j= =  and ( )mY T  represent the Young and shear moduli, cntρ  and mρ  represent densities, 12

cntν  and 12
mν  

represent Poisson ratios, 11cntα  and mα  designate thermal expansion coefficients of CNT and polymer matrix. The efficiency 
parameters of CNT are designated as ( 1,2,3).j jη =  The volume fraction of CNTs and matrix material are designated as 1z

cntV  and 

mV  in which 1 1.z
cnt mV V+ =  Also, the carbon nanotube ratio are found from the expression [7-9]: 

*

( / )(1 )cnt m
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cnt

cnt cnt

m
V

m mρ ρ
=

+ −
 (4) 

where cntm  stands for the mass fraction of CNT in the nanocomposite material. The four types of patterns are considered in this 
study, i.e., UD, VD, OD and XD. The expression for 1z

cntV  are given in Table 1. 
The geometric modeling of the profiles presented in Table 1, in other words, the cross-sections of the nanocomposite plate 

with profiles (a) UD, (b) VD, (c) OD and (d) XD are illustrated in Fig. 2.  
 

Table 1. Pattern types of CNTs in the matrix. 
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Fig. 1. CNT-patterned polymer rectangular plate under biaxial compressive loads. 
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Fig. 2. Cross-sections of rectangular plates with CNT-profiles (a) UD, (b) VD, (c) OD and (d) XD. 

3. Fundamental Relations and Equations 

Considering the assumption of transverse shear deformations, the relationships between ijτ  stresses and ( 1,2; 1,2,3)ij i jε = =  
strains of plates made of nanocomposites are expressed as follows [7]: 
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The thermal stress components, ( 1,2)iiT iτ =  are expressed as follows [41]: 
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where T∆  is the uniform temperature rise from the reference temperature ( 0 300 KT =  in room temperature) at which the plate 
is free of thermal stresses. 

When the assumptions proposed in Ref. [40] are modified to functionally graded nanocomposites, the following relations can 
be rewritten: 
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where, the ( )zΓ  function is the function characterizing the transverse shear stresses 13τ  and 23,τ  13G  and 23G  are the shape 
functions depending on the thickness coordinate of the plate, 1( , )f x y  and 2( , )f x y  are functions of rotation angles. 

Using the expressions (5), (6), (8) and (9) together, the strain components at any point in the plate thickness 11 22 22( , , )ε ε γ with 
those of mid-plane 011 022 012( , , )ε ε γ  can be expressed as follows: 
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The following definitions apply in this relation: 
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To find the in-plane force and moment components ( , 1,2)ijN i j=  and ( , 1,2),ijM i j=  and the transverse shear forces ( 1,2),iQ i=  
the stress components defined by (5) and (6) are integrated from – / 2h  to / 2h+  depending on the thickness coordinate, z  [40]: 
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where the force and moment components of thermal stresses ( 1,2)T
iiN i=  and ( 1,2)T

iiM i=  are found from the following integrals 
[7, 41]: 
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The correlation between the forces (i, j 1,2)ijN =  and stress function F  is determined as follows [40-43]: 

[ ]
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11 22 12 2 2
, , , ,
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 ∂ ∂ ∂ = − ∂ ∂ ∂ ∂ 
 (14) 

Within the FSDPT, the general stability equations of plates subjected to in-plane compressive loads are expressed as follows 
[40-43]: 

2 2
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where 1N  and 2N  are the compressive loads in the x and y directions. 
 It is known that the deformation compatibility equation of the plate is expressed as follows [37]: 

2 2 2
011 022 012
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 (16) 

By using Eqs. (5), (10), (12) and (13) together with the relation (14), the force and moment components and additionally the 
deformations in the mid-plane are expressed with four functions, namely, transverse deflection, rotation angles and Airy stress 
functions, and the resulting expressions substituted in the basic equations (15) and (16), one gets: 
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where ijL are differential operators and defined in Appendix A. 
In order to demonstrate the advantages of the shear deformation theory, it is necessary to derive the stability equation of the 

nanocomposite plate subjected to the in-plane compressive loads, also within the framework of the classical shell theory. As it is 
known that when CST is used, the above four equations turn into two equations, in other words, the deformation compatibility 
equation, that is, the Eq. (16) remains the same in appearance, while set of Eqs. (15) turn into the following equation [40, 41]: 
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If transverse shear strains, i.e. (6) are not taken into account, continuing a similar procedure, the moment and strain 
components in the mid-plane can be expressed in terms of the deflection and stress functions, and then substituting them into 
(16) and (18), the basic equations in the framework of CST take the following form: 

11 12 2

21 22

0

0

L F L w
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+ =

+ =
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where ijL are differential operators and defined in Appendix B. 

4. Solution Method  

Simply supported boundary conditions are taken into account to solve the basic differential equations derived from the 
previous section, which contain the properties of the plate composed of FG-CNT-patterned material.  
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The solution of the differential equations (17) satisfying the boundary conditions (20) is sought as follows [37-39]: 
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where the terms 1 2, , ,f fF w
mn mn mn mnC C C C  are unknown coefficients to be determined, /p m aπ=  and /q n bπ=  are parameters and the 

( ),  m n  is the buckling mode. 
When (21) are substituted in the system of Eqs. (17) and the Galerkin method is applied, the following 4 4×  matrix equation is 

obtained: 
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where ijr  are coefficients and are described in Appendix C. 

In order for the system of Eqs. (22) to have a nonzero solution, the determinate of the coefficients is set to zero: 
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When the determinant on the left side of the Eq. (23) is expanded, the following expression is obtained for the critical 
compressive load on the Winkler elastic foundation: 
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If 2 1 ,N N Nβ β= =  the dimensional critical biaxial load of nanocomposite rectangular plates on the Winkler elastic foundation 
in the framework of FSDPT takes the following form: 

41 1 43 3 44 4 2
12 2 2
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K p qβ

+ + +
=

+
 (26) 

Here, β  is a positive number and ranges from zero to one. 
In special cases, if 2 0,N =  the rectangular plate will only be subjected to the uniaxial load at x, and the dimensional critical 

uniaxial load on the Winkler elastic foundation within FSDPT is found from the following expression:  
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Substituting the first and second terms of expression (21) in the system of Eqs. (19) and applying the Galerkin method, for 

2 1 ,N N Nβ β= =  the following expression is obtained for the critical biaxial load on the Winkler elastic foundation within CPT: 
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In special cases, if 2 0,N =  the dimensional critical uniaxial load parameter on the Winkler elastic foundation within CPT is 
found as:  

1
1 2

CTw
cr

k w
N

p

Γ+
=  (30) 

In the framework of FSDPT and CPT, the following expression is used for the dimensionless values of the uniaxial and critical 
biaxial load parameters on the Winkler elastic foundation: 

12 12 1 1
12 12 1 1, , ,

STw CTw STw CTw
STw CTw STw CTwcr cr cr cr

cr cr cr crm m m m

N N N N
N N N N

Y h Y h Y h Y h
= = = =  (31) 

5. Results and Discussion 

5.1. Comparisons 

The accuracy of the proposed method is examined through the buckling analysis example of FG-CNT plates on the Winkler 
elastic foundation and compared with the magnitudes of critical uniaxial load parameter for the UD, OD and XD-patterns that 
found by applying the element less-based improved moving least squares-Ritz method in the study of Zhang et al. [29]. In this 
example, in the framework of FSDPT, the dimensionless critical uniaxial load parameter values of FG-CNT plates on the Winkler 
elastic foundation for various *

cntV  are found from the expression 2 3
1 1 /STw STw
cr cr mN N b E h=ɶ  (See, Table 2). In the comparison with 

Zhang et al. [29], nanocomposite plates consisting of PmPV and CNTs with the following properties are used: 2.1 GPa,mY =  
*

1 2 30.142, 0.934,0.11,cntV η η η == = =  * 0.14,cntV =  1 0.15,η =  2 3 0.941,η η= =  * 0.17,cntV =  1 0.150,η =  2 3 1.381.η η= =  The Winkler 



Buckling Behavior of Nanocomposite Plates with Functionally Graded Properties under Compressive Loads ... 979 
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 4, (2023), 974-986 

foundation parameter is expressed as: 4
1 / .w w mK K D b=  Also, the geometric dimensions of the plate are as follows: 

0.002 ,  / 1,  100 .h m a b b h= = =  Since the wave mode corresponding to the critical load parameter is ( ) ( ), ,1 ,1m n =  it is not 
included in the table. It is seen that the dimensionless critical load values in the presence of the Winkler foundation presented in 
Table 2 are in agreement with those values presented in Zhang et al. [29]. 

5.2. Buckling behaviors  

In parametric analyses, Polymethyl methacrylate called PMMA, single walled CNTs (SWCNTs) as reinforcing elements are 
used in the formation of plates, and its properties are given in Table 3 [7]. 

In the analysis part, the percentages are found from the following expressions: 12 12 12[ ] / 100%,CT ST CT
cr cr crN N N− ×  

[ ] / 100%,w
cr cr crN N N− ×  1 12 12[ ] / 100%, [ ] / 100%.fg UD UD

cr cr cr cr cr crN N N N N N− × − ×  In the all computations CNT ratio is * 0.28.cntV =  The 

1 0wK =  state corresponds to the groundless state. 
The critical values of the uniaxial and biaxial compressive loads depending on the variation of the Winkler soil coefficient are 

calculated numerically for T=300K, 500K and 700K within the FSDPT and CPT and presented in Table 4. Here 2
1, 1 4z zΓ = −  [40-42] is 

used as the shear deformation shape function and the following data are used: *
0=0.002 m, / 1, / 20,  0.5, 28.cnth a b b h Vβ= = = =  

As can be seen from Table 4, when the Winkler foundation coefficient increases at room temperature, that is, when T=300 K, the 
critical values of both critical uniaxial and biaxial in-plane loads increase, while the wave numbers remain constant. Whereas at 
T = 500 K and 700 K, the critical load values and circumferential wave numbers increase with the increase of 1 .wK  In addition, 
when T increases, the critical values of uniaxial and biaxial in-plane loads decrease and become less than the critical load values 
at room temperature, whether with or without foundation. It has been observed that for the critical values of the biaxial load 

0( 0.5),β =  is considerably lower than the critical values of the uniaxial critical load.  
In the framework of the FSDPT, when we consider the influences of patterns on the critical load values, it is observed that the 

effect of patterns on the critical values of the in-plane biaxial load decrease, when 1wK  and T increases. For instance; at T = 300 K 
the influences on 12

w
crN  for VD, OD and XD-patterns are 20.87%, 35.02% and (-23.57%), respectively; at T = 500 K the patterns 

effects are 19.57%, 33.04% and (-19.79%), respectively, and at T = 700 K those effects are 16.73%, 28.75% and (-13.74%), respectively, 
as 1 400.wK =  The effects of VD, OD and XD-patterns on the 12 10, ( , )w

crN m n×  for 1 800wK =  are 18.28%, 30.86% and (-18.56%), and 
for 1 1200wK =  those effects are 17.13%, 28.93% and (-17.33%), respectively, at T = 500 K. 

As for the influence of shear deformations (SDs), considering the ground effect significantly reduces the SDs effect on the in-
plane critical loads. The SDs effect on the critical value of the biaxial load is significantly reduced compared to the critical 
uniaxial load. Since the temperature increase especially affects the SDs effect more, it threatens the stability of the plates. It 
turns out that the SDs effect is lower in critical biaxial loads compared to critical uniaxial loads. In presence of ground, the 
maximum SDs effects on the critical uniaxial and biaxial load are 55.63% and 41.29%, respectively, for XD-pattern at 1 400wK =  
and T = 700 K, while the least influences of SDs effects on the 1

w
crN  and 12

w
crN  are 11.5% and 9.63%, respectively, when 1 1200wK =  

and T = 300 K for the OD-pattern. When UD, VD, OD and XD patterns are compared among themselves, the most obvious ground 
effect on critical uniaxial and biaxial loads occurs in the OD-patterned with 41.27%, and 28.02% at T = 700 K and 1 1200wK =  (see, 
Table 4). 
 

Table 2. Comparison of the critical load parameter values of FG-CNT plates on the Winkler elastic foundation with the results of Zhang et al. [29] for 

different *

cnt
V and CNT patterns. 

Pattern types CNT ratio (%) *

cnt
V  

1

STw

cr
Nɶ  

Zhang et al. [29] Present study FSDPT Zhang et al. [29] Present study FSDPT 

2

1
10

w
K =  3

1
10

w
K =  

UD 

11 40.066 40.294 48.609 48.887 

14 50.028 50.336 58.501 58.929 

17 58.421 61.407 66.908 66.584 

OD 

11 22.280 22.429 30.809 31.022 

14 27.308 27.520 35.858 36.112 

17 32.167 33.678 40.715 42.270 

XD 

11 57.687 57.992 66.228 66.585 

14 72.501 72.872 81.041 81.464 

17 84.564 88.935 93.109 97.527 

 
 

Table 3. Properties of matrix and reinforced components. 

Properties of PMMA Properties of CNTs The efficiency parameters of CNTs 

92.5 10 Pa,
m

Y = × 0.34
m
ν =  

31150 kg/m
m
ρ =  

11
5.6466TPa,cntY =

22
7.08TPa,cntY =  

12
1.9445TPa,cntY =  

12
0.175,cnt

ν = 31400 kg/m
cnt
ρ =  

1 2 3
0.137, 1.022, 0.715η η η= = = at * 0.12

cnt
V =  

1 2 3
0.142, 1.626, 1.138η η η= = = at * 0.17

cnt
V =  

1 2 3
0.141, 1.585, 1.109η η η= = = at * 0.28

cnt
V =  

Geometrical properties of SWCNTs 

9.26 nm, 0.68nm, 0.067nmr a h= = =  
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Table 4. Variation of the critical values of the x-direction and biaxial compressive loads in the framework of FSDPT and CPT for different T 
depending on the variation of the Winkler soil coefficient 

 
1

10, ( , ), 300w

cr
N m n T K× =  

 FSDPT CPT FSDPT CPT FSDPT CPT FSDPT CPT 

1w
K  UD VD OD XD 

0 1.424(1,1) 1.971(1,1) 1.107(1,1) 1.378(1,1) 0.891(1,1) 1.044(1,1) 1.782(1,1) 2.911(1,1) 

400 1.519(1,1) 2.066(1,1) 1.202(1,1) 1.474(1,1) 0.987(1,1) 1.140(1,1) 1.877(1,1) 3.007(1,1) 

800 1.615(1,1) 2.162(1,1) 1.298(1,1) 1.569(1,1) 1.082(1,1) 1.235(1,1) 1.973(1,1) 3.102(1,1) 

1200 1.710(1,1) 2.257(1,1) 1.393(1,1) 1.664(1,1) 1.178(1,1) 1.331(1,1) 2.068(1,1) 3.198(1,1) 

1w
K  

12
10, ( , ), 300w

cr
N m n T K× =  

0 0.744(1,2) 0.958(1,2) 0.660(1,2) 0.779(1,2) 0.542(1,2) 0.610(1,2) 0.921(1,2) 1.349(1,2) 

400 0.776(1,2) 0.989(1,2) 0.692(1,2) 0.811(1,2) 0.574(1,2) 0.642(1,2) 0.953(1,2) 1.381(1,2) 

800 0.808(1,2) 1.021(1,2) 0.724(1,2) 0.843(1,2) 0.606(1,2) 0.674(1,2) 0.985(1,2) 1.413(1,2) 

1200 0.840(1,2) 1.053(1,2) 0.756(1,2) 0.875(1,2) 0.638(1,2) 0.706(1,2) 1.017(1,2) 1.445(1,2) 

1w
K  

1
10, ( , ), 500w

cr
N m n T K× =  

0 1.248(1,1) 1.895(1,1) 0.985(1,1) 1.310(1,1) 0.804(1,1) 0.990(1,1) 1.515(1,1) 2.810(1,1) 

400 1.344(1,1) 1.991(1,1) 1.081(1,1) 1.405(1,1) 0.900(1,1) 1.086(1,1) 1.610(1,1) 2.905(1,1) 

800 1.439(1,1) 2.086(1,1) 1.176(1,1) 1.501(1,1) 0.995(1,1) 1.181(1,1) 1.706(1,1) 3.001(1,1) 

1200 1.535(1,1) 2.181(1,1) 1.272(1,1) 1.596(1,1) 1.091(1,1) 1.277(1,1) 1.801(1,1) 3.096(1,1) 

1w
K  

12
10, ( , ), 500w

cr
N m n T K× =  

0 0.610(1,2) 0.850(1,2) 0.537(1,2) 0.669(1,2) 0.445(1,2) 0.521(1,2) 0.740(1,2) 1.212(1,2) 

400 0.641(1,2) 0.882(1,2) 0.569(1,2) 0.701(1,2) 0.476(1,2) 0.552(1,2) 0.771(1,2) 1.236(1,3) 

800 0.673(1,2) 0.914(1,2) 0.601(1,2) 0.733(1,2) 0.508(1,2) 0.584(1,2) 0.803(1,2) 1.254(1,3) 

1200 0.705(1,2) 0.946(1,2) 0.633(1,2) 0.765(1,2) 0.540(1,2) 0.616(1,2) 0.835(1,2) 1.271(1,3) 

1w
K  

1
10, ( , ), 700w

cr
N m n T K× =  

0 1.010 (1,1) 1.840 (1,1) 0.825 (1,1) 1.256 (1,1) 0.693 (1,1) 0.946 (1,1) 1.163 (1,1) 2.740 (1,1) 

400 1.106 (1,1) 1.935 (1,1) 0.921 (1,1) 1.351 (1,1) 0.788 (1,1) 1.042 (1,1) 1.258 (1,1) 2.835 (1,1) 

800 1.201 (1,1) 2.031 (1,1) 1.016 (1,1) 1.447 (1,1) 0.884 (1,1) 1.137 (1,1) 1.354 (1,1) 2.931 (1,1) 

1200 1.297 (1,1) 2.126 (1,1) 1.112 (1,1) 1.542 (1,1) 0.979 (1,1) 1.233 (1,1) 1.449 (1,1) 3.026 (1,1) 

1w
K  

12
10, ( , ), 700w

cr
N m n T K× =  

0 0.455 (1,2) 0.684 (1,3) 0.402 (1,2) 0.563 (1,2) 0.339 (1,2) 0.434 (1,2) 0.531 (1,2) 0.941 (1,3) 

400 0.486 (1,2) 0.701 (1,3) 0.434 (1,2) 0.595 (1,2) 0.370 (1,2) 0.466 (1,2) 0.563 (1,2) 0.959 (1,3) 

800 0.518 (1,2) 0.718 (1,3) 0.466 (1,2) 0.627 (1,2) 0.402 (1,2) 0.498 (1,2) 0.594 (1,2) 0.976 (1,3) 

1200 0.540 (1,3) 0.736 (1,3) 0.498 (1,2) 0.649 (1,3) 0.434 (1,2) 0.526 (1,3) 0.626 (1,2) 0.993 (1,3) 

 

The variation of the critical values of biaxial compressive load of nanocomposite plates with and without Winkler elastic 
foundation within FSDPT and CPT for different T versus the /b h  are given in Table 5. The following data are used 

*
0=0.002 m, / 1,  0.5, 28cnth a b Vβ= = = . As can be seen from Table 5, when the /b h  ratio increases from 20 to 50, the values of 

the critical biaxial load increase, while the number of waves in the x direction equals one and is independent of the /b h  ratio. It 
was observed that while the number of waves in the y direction remained constant within the determined range of the /b h  
ratio, it increased depending on the increase in T. 

In the framework of FSDPT, when the effect of patterns on the critical biaxial load of the plate is investigated, it is seen that 
the effects of UD, VD, OD and XD-patterns on the critical biaxial load increase when the /b h  ratio increases, and also the 
presence of Winkler elastic foundation weakens those effects relatively. For instance; at T = 300 K and for 1 0;wK =  when the /b h  
ratio increases from 20 to 50, the influences of UD, VD, OD and XD-patterns on 12crN  increment from 11.29% to 17.12%, from 
27.15% to 34.25% and from (-23.79%) to (-36.33%), respectively, those effects on the 12

w
crN  increase from 10.19% to 15.72%, from 

24.52% to 32.08%, and from (-21.48%) to (-37.01%), respectively, for 1 1000.wK =  When the temperature T increases, the effect of 
the patterns on the critical biaxial load differs. The influences of the patterns on the critical biaxial load are pronounced for T = 
500 K compared to T = 300 K, while those effects are weakened for T = 700 K compared to T = 500 K. 

When the effects of the transverse shear deformations on the critical values of biaxial load are investigated, it is observed 
that the SDs effects decrease significantly with the increase of the /b h  ratio from 20 to 50 in the grounded and unground 
conditions, and the difference between FSDPT and CPT can be negligible in the subsequent increases of / .b h  In addition, it was 
concluded that the increase of T weakens the decrease of the effect of SDs on the value of the critical biaxial load, but the 
presence of 1wK  weakens the effect of SDs. For example, At / 20b h =  and for 1 0,wK =  the effects of SDs on the critical value of 
biaxial load of the VD-patterned plate are 15.28%, 19.73% and 28.6% for T = 300 K, 500 K and 700 K, respectively, while these 
effects are 13.85%, 17.62% and 24.69%, respectively, for 1 1000.wK =  At / 50,b h =  the effects of SDs on the critical values of the 
biaxial load of the VD-patterned plate for T = 300 K, 500 K and 700 K are 3.2%, 3.74% and 6.67%, respectively, when 1 0,wK =  while 
those influences are 2.19%, 14.17% and 4.9%, respectively, for 1 1000.wK =  
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Table 5. Variation of the critical values of biaxial compressive load of nanocomposite plates with and without Winkler elastic foundation within 
FSDPT and CPT for different T versus b/h 

 
12

10, ( , )w

cr
N m n×  

 UD VD OD XD 

 FSDPT CPT FSDPT CPT FSDPT CPT FSDPT CPT 

/b h  1
300 K, 0

w
T K= =  

20 0.744(1,2) 0.958(1,2) 0.660(1,2) 0.779(1,2) 0.542(1,2) 0.610(1,2) 0.921(1,2) 1.349(1,2) 

30 0.376(1,2) 0.426(1,2) 0.320(1,2) 0.346(1,2) 0.257(1,2) 0.271(1,2) 0.492(1,2) 0.600(1,2) 

40 0.222(1,2) 0.239(1,2) 0.186(1,2) 0.195(1,2) 0.148(1,2) 0.153(1,2) 0.299(1,2) 0.337(1,2) 

50 0.146(1,2) 0.153(1,2) 0.121(1,2) 0.125(1,2) 0.096(1,2) 0.098(1,2) 0.199(1,2) 0.216(1,2) 

/b h  1
300 K, 1000

w
T K= =  

20 0.824(1,2) 1.037(1,2) 0.740(1,2) 0.859(1,2) 0.622(1,2) 0.690(1,2) 1.001(1,2) 1.429(1,2) 

30 0.411(1,2) 0.461(1,2) 0.355(1,2) 0.382(1,2) 0.292(1,2) 0.307(1,2) 0.527(1,2) 0.635(1,2) 

40 0.242(1,2) 0.259(1,2) 0.206(1,2) 0.215(1,2) 0.168(1,2) 0.172(1,2) 0.319(1,2) 0.357(1,2) 

50 0.159(1,2) 0.166(1,2) 0.134(1,2) 0.137(1,2) 0.108(1,2) 0.110(1,2) 0.212(1,2) 0.229(1,2) 

/b h  1
500 K, 0

w
T K= =  

20 0.610(1,2) 0.850(1,2) 0.537(1,2) 0.669(1,2) 0.445(1,2) 0.521(1,2) 0.740(1,2) 1.212(1,2) 

30 0.319(1,2) 0.378(1,2) 0.267(1,2) 0.297(1,2) 0.215(1,2) 0.231(1,2) 0.413(1,2) 0.539(1,2) 

40 0.192(1,2) 0.213(1,2) 0.157(1,2) 0.167(1,2) 0.125(1,2) 0.130(1,2) 0.258(1,2) 0.303(1,2) 

50 0.127(1,2) 0.136(1,2) 0.103(1,2) 0.107(1,2) 0.081(1,2) 0.083(1,2) 0.174(1,2) 0.194(1,2) 

/b h  1
500 K, 1000

w
T K= =  

20 0.689(1,2) 0.930(1,2) 0.617(1,2) 0.749(1,2) 0.524(1,2) 0.600(1,2) 0.819(1,2) 1.263(1,3) 

30 0.354(1,2) 0.413(1,2) 0.302(1,2) 0.333(1,2) 0.250(1,2) 0.267(1,2) 0.448(1,2) 0.561(1,3) 

40 0.212(1,2) 0.232(1,2) 0.177(1,2) 0.187(1,2) 0.144(1,2) 0.150(1,2) 0.278(1,2) 0.316(1,3) 

50 0.140(1,2) 0.149(1,2) 0.115(1,2) 0.120(1,2) 0.094(1,2) 0.096(1,2) 0.187(1,2) 0.202(1,3) 

/b h  1
700 K, 0

w
T K= =  

20 0.455 (1,2) 0.684 (1,3) 0.402 (1,2) 0.563 (1,2) 0.339 (1,2) 0.434 (1,2) 0.531 (1,2) 0.941 (1,3) 

30 0.253 (1,3) 0.304 (1,3) 0.211 (1,2) 0.250 (1,2) 0.170 (1,2) 0.193 (1,2) 0.316 (1,3) 0.418 (1,3) 

40 0.152 (1,3) 0.171 (1,3) 0.127 (1,2) 0.140 (1,2) 0.101 (1,2) 0.108 (1,2) 0.197 (1,3) 0.235 (1,3) 

50 0.101 (1,3) 0.109 (1,3) 0.084 (1,2) 0.090 (1,2) 0.066 (1,2) 0.069 (1,2) 0.133 (1,3) 0.150 (1,3) 

/b h  1
700 K, 1000

w
T K= =  

20 0.532 (1,3) 0.727 (1,3) 0.482 (1,2) 0.640 (1,3) 0.418 (1,2) 0.514 (1,2) 0.610 (1,2) 0.985 (1,3) 

30 0.272 (1,3) 0.323 (1,3) 0.246 (1,2) 0.284 (1,3) 0.206 (1,2) 0.228 (1,2) 0.335 (1,3) 0.437 (1,3) 

40 0.163 (1,3) 0.181 (1,3) 0.147 (1,2) 0.160 (1,3) 0.121 (1,2) 0.128 (1,2) 0.207 (1,3) 0.246 (1,3) 

50 0.108 (1,3) 0.116 (1,3) 0.097 (1,2) 0.102 (1,3) 0.079 (1,2) 0.082 (1,2) 0.140 (1,3) 0.157 (1,3) 

 

The variations of the critical values of biaxial compressive load of nanocomposite plates with and without Winkler elastic 
foundation within FSDPT and CPT for different T versus the 0β  are illustrated In Figs. 3-6. The following data are used: 

*=0.002 m, / 1, / 20, 28.cnth a b b h V= = =  In this table, 0 0β =  corresponds to uniaxial loading. It is observed that the critical values 
of biaxial load presented in Table 6 are smaller than the critical values of uniaxial load, and this decrease becomes more evident 
when 0β  increases from 0.2 to 1.0. When the effect of the patterns on the critical biaxial load is investigated in the change of 0 ,β  
the following results emerge. Although the effect of patterns on the critical biaxial load is close to the critical biaxial load at 0β  
close to zero (for example, 0 0.2),β ≤  there is the weak decrease in the VD and OD-patterns, whereas the weak increase in the XD-
pattern. The subsequent increase of 0β  reveals an irregularity and difference in pattern effects. For example, with and without 
Winkler foundation cases, at T = 300 K and 500 K, and without foundation for T = 700 K also (see, Figs. 3 and 4); In the range 

[ ]0 0.2,1.0 ,β ∈  the effects of VD, OD and XD-patterns on the critical biaxial load change parabolic, that is, it first decreases and 
then increases after taking the minimum value. At T = 700 K, while the VD and OD-patterns effects on the critical value of the 
biaxial load in the grounded condition 1( 1000)wK =  are continuously reduce, the XD-pattern effect is continuously increment 
(see, Figs. 4 and 5). 

For T = 300 K and 500 K, with and without ground conditions, when 0β  increases from 0.2 to 1.0, the effect of SDs on the 
critical biaxial load first reduces, reaches a minimum, and then increases in UD, VD, OD and XD- patterns. Considering the T = 
700 K and grounded condition, the effect of SDs on the critical biaxial load shows the continuously reduce in VD, OD and XD 
patterned plates. The most obvious SDs effect on the critical biaxial load is 51.11 % in ungrounded plate and 47.2% in the plate on 
the ground for 0 0.2,β =  while those effects are 38.49% in unconstrained plate and 36.41% in grounded condition for 0 1.0.β =  It is 
observed that the prominence of the influence of SDs on the critical biaxial load decreases, respectively, in UD, VD and XD- 
patterns. In cases of T = 300 K and 500 K, the ground effect can make the effect of the UD-pattern on the critical biaxial load 
independent of 0 ,β  whereas for XD-pattern this only occurs at T = 300 K. 
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Fig. 3. Variation of the critical values of biaxial compressive load of unconstrained nanocomposite plates within FSDPT for different T versus
0
.β  

 
 

 
 

Fig. 4. Variation of the critical values of biaxial compressive load of unconstrained nanocomposite plates within CPT for different T versus
0
.β  
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Fig. 5. Variation of the critical values of biaxial compressive load of nanocomposite plates on Winkler elastic foundation within FSDPT for different 

T versus
0
.β  

 
 

Fig. 6. Variation of the critical values of biaxial compressive load of nanocomposite plates on Winkler elastic foundation within CPT for different T 

versus
0
.β  
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6. Conclusions 

The buckling behavior of moderately-thick nanocomposite plates under in-plane compressive loads on Winkler elastic 
foundation and thermal environments in the framework of FSDPT and CPT was investigated. First, the temperature-dependent 
properties of CNTs and nanocomposites were defined and their constitutive relations were established, then the stability and 
strain compatibility equations on Winkler elastic foundation were derived in the framework of the FSDPT and CPT. Then, 
applying the Galerkin method to the basic equations, the closed-form solution was obtained for the critical uniaxial and biaxial 
compressive loads. The specific numerical analyzes and interpretations were made for various plate sizes, volume fraction 
fractions and CNT patterns in elastic and thermal environments within FSDPT and CPT. 

Author Contributions 

Conceptualization, A.H. Sofiyev and N. Fantuzzi; methodology, A.H. Sofiyev, N. Fantuzzi and C. Ipek; software, C. Ipek and S.P. 
Efendiyeva; validation, C. Ipek and A.H. Sofiyev; investigation, C. Ipek; resources, C. Ipek and S.P. Efendiyeva; writing—original 
draft preparation, C. Ipek and A.H. Sofiyev; writing—review and editing, N. Fantuzzi, A.H. Sofiyev, C. Ipek and S.P. Efendiyeva. 

Acknowledgments 

 Not Applicable 

Conflict of Interest 

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article. 

Funding 

The authors received no financial support for the research, authorship and publication of this article 

Data Availability Statements 

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable 
request. 

References 

[1] Lee, D.J., Kumar, V., Rubber Nanocomposites Reinforced with Single-Wall and Multiwall Carbon Nanotubes for Industrial Applications, Rubber 
Chemistry and Technology, 93(1), 2020, 157–171.  
[2] Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernandez, E., Electronic, Thermal and Mechanical Properties of Carbon Nanotubes, Philosophical 
transactions. Series A, Mathematical, Physical, and Engineering Sciences, 362(1823), 2004, 2065–2098.  
[3] Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A., Mian, S., Ali, G., An Overview of the Recent Progress in the Synthesis and Applications of 
Carbon Nanotubes, Journal of Carbon Research, 5(1), 2019, 1-31. 
[4] Kumanek, B., Janas, D., Thermal conductivity of carbon nanotube networks: a review, Journal of Materials Science, 54(10), 2019, 7397–7427. 
[5] Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A 
Review, Composites Part A: Applied Science and Manufacturing, 41(10), 2010, 1345–1367. 
[6] Khan, W., Sharma, R., Saini, P., Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications, Intech Open, 2016. 
[7] Shen, H.S., Nonlinear Bending Of Functionally Graded Carbon Nanotube Reinforced Composite Plates In Thermal Environments, Composite 
Structures, 91(1), 2009, 9–19.  
[8] Lei, Z.X., Liew, K.M., Yu, J.L., Buckling Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Plates Using the Element-Free Kp-
Ritz Method, Composite Structures, 98, 2013, 160–168.  
[9] Lei, Z.X., Zhang, L.W., Liew, K.M., Buckling Analysis of CNT Reinforced Functionally Graded Laminated Composite Plates, Composite Structures, 
152, 2016, 62–73.  
[10] Mirzaei, M., Kiani, Y., Thermal Buckling of Temperature Dependent FG-CNT Reinforced Composite Plates, Meccanica, 51(9), 2016, 2185–2201.  
[11] Kiani, Y., Shear buckling of FG-CNT Reinforced Composite Plates using Chebyshev-Ritz method, Composites Part B: Engineering, 105, 2016, 176–187. 
[12] Kiani, Y., Buckling of FG-CNT-Reinforced Composite Plates Subjected to Parabolic Loading, Acta Mechanica, 228(4), 2017, 1303–1319.  
[13] George, N., Jeyaraj, P., Murigendrappa, S.M., Buckling and Free Vibration of Nonuniformly Heated Functionally Graded Carbon Nanotube 
Reinforced Polymer Composite Plate, International Journal of Structural Stability and Dynamics, 17(6), 2017, 1750064.  
[14] Farzam, A., Hassani, B., Thermal and Mechanical Buckling Analysis of FG Carbon Nanotube Reinforced Composite Plates Using Modified Couple 
Stress Theory and Isogeometric Approach, Composite Structures, 206, 2018, 774–790. 
[15] Jiao, P., Chen, Z., Ma, H., Zhang, D., Ge, P., Buckling Analysis of Thin Rectangular FG-CNTRC Plate Subjected to Arbitrarily Distributed Partial 
Edge Compression Loads Based on Differential Quadrature Method, Thin-Walled Structures, 145, 2019, 106417. 
[16] Sedighi, H.M., Divergence and Flutter Instability of Magneto-Thermo-Elastic C-BN Hetero-Nanotubes Conveying Fluid, Acta Mechanica Sinica, 36, 
2020, 381-396. 
[17] Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., Shirazi, A.H., Temperature-Dependent Physical Characteristics of the Rotating 
Nonlocal Nanobeams Subject to a Varying Heat Source and a Dynamic Load, Facta Universitatis, Series: Mechanical Engineering, 19(4), 2021, 633-656. 
[18] Bhagat, V.S., George, N., Arunkumar, M.P., Pitchaimani, J., Lenin Babu, M.C., Numerical Analysis on Vibro-Acoustic Behavior of Honeycomb Core 
Sandwich Structure with FG-CNT-Reinforced Polymer Composite Facings, Iranian Journal of Science and Technology, Transactions of Mechanical 
Engineering, 46, 2022, 943–956.   
[19] Van Tien, N., Phuong, N.T., Duc, V.M., Minh, T.Q., Dong, D.T., Quan, P.H., Nam, V.H., Ly, L.N., Nonlinear Thermo-Mechanical Buckling of Torsion-
Loaded Cylindrical Shells with Eccentric Stiffeners Made from CNT-Reinforced Composite, Iranian Journal of Science and Technology, Transactions of 
Mechanical Engineering, 46, 2022, 1107–1119.  
[20] Bachiri, A., Daikh, A.A., Tounsi, A., On the Thermo-elastic Response of FG-CNTRC Cross-ply Laminated Plates under Temperature Loading using 
a New HSDT, Journal of Applied and Computational Mechanics, 8(4), 2022, 1370-1386. 
[21] Malekzadeh Fard, K., Khajehdehi Kavanroodi, M., Malek-Mohammadi, H., Pourmoayed, A., Buckling and Vibration Analysis of a Double-layer 
Graphene Sheet Coupled with a Piezoelectric Nanoplate, Journal of Applied and Computational Mechanics, 8(1), 2022, 129-143. 
[22] Bacciocchi, M., Fantuzzi, N., Luciano, R., Tarantino, A.M., Finite Element Solution of Vibrations and Buckling of Laminated Thin Plates in Hygro-
Thermal Environment Based on Strain Gradient Theory, Mechanics Based Design of Structures and Machines, 2022, 1-14. DOI: 
10.1080/15376494.2022.2093425. 
[23] Saitta, S., Luciano, R., Vescovini, R., Fantuzzi, N., Fabbrocino, F., Free Vibrations and Buckling Analysis of Cross-Ply Composite Nanoplates by 
Means of a Mesh Free Radial Point Interpolation Method, Composite Structures, 298, 2022, 115989. 



Buckling Behavior of Nanocomposite Plates with Functionally Graded Properties under Compressive Loads ... 985 
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 4, (2023), 974-986 

[24] Tornabene, F., Fantuzzi, N., Bacciocchi, M., Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon 
nanotubes, International Workshop Multi-Scale Innovations of Material Structures (MIMS), 115, 2017, 449-476. 
[25] Sofiyev, A., Usame, K., Investigation of Buckling Behavior of Functionally Graded Carbon Nanotube Patterned Polymer Plates in Thermal 
Environments, UNEC Journal of Engineering and Applied Sciences, 2(1), 2022, 19-25. 
[26] Hu, Z., Zhou, C., Ni, Z., Lin, X., Li, R., New Symplectic Analytic Solutions for Buckling of CNT Reinforced Composite Rectangular Plates, Composite 
Structures, 303, 2023, 116361. 
[27] Babaei, H., Thermoelastic Buckling and Post-Buckling Behavior of Temperature-Dependent Nanocomposite Pipes Reinforced with CNTs, 
European Physical Journal Plus, 136(10), 2021. DOI: 10.1140/epjp/s13360-021-01992-x. 
[28] Babaei, H., Kiani, Y., Eslami, M.R., Perturbation Method for Thermal Post-Buckling Analysis of Shear Deformable FG-CNTRC Beams with 
Different Boundary Conditions, International Journal of Structural Stability and Dynamics, 21(13), 2021, 2150175. 
[29] Zhang, L.W., Lei, Z.X., Liew, K.M., An Element-free IMLS-Ritz Framework for Buckling  Analysis of FG–CNT Reinforced Composite Thick Plates 
Resting on Winkler Foundations, Engineering Analysis with Boundary Elements, 58, 2015, 7–17. 
[30] Tung, H.V., Thermal and Thermomechanical Postbuckling of FGM Sandwich Plates Resting on Elastic Foundations with Tangential Edge 
Constraints and Temperature Dependent Properties, Composite Structures, 131, 2015, 1028–1039. 
[31] Wattanasakulpong, N., Chaikittiratana, A., Exact Solutions for Static and Dynamic Analyses of Carbon Nanotube-Reinforced Composite Plates 
with Pasternak Elastic Foundation, Applied Mathematical Modeling, 39(18), 2015, 5459–5472.  
[32] Lei, Z.X., Zhang, L.W., Liew, K.M., Buckling of FG-CNT Reinforced Composite Thick Skew Plates Resting on Pasternak Foundations Based on an 
Element-Free Approach, Applied Mathematics and Computation, 266, 2015, 773–791. 
[33] Zhang, L.W., Liew, K.M., Postbuckling Analysis of Axially Compressed CNT Reinforced Functionally Graded Composite Plates Resting on 
Pasternak Foundations Using an Element-Free Approach, Composite Structures, 138, 2016, 40–51. 
[34] Tung, H.V., Thermal Buckling and Postbuckling Behavior of Functionally Graded Carbon Nanotube-Reinforced Composite Plates Resting on 
Elastic Foundations with Tangential-Edge Restraints, Journal of Thermal Stresses, 40(5), 2017, 641–663. 
[35] Zhong, R., Wang, Q., Tang, J., Shuai, C., Liang, Q., Vibration Characteristics of Functionally Graded Carbon Nanotube Reinforced Composite 
Rectangular Plates on Pasternak Foundation with Arbitrary Boundary Conditions and Internal Line Supports, Curved and Layered Structures, 5, 2018, 
10–34. 
[36] Long, V.T., Tung, H.V., Thermomechanical Postbuckling Behavior of CNT-Reinforced Composite Sandwich Plate Models Resting on Elastic 
Foundations with Elastically Restrained Unloaded Edges, Journal of Thermal Stresses, 42(5), 2019, 658-680. 
[37] Babaei, H., Thermomechanical Analysis of Snap-Buckling Phenomenon in long FG-CNTRC Cylindrical Panels Resting on Nonlinear Elastic 
Foundation, Composite Structures, 286, 2022, 115199. 
[38] Hieu, D.V., Phi, B.G., Sedighi, H.M., Sofiyev, A.H., Size-Dependent Nonlinear Vibration of Functionally Graded Composite Micro-Beams 
Reinforced by Carbon Nanotubes with Piezoelectric Layers in Thermal Environments, Acta Mechanica, 233, 2022, 2249–2270. 
[39] Sofiyev, A.H., Kadioglu, F., Khalilov, I.A., Sedighi, H.M., Vergul, T., Yenialp, R., On the Torsıonal Bucklıng Moment of Cylındrıcal Shells Consıstıng 
of Functıonally Graded Materıals Restıng on the Pasternak-Type Soıl, SOCAR Proceedings, SI1, 2022, 016-022. 
[40] Ambartsumyan, S.A., Theory of Anisotropic Plates, Nauka, Moscow, 1967 [in Russian] 
[41] Eslami, M.R., Buckling and Postbuckling of Beams, Plates and Shells, Springer, Switzerland, 2018. 
[42] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, 2008. 
[43] Akhmedov, N.K., Mektiyev, M.F., The Axisymmetric Problem of the Theory of Elasticity for a Non-Uniform Plate of Variable Thickness, Journal of 
Applied Mathematics and Mechanics, 59(3), 1995, 491-495. 

Appendix A 

ijL are differential operators and defined as: 
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Here, the symbols include the following relations:  
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Appendix B 

Here ijL are differential operators and defined as: 
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Appendix C 

 Here ijr  are described as: 
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