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Abstract. An internal heat source is assumed to act on a cylindrical body with radiation-like boundary conditions to explore the 
memory-dependent thermoelastic response of a solid object. The top and bottom surfaces of the solid cylinder are subjected to 
additional heating conditions. To obtain the thermal behaviour of the considered medium, the integral transform method is 
used, while the inversion solution of the heat transfer equation, the thermoelastic displacement and stress functions are 
presented in the Laplace domain due to the complexity of the calculation. To understand the numerical calculations, the material 
properties of aluminium metal are taken into account, and all the obtained results are presented graphically. 

Keywords: Memory-dependent derivatives, solid circular cylinder, temperature, displacement, integral transform. 

1. Introduction 

In recent decades, fractional calculus has been applied in a variety of fields, including astronomy, chemistry, control 
engineering, signal processing, quantum field theory, and electromagnetics. The influential works of Oldham and Spanier [1] and 
Samko et al. [2] provided details on many mathematical elements of fractional calculus. Fractal differential equations have been 
the focus of the works of Miller and Ross [3], Podlubny [4], and Diethelm [5], as well as a recent detailed paper by Kilbas et al. [6]. 
There are also numerous analytical studies of thermoelastic problems in the context of fractional order theory, which are 
presented in the following parts. Povstenko [7-12] successfully investigated the fractional responses in various solids and studied 
their corresponding thermal behaviour. Lamba et al. [13-16] investigated the significant influence of fractional order theory on 
cylindrical objects such as circular plates and cylinders using the integral transform method. 

Many scientists have begun some investigations into memory-based derivatives in the last decade. By overcoming the 
fractional derivative in 2011, Wang and Li [17] developed the concept of MDD (memory-dependent derivatives). Due to its ability 
to reflect the memory-dependent reactions in a variety of physical processes, MDD has currently emerged as a new aspect of 
fractional calculus which is continuously growing. To study the MDD problem for a Cartesian half-space body, El-Karamany and 
Ezzat [18] developed a generalized thermoelastic theory with time delay. Based on the assumption that the temperature gradually 
increases after heat transfer, Sun and Wang [19] rebuilt the storage-dependent heat model. Using the integral transform 
technique and a heat conduction model with memory-dependent derivatives, Xue et al. [20] investigated the thermoelastic 
properties of hollow cylinders with internal and surface cracks based on the generalized nonlocal thermoelastic theory and MDD 
theory. The dynamic behaviour of an infinite hollow cylinder under thermal shock was studied by Ma and Gao [21]. Marin [26] 
made a contribution on the special properties of thermo-elasto-dynamics for void-filled bodies. Moreover, Marin [27] established 
an equation for the time-evolving elasticity of micropolar bodies with cavities. Some other authors also contributed to the study 
of thermal response by considering cylindrical bodies under different boundary conditions [28-30]. 

Abouelregal et al. [31] developed a novel generalized thermoelastic heat conduction model using the idea of memory-
dependent derivative with time delay. Based on the nonlocal thermoelasticity theory and the effect of thermal conductivity on 
the dynamics, Abouelregal et al. [32] developed the analytical solution of the deflection, thermal bending moment and 
temperature function for a rotating nanobeam. Abouelregal et al. [33] created a theoretical framework for the analysis of nonlocal 
thermoelastic model, which includes a general kernel function for memory-based derivatives. Abouelregal et al. [34] proposed the 
general equations for characterizing functionally graded thermo-piezoelectric materials based on the model of Lord and Shulman 
by incorporating memory-dependent derivatives to improve the conventional theory of coupled thermoelasticity. In the 
framework of the partial elastic thermal diffusion theory based on the Atangana-Baleanu operator and a nonlocal single core, 
Atta [35] studied a spherical cavity within a thermoelastic material. 

According to the available literature, it appears that limited works have been done to consider the memory-related derivative 
(MDD) in heat transfer, although MDD is the extension part of fractional-order derivative, MDD is considered to be more suitable 
and convenient for time transformations. The duration of memory effect is represented by the time delay and the kernel function 
which gives the MDD-dependent weight. 
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Fig. 1. Geometry of the solid cylinder with boundary conditions. 

The present article deals with the transient thermoelastic problem of a solid circular cylinder of dimensions 0 r b≤ ≤  and 
h z h− ≤ ≤  (the geometry is shown in Fig. 1). The equation of heat transfer in the considered problem is subjected to a memory-

dependent derivative. In addition, the convective heat boundaries at the top and bottom surfaces are used with additional heat 
sources with radiation constants. The finite Marchi-Fasulo, Laplace, and Hankel transforms are used to determine the exact 
expression of the temperature, displacement, and stress functions. Finally, numerical calculations are performed by considering 
the material properties of aluminium solid cylinder, and the graphical results are shifted with the effects of time delay 
parameters for better understanding of the presented findings. 

To the author's knowledge, there is no research that investigates the thermal stresses due to heat generation in a solid 
circular cylinder with memory-dependent derivatives and this is the main contribution of the present work. The results 
presented here will be useful for engineering applications, especially for the development of advanced structural materials. 

2. Mathematical Modelling of Thermoelastic Problem 

2.1 Description of the Problem 

Let’s consider a solid circular cylinder whose origins radiate according to the linear relationship between temperature and the 
heat source. The radius and thickness of the assumed cylindrical region lie in regions 0 r b≤ ≤  and .h z h− ≤ ≤  Each of the 
features is assumed to be constant, and the material of the cylinder is isotropic and homogeneous. The aim of this work is to 
show the influence of memory under the action of heat sources and radiation boundaries in solid objects, especially circular 
cylinders. 

2.2 Generation of Heat Transfer Equation with MDD 
Karamany and Ezzat [18] presented a novel energy equation with a memory-dependent derivative and time delay as: 

( )1 .q D k Tτ Ω+ =− ∇  (1) 

The heat conduction equation with a heat source is given by [23]: 

( ) .m Ec T q
t
ρ

∂
=−∇ +

∂
ℏ  (2) 

where ℏ  is the source of heat, mρ  denotes the mass density and Ec  is the specific heat capacity. The equation that governs the 
thermal heat transfer obtained by converting equation (1) into form (2) as: 

( ) ( ) ( )21 1 .m ED c T k T D
t

τ ρ τΩ Ω

∂
+ = ∇ + +

∂
ℏ  (3) 

Considering the use of the memory-dependent derivative concept, one has: 

( ) ( ) ( )1
.

t

t

D T t K t T dψψ ψ ψΩ

−Ω

′= −
Ω ∫  (4) 

Similarly, the order n  of ( )T t  memory-dependent derivative takes the form: 

( ) ( ) ( )
( )1

1

1
.

t nn
n

n n

t

T
D T t D T t K t d

t

ψ
ψ ψ

ψ

−

Ω Ω−
−Ω

∂∂
= = −

∂ Ω ∂∫  (5) 
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where the Kernel function ( )K t ψ−  and time delay Ω  are chosen arbitrarily in order to capture materials real behaviours. In 
particular, the Kernel functions can be chosen as: 

( ) ( ) ( )
2

22 1
2

2
1 .

l l
K t t tψ ψ ψ− = − − + −

Ω Ω
 (6) 

where 1l  and 2l  are constants. 

Kernel function ( )K t ψ−  in general lies in the range 0 to 1 for [ , ],t tψ ∈ −Ω  so that: 

( , , )
( , , ) .

T r z t
D T r z t

tΩ

∂
≤

∂
  

For the sake of simplicity, the number of variables is listed in dimensionless form as: 

( )
( )

( )
( )2 2

0 0 0 0 0

, , , ,1 1
, , , , , , .

m E m E

r t z t
r t z t

r c r z c r

τ τ θ
τ τ θ

ρ ρ θ

′ ′ ′ ′ ′ ′Ω Ω
′ ′ ′= = Ω = = Ω =   

Equation (3) has the following form (by dropping the prime symbols) using the non-dimensional variables mentioned above: 

( )2 1 (1 ) .k D D
t

θ
θ τ τΩ Ω

∂
∇ + + = +

∂
ℏ  (7) 

For convenience, the heat source is assumed to be described as below: 

0 0

0

1
( ) ( ) .

2
tr r z z e

r
ωδ δ

π

−= − −ℏ   

where 00 ,r b≤ ≤  0 ,h z h− ≤ ≤  0,ω >  / ,k Cλ ρ= k  and λ  are the thermal diffusivity and conductivity of the cylinder’s material, 
respectively. Also, constants ρ  and C  are density and calorific capacity, respectively. 

2.3 Boundaries with Radiations  

The various boundary constraints of the problem for solid cylinders under memory-related derivatives are outlined below: 

( )0 0.tθ = =  (8) 

( ) 0.r bθ = =  (9) 

( ) ( )
( )1 0 0 ( ).

z h
z h k Q r r t

z

θ
θ δ δ
 ∂ = = + = − ∂ 

 (10) 

( ) ( )
( )2 0 0 ( ).

z h
z h k Q r r t

z

θ
θ δ δ
 ∂ =− =− + = − ∂ 

 (11) 

where δ  stands for the Dirac Delta function, 0 0( ) ( )Q t r rδ δ −  stands for the additional sectional heat that is present on the solid 
cylinder's top and lower surfaces, and 1 2,k k  denote the radiation constants. 

2.4 Basic Two-dimension Thermoelastic Equation 

For the axisymmetric two-dimensional thermoelastic problem, without the body forces, the Navier's equations are stated as 
[24]: 

2

2

2(1 )1
0,

1 2 1 2
r

r t

vS e
S

r v r v r

θ
α

+∂ ∂
∇ − + − =

− ∂ − ∂
 (12) 

2 2(1 )1
0.

1 2 1 2z t

ve
S

v z v z

θ
α

+∂ ∂
∇ − − =

− ∂ − ∂
 (13) 

where rS  and zS  are the elements of displacement in the axial and radial directions, respectively, and the dilation e  is given 

by: 

.r r rS S S
e

r r z

∂ ∂
= + +

∂ ∂
  

The expressions of displacements in terms of Goodier's displacement potential ( , , )U r z t  and Michell's function M  are 

written as: 

2

,r

U M
S

r r z

∂ ∂
= −

∂ ∂ ∂
 (14) 

2
2

2
2(1 ) .z

U M
S v M

z z

∂ ∂
= + − ∇ −

∂ ∂
 (15) 
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where the equation for Goodier's thermoelastic potential must hold: 

2 1
.

1 t

v
U

v
α θ

 + ∇ =   −
 (16) 

Hence, the equation must be satisfied by Michell's function M as: 

2 2( ) 0.M∇ ∇ =  (17) 

The potential ( , , )U r z t  and Michell's function M  are used to depict the stress component as: 

2 2
2 2

2 2
2 ,rr

U M
G U M

r z r
ν

     ∂ ∂ ∂    Θ = −∇ + ∇ −       ∂ ∂ ∂     
 (18) 

2 21 1
2 ,

U M
G U M

r r z r rθθ ν
     ∂ ∂ ∂    Θ = −∇ + ∇ −         ∂ ∂ ∂  

 (19) 

2 2
2 2

2 2
2 (2 ) ,zz

U M
G U M

z z z
ν

     ∂ ∂ ∂    Θ = −∇ + − ∇ −       ∂ ∂ ∂     
 (20) 

and 

2 2
2

2
2 (1 ) .rz

U M
G M

r z r z
ν

   ∂ ∂ ∂   Θ = + − ∇ −   ∂ ∂ ∂ ∂   
 (21) 

where G  and ν  represent the shear modulus and the Poisson's ratio, respectively. The traction-free surfaces of a solid 
cylinder’s boundary conditions are: 

0 at .rr rz r bΘ =Θ = =  (22) 

The mathematical formulation of the problem under investigation is outlined within section 2. 

3. Solution in Laplace Domain  

3.1 Solution of Heat Transfer Equation with MDD 

To obtain the expression of the temperature distribution, the first technique named the finite Hankel integral transformation 
is applied to equations (7), (8), (10) and (11), and using equation (9), we obtain: 

( )
2 *

2 * *

2

( , , )
( , , ) 1 (1 )n

n n

z t
k z t D D

z t

θ ξ θ
ξ θ ξ τ τ

∗

Ω Ω

 ∂ ∂ − + + + = + ∂ ∂ 
ℏ  (23a) 

*
0 0 0

1
( ) ( , )

2
t

nz z e f rωδ ξ
π

−= −ℏ  (23b) 

where the finite Hankel transform's nucleus is defined by 0( , )nf rξ  and the symbol (*) designates a function in the transformed 
domain. The expression for the function 0( , )nf rξ  is given by: 

0
0

0

( )2
( , )

( )
n

n

n n

J r
f r

b J b

ξ
ξ

ξ ξ

 −  =    
  

here, the eigenvalues nξ  are the positive roots of characteristic equation 0( ) 0,nJ bξ =  and ( )nJ x  is nth-order of Bessel's function 
of the first kind. The transformed initial and boundary conditions are: 

( , , 0) 0.n z tθ ξ∗ = =  (24) 

1 0 0 0 0

( , , )
( , , ) ( ) ( , ).n

n n

z h t
z h t k Q t r f r

z

θ ξ
θ ξ δ ξ

∗
∗

 ∂ = = + = ∂ 
 (25) 

2 0 0 0 0

( , , )
( , , ) ( ) ( , ).n

n n

z h t
z h t k Q t r f r

z

θ ξ
θ ξ δ ξ

∗
∗

 ∂ =− =− + = ∂ 
 (26) 

Equations (23) and (24) are further subjected to the finite Marchi-Fasulo transform [22], and by utilizing equations (25) and (26), 
one gets: 

( )
*

2 2 *
0 0 0 0 0 0 0

1 2

( ) ( ) 1
( ) ( , , ) ( ) ( , ) 1 ( ) ( , ) (1 )

2
tm m

n m n n m n

p h p h
k m t k Q t r f r D p z e f r D

k k t
ω θ

ξ µ θ ξ δ ξ τ ξ τ
π

−
Ω Ω

  − ∂  − + + − + + = +   ∂   
 (27) 

where m  denotes the Marchi-Fasulo transform parameter and *θ  is the converted function of .θ  The orthogonal functions 
within the interval h z h− ≤ ≤  provide the nucleus as: 
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( ) cos( ) sin( )m m m m mp z X z Y zµ µ= −   

where  

1 2( ) cos( )m m mX k k hµ µ= +   

2 12cos( ) ( ) sin( )m m m mY h k k hµ µ µ= + −   

2 2 2 2 2 2sin(2 )
( ) [ ] [ ]

2

h

m
m m m m m m

mh

h
p z dz h X Y X Y

µ
λ

µ
−

= = + + −∫   

The eigenvalues mµ  are the positive roots of the characteristic equation as: 

1 2 2 1[ cos( ) sin( )] [cos( ) sin( )] [ cos( ) sin( )] [cos( ) sin( )]k h h h k h k h h h k hµ µ µ µ µ µ µ µ µ µ µ µ+ + = − −   

The transformed initial condition becomes: 

*( , , 0) 0.n m tθ ξ = =  (28) 

Further applying Laplace transform rule on equation (27) and utilizing the transformed initial condition (28), yields: 

( )
,* 0

0 0

( ( ) )( , ) ( )
( , ),

( ) 2 ( )
m nn m m

n

L s kH p z
f r

L s s s L s

βξ µ
θ ξ

π ω

−
= +

+

⌢

 (29a) 

0 0 0 0

1 2

( ) ( )
( , ) ( , ),m m

n m n

p h p h
H k Q r f r

k k
ξ µ ξ

 − = −  
 (29b) 

( ),(1 ) ( ),m nG s k L sβ+ + =  (29c) 

2 2
, ,m n m nβ µ ξ= +  (29d) 

( )
2 2

22 1 1
1 22 2

2 2 2
1 1 2 .s sl l l

G e l l e
s s s

τ − Ω − Ω
         = − − + − − +       Ω Ω Ω Ω     

 (29e) 

The resulting temperature distribution is derived in the Laplace transform domain by inverting the finite Marchi-Fasulo 
transform and the finite Hankel transform as: 

( )
( )

, 00
0 0 22

1 1 0

( ( ) )( ) ( , ) ( )2
( , ) .

( ) 2 ( ) ( )
m n nm n m m

n
n m m n

L s k J rP z H p z
f r

b L s s s L s J b

β ξξ µ
θ ξ

λ π ω ξ

∞ ∞

= =

 −  = +  +  ′    
∑∑

⌢
 (30) 

3.2 Evaluation of Thermal Displacement Components 

The Goodier's thermoelastic potential in the domain of the Laplace transform is obtained by utilizing equation (30) in (16) as: 

( )
( )

, 00
0 0 22

1 1 , 0

( ( ) )( ) ( , ) ( )1 2
( , ) .

1 ( ) 2 ( ) ( )
m n nm n m m

t n
n m m n m n

L s k J rP z H p zv
U f r

v b L s s s L s J b

β ξξ µ
α ξ

β λ π ω ξ

∞ ∞

= =

 −  +  =− +      − +  ′    
∑∑

⌢
 (31) 

Similarly, it is believed that the Michell's function solutions in the Laplace transform domain meet the governed condition of 
equation (17): 

( )
( )

, 00
0 0 0 1 22

1 1 , 0

( ( ) )( ) ( , ) ( )1 2
( , ) [ ( ) ( ) ( )] [cos ( )] .

1 ( ) 2 ( ) ( )
m n nm n m m

t n n n n n n n
n m m n m n

L s k J rP z H p zv
M f r X J r Y r J r h z

v b L s s s L s J b

β ξξ µ
α ξ ξ ξ ξ ξ

β λ π ω ξ

∞ ∞

= =

 −  +  =− + × +      − +  ′    
∑∑

⌢
 (32) 

Using equations (31) and (32) in (14) and (15), one obtains the displacement components as below: 

( ), 00 1
0 0 1 02

1 1 , 1

( ( ) )( ) ( , ) ( ) ( )1 2 2
( , ) [ sin ( )][ ( ) ( ) ( ) ( )] ( )

1 ( ) 2 ( ) ( ) ( )
m n n nm n m m n

r t n n n n n n n n n m
n m m n m n

L s k J rP z H p z J rv
S f r h z X J r Y r J r p z

v b L s s s L s b J b J

β ξ ξξ µ ξ
α ξ ξ ξ ξ ξ ξ ξ

β λ π ω ξ

∞ ∞

= =

   ′−  +    = + × − + −        − + ′     
∑∑

⌢

( )
2

0

.
nbξ  

 (33) 

, 20
0 0 0 02

1 1 ,

2
0 1

( ( ) )( ) ( , ) ( )1 2
( , ) [ [ sin cos ] ( , ) [ ( )][cos ]

1 ( ) 2 ( ) ( )

[4(1 ) ( ) ( ) (

m nm n m m
z t n m m m m m n n n n n

n m m n m

n n n n n

L s kP z H p zv
S f r X z Y z f r X J r h z

v b L s s s L s

Y v J r r J r

βξ µ
α ξ µ µ µ ξ ξ ξ ξ

β λ π ω

ξ ξ ξ ξ

∞ ∞

= =

 −  +  = + × + +      − +  

− − −

∑∑
⌢

( )
( )

0
2

0

)][cos ] .n
n

n

J r
h z

J b

ξ
ξ

ξ ′ 

 (34) 

3.3 Evaluation of Thermal Stress Components 

The values of the Michell's function from equation (32) and the thermoelastic displacement potential from equation (31) are 
inserted into equations (18) to (21) in order to evaluate the stress components as follows: 
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, 2 2 20
0 0 0 12

1 1 , 1

2 1
0

( ( ) )( ) ( , ) ( )1 2 2
2 ( , ) [( 2 ) ( ) ( )] ( )

1 ( ) 2 ( ) ( ) ( )

( )
( )

( )

m nm n m m
rr t n m n n n n m

n m m n m n n

n
n n n

n

L s kP z H p zv
G f r J r J r p z

v b L s s s L s b J b

J r
X J r

r

βξ µ
α ξ µ ξ ξ ξ ξ

β λ π ω ξ ξ

ξ
ξ ξ

ξ

∞ ∞

= =

  −  +    Θ =− + × + −        − +      


− −

∑∑
⌢

( )
( )

2
02

0 1 2

0

[ sin ( )] [(2 1) ( ) ( ) ( )] [ sin ( )] .n n
n n n n n n n n n

n

J r
h z Y v J r r J r h z

J b

ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ

ξ

 ′′
  + − +   ′   

 (35) 

,0 1
0 0 , 02

1 1 , 1

2 1

( ( ) )( ) ( , ) ( ) ( )1 2 2
2 ( , ) ( ) ( )

1 ( ) 2 ( ) ( ) ( )

( )
[sin ( )

m nm n m m n
t n m n n n m

n m m n m n n

n
n n n

L s kP z H p z J rv
G f r J r p z

v b L s s s L s r b J b

J r
X h z

r

θθ

βξ µ ξ
α ξ β ξ ξ

β λ π ω ξ ξ

ξ
ξ ξ

∞ ∞

= =

    −  +      Θ =− + × +         − +       

+


∑∑
⌢

( )
( )
03

0 2

0

[(2 1) ( )] [sin ( )] .n n
n n n n

n

J r
Y v J r h z

J b

ξ ξ
ξ ξ ξ

ξ

′
 + −

   ′  

 (36) 

, 2 2 2 30
0 0 0 02

1 1 ,

3
0 1

( ( ) )( ) ( , ) ( )1 2
2 ( , ) [ 2 ] ( ) ( , ) [ ( ) [sin ]

1 ( ) 2 ( ) ( )

[2( 2) ( ) ( ) ( )] [

m nm n m m
zz t n m n m n n n n n

n m m n m

n n n n n

L s kP z H p zv
G f r p z f r X J r h z

v b L s s s L s

Y v J r r J r

βξ µ
α ξ µ ξ ξ ξ ξ ξ

β λ π ω

ξ ξ ξ ξ

∞ ∞

= =

 −  +  Θ =− + × − − −      − +  

− − −

∑∑
⌢

( )
( )

0
2

0

sin ] .n
n

n

J r
h z

J b

ξ
ξ

ξ ′ 

 (37) 

, 20
0 02

1 1 ,

31
1

1

( ( ) )( ) ( , ) ( )1 2
2 ( , ) [ ] [ sin ( ) cos ( )]

1 ( ) 2 ( ) ( )

2 ( )
[ ( )] [cos ( )]

( )

m nm n m m
rz t n m m m m m

n m m n m

n
n n n n

n

L s kP z H p zv
G f r X z Y z

v b L s s s L s

J r
X J r h z

b J b

βξ µ
α ξ µ µ µ

β λ π ω

ξ
ξ ξ ξ

ξ

∞ ∞

= =

 −  +  Θ =− + × − +      − +  
 
 × + −   

∑∑
⌢

( )
( )
03 2

0 1 2

0

[ ( ) 2(1 ) ( )] [cos ( )] .n n
n n n n n n

n

J r
Y J r v J r h z

J b

ξ ξ
ξ ξ ξ ξ ξ

ξ

′
+ −

 ′ 

 (38) 

3.4 Finding the Arbitrary Functions Xn and Yn 

The unknown function Xn and Yn are evaluated using the boundary conditions in equation (22) of a solid cylinder with 
traction-free surfaces as follows: 

4 1 3 2
3

1 1 1 2 5

sin ( ) cos ( ) ( )
,

[ ] cos ( ) sin ( )
n n m

n
n m n n n

h z b h z p z
X

b h z h z

ξ ξ

ξ ξ ξ

∞ ∞

= =

ϒ ϒ − ϒ ϒ
=

ϒ −ϒ ϒ∑∑  (39) 

3 1 4 5
2

1 1 1 2 5

( ) ( )cos ( ) sin ( )
.

[ ] cos ( ) sin ( )
n m n n

n
n m n n n

b J b p z h z h z
Y

b h z h z

ξ ξ ξ

ξ ξ ξ

∞ ∞

= =

ϒ −ϒ ϒ
=

ϒ −ϒ ϒ∑∑  (40) 

where 

[ ]1 0 0 0 1 1(2 1) ( ) ( ) ( ) ( ),n n n n nB C v J b b J b J bξ ξ ξ ξ ξϒ = + = − +   

2 0 1
ˆˆ ( ) 2(1 ) ( ),n n nB C J b v J bξ ξ ξϒ = + = + −   

( )2 2 0
3 0 0

1

( ) 2
2 ,

( )
n

m n n n

n n

J b
D E

J b b

ξ
µ ξ ξ ξ

ξ ξ

 
 ϒ = × = + − × − 
 

  

2

4

2ˆ [ sin ( ) cos ( )],m
m m m mD X z Y z

b

µ
µ µϒ = = +   

1
5 0 6

( )
( ) .n

n

n

J b
A J b

b

ξ
ξ

ξ

 
 ϒ = = −  

  

4. Numerical Results and Discussion 

Due to its low density, aluminium is often used in the aerospace industry and other areas of transportation. We consider the 
material properties of the aluminium metal to understand the numerical calculations as defined in [25]: 

Modulus of Elasticity, ( )11 26.9 10 /E dynes cm= ×  

Shear modulus, ( )11 22.7 10 /G dynes cm= ×  

Poisson ratio, 0.281v=  

Thermal expansion coefficient, ( )6 025.5 10 /t cm cm Cα −= × −  

Thermal diffusivity, ( )20.86 / seck cm=  

Thermal conductivity, ( )0 20.48 / / sec/cal cm C cmλ = −   

Outer radius, 1b cm=   

Thickness, 0.5h cm=   

 

 



Impact of Memory-dependent Response of a Thermoelastic Thick Solid Cylinder  
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 4, (2023), 1135-1143 

1141 

 
Fig. 2. Time delay's influence over dimensionless temperature in a dimensionless radial direction. 

  
(a) (b) 

Fig. 3. (a) Time delay's influence over dimensionless radial displacement in a dimensionless radial direction and (b) Time delay's influence over 
dimensionless axial displacement in a dimensionless radial direction. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 4. (a) Time delay's influence over dimensionless radial stress in a dimensionless radial direction, (b) Time delay's influence over dimensionless 
tangential stress in a dimensionless radial direction, (c) Time delay's influence over dimensionless axial stress in a dimensionless radial direction 

and (d) Time delay's influence over dimensionless shear stress in a dimensionless radial direction. 

In this section, we examine how the time delay affects the temperature, displacement, and thermal stress functions. These 
distributions are shown graphically in Figs. 2 to 4. It should be noted that the present heat transfer model reverts to the CV model 
when the time delay approaches infinitesimal when the kernel function is considered to be 1. 
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According to Fig. 2, the dimensionless temperature distribution function is significantly affected by the time delay parameters 
0,0.1,0.2,0.3Ω=  in the dimensionless radial direction for 0.5t = and 0.5.z=  For longer time delays, a more uniform 

temperature distribution is seen, or one could say that the temperature decreases as the value of parameter Ω  increases. In the 
radial direction, the temperature first decreases to 0.3r =  and then continues to increase outward, which is due to the action of 
the heat source and the additional cross-sectional heating. Another temperature wave reaches zero value at the outer radii 1r =  
which corresponds to the condition defined in mathematical equation (9). 

Figures 3(a) and 3(b) show the effect of time delay on the dimensionless radial and axial displacements in a dimensionless 
radial direction for different delay parameters by fixing 0.5t =  and 0.5,z=  respectively. For large values of the delay 
parameter, a higher distribution of curve variations is found. The finite propagation velocity of the displacement waves is 
observed when recording a solid cylinder. In the center of the circular cylinder there is a peak in the displacement function which 
is due to the influence of the heat source and the additional cross-sectional heating.  

The effect of time delay on the dimensionless radial stress is shown in Fig. 4(a) for various parameters 0,0.1,0.2,0.3.Ω=  The 
above variation is recorded by fixing 0.5t =  and 0.5.z=  The stress distribution first increases, peaks at the center of the 
cylinder, and then decreases outward in the radial direction. On the outer surface, where the stress is zero, it satisfies the 
mathematical condition given in equation (22). The larger stress distribution in the center shows the influence of the applied heat 
source and the additional cross-sectional heating. 

Figures 4(b), 4(c), and 4(d) show the significant effect of time delay on the dimensionless tangential, axial, and shear stresses, 
respectively, along a dimensionless, radially outward direction by fixing 0.5t =  and 0.5.z=  For a large value of the time delay 
parameter, a small distribution of thermal stress waves is observed for a solid circular cylinder. All curves show compression 
near the center of the cylinder and tensile stress near the inner and outer radii. 

5. Conclusion 

Modelling of memory-related heat transfer equations subjected to a heat source in the case of a solid circular cylinder was 
successfully determined in the present study, and the influence of time delay variables on the temperature distributions, 
displacements, and stress functions was established. The bottom and top surfaces of the solid cylinder were additionally heated 
section by section. The temperature, displacement and stress functions were expressed in the Laplace transform domain. 
Numerical calculations were performed for a special case involving a solid cylinder made of aluminium metal, and the results 
were presented graphically. The following important points are summarized below: 

- The graphical analysis showed that the changes in the temperature, displacement and stress functions in the assumed 
thermoelastic problem are within a limited range and are not observed outside this range. 

- The different values of the time delay parameter had a significant effect on the variations of the temperature, displacement 
and stress functions. 

- Thermal tracking of various curves under memory response resulted in a significant response of the heat source and cross-
section heating. 

- The phenomenon of total variation showed that the waves move at a finite speed. 
- Classification of materials based on time delay features capable of reflecting the effects of memory on temperature and 

stress history may be useful for various structural designs. 
The present study may also be useful to the researchers and mathematicians working on the development of thermoelasticity 

by considering memory-related derivatives which are important in describing the behaviour of many physical processes. 
Engineering applications may use the obtained thermal variations for different parameters with memory-related responses to 
develop the realistic structures or machines. 
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