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Abstract. Investigation of free vibration of porous power and sigmoid-law sandwich functionally graded (FG) plates with different 
boundary conditions is presented in this paper. The FG sandwich plate includes three layers. The face layers are fabricated of 
functionally graded material (FGM) and middle layer (core) is isotropic (ceramic). Imperfect sigmoid FG sandwich plates with even 
and linear-uneven porosities and nonporous core layer are studied. Developed approach has been realized in the framework of a 
refined theory of the first-order shear deformation theory (FSDT) using variational methods and the R-functions theory. The 
analytical expressions are obtained for calculating the elastic characteristics with the assumption that the values of Poisson's ratio 
are the same for constituent FGM materials. For rectangular plates, the obtained results are compared with known results and a 
good agreement is obtained. Vibration analysis of a complex-shaped porous sandwich plate made of FGM has been performed. The 
effect of various parameters on the dynamic behavior of the plate, such as the type and values of porosity coefficients, power index, 
lay-up scheme, types of FGM, has been studied. 

Keywords: Power-law, sigmoid-law, porosity, free vibration, functionally graded sandwich plates, the R-functions theory, variational 
Ritz method. 

1. Introduction 

The study of the dynamic behavior of sandwich plates and shells made of functionally graded materials (FGM) attracts the 
attention of many researches. This is due to the widespread use of FGM in many industries such as military, aviation and missile 
industries, shipbuilding, machine building and others. The most important properties of these materials are high strength and 
lightness, smooth and continuous transition in properties in one or more directions. These properties are especially important in 
the case of multilayer or sandwich plates and shells. Therefore, many scientists developed models and methods to investigate static 
and dynamic behavior of such objects. In particular, the study of FGM porous sandwich plates with different planform, boundary 
conditions, and constituents of the FGM, varied arrangement and thickness of the layers is an actual problem. A detailed review of 
the publications discussing the bending, vibration and stability of the FGM sandwich plates and shells is presented in papers [1-4] 
and others. Many theories and methods have been developed to investigate the static and dynamic behavior of FGM plates and 
shells. We can name among them the method of Rayleigh-Ritz, Galerkin method, finite difference method, finite element method, 
differential quadrature and differential transformations methods, boundary integral equations method, collocation method, etc.  

To study vibration of the FGM sandwich plates, the higher-order shear deformation theory (HSDT) and many of its modifications 
are used [5-12]. It is important that these theories do not require shear correction factor. The first-order shear deformation theory 
(FSDT) is the simplest and it gives acceptable results for moderately thick plates, so a lot of scientists have used this theory to study 
the vibrations of FG plates [13-17]. One of the disadvantages of this theory is a difficulty in determining the shear correction factor, 
which depends on material, plate geometry, boundary conditions, etc. That is why some approaches were proposed to improve the 
accuracy and efficiency of this theory. In papers [4, 13], it was proposed to improve the FSDT by introducing a new shear distributed 
function. Due to a certain choice of this function, the shear strain changes according to the parabolic law over the thickness and 
equals zero on the face surfaces. Thai et al. [15, 16] improved the FSDT by division of the transverse displacement into bending and 
shear part. Modified FSDT was considered by Amabili [17] to research the nonlinear vibration and stability of the laminated shells. 
To analyze the bending and free vibration of FG plates Tan-Van et al. [18] applied a simple FSDT combined with a mesh free method.  

During the fabrication process of FGMs, such features as porosity often appear. The presence of porosity reduces the mass of 
the structures, and besides, the porosity distribution through the thickness can improve the strength of the structures. FG structures 
with porosity have been widely applied in many fields of engineering to reduce the weight of equipment and increase heat 
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resistance. That is why a lot of scientists have been focused on the investigation of the static and dynamic response of the sandwich 
FG plates with porosity. Let us analyze the works considering the vibration of the FGM porous sandwich plates. Vinh and Huy [19] 
presented some review of publications about this problem. Free vibration analysis of the porous rectangular plates was carried out 
in papers [19-23]. Vinh and Huy [19] developed a finite element model based on a new hyperbolic shear deformation theory. 
Numerical results for deflection, frequencies, critical loads of rectangular plates with different types of boundary conditions and 
different ways of porosity distribution are presented. Shahsavari et al. [20] developed a new quasi-3D hyperbolic theory for the free 
vibration of FG plates with porosities resting on elastic foundations. Zenkour [21] studied the bending responses of the FG porous 
single-layered and sandwich thick rectangular plates according to a quasi-3D shear deformation theory. Daikh and Zencour [22] 
analyzed the free vibration and buckling of porous FG sandwich rectangular simply supported plates. Simple higher-order shear 
deformation theory was suggested to solve this problem. There were considered four types of porosity distribution based on the 
sigmoid and power functions. Xiang et al. [23] studied the vibration of sandwich plate with functionally graded face and 
homogeneous core. Gupta and Talha [24] investigated the effect of porosity on the free vibration response of FGM plates in a thermal 
environment. Akbas [25] examined different mechanical behaviors of the FG porous plates, beams, and nanorods. Wu et al. [26] used 
finite element method to study the free and forced vibrations of the FG porous structures. Chen et al. [27] dealt with the buckling 
and bending of analyses of the FG porous plate using the Chebyshev-Ritz method. Rahmani et al. [28] investigated the vibration 
behavior of two types of porous FG circular sandwich plates applying a modified higher order sandwich plate theory. Zhang et al. 
[29] presented the free vibration and damping analysis of the FG porous sandwich plates based on a modified Fourier-Ritz method. 
To investigate the bending, free vibration, and buckling of the FGSPs plates. Hadji and Avcar [30] considered the square FG sandwich 
porous plates with various boundary conditions and three different types of porosity distribution using hyperbolic shear 
displacement theory. Authors of the papers [31, 32] studied free vibrations of the imperfect FGM sandwich plates on two parameters 
elastic foundation. Hadji and Avcar et al. [31] have applied third shear deformation theory (TSDT). They have obtained analytical 
solution for simply supported square plate and investigated effect of the different mechanical parameters on fundamental 
frequency. Sobhani and Avcar [32] have explored imperfect graphene nanoplatelet reinforced nanocomposite conical and cylindrical 
shell, and also annular plate resting on Winkler-Pasternak foundations. To formulate the problem, the authors used FSDT. 
Discretization of the motion equations was carried out using Generalized Differential Quadrature Method. 

By the literature reviewed, the authors made the following conclusion. A lot of research papers are available on the vibration 
and static analysis of the FGM sandwich plates. However, literature on FG sandwich porous plate is limited. Simply supported 
rectangular plate is mostly studied. Especially, the authors have not found any paper where plates with an arbitrary planform and 
different boundary conditions were analyzed. 

In this work, we propose to use the variational Rayleigh-Ritz method together with the R-functions theory (RFM) [33, 34]. This is 
a numerical-analytical method that allows one to construct the systems of the admissible functions that satisfy all or only 
kinematic boundary conditions, including mixed ones in case of an arbitrary shape of the plate. As a result, a desired solution is 
presented in an analytical form. This result is significant for a solution of nonlinear vibration problems. 

Earlier, RFM was applied to solve many actual problems [35-42] connected with the vibration and stability of the FGM perfect 
plates and shallow shells. In this paper, RFM is used for the first time to study vibration of FG sandwich porous plates with an 
arbitrary planform, power-law, and sigmoid porosities distribution. The first-order shear deformation theory is applied with given 
shear cofactor. 

2. Mathematical Formulation of the Problem 

We consider a sandwich plate with an arbitrary planform as shown in Fig. 1. It is assumed that plate consists of three layers. 
The upper and lower (face) layers are fabricated from functionally graded materials (FGM) and middle layer (core) is isotropic. The 
face layers are graded from metal to ceramic. The core is made of ceramic. 

Volume fraction � (�)(�), (� = 1,2,3) for power-law (P-law) can be defined as [22]: 

⎩{{
{{⎨
{{{
{⎧� (1)(�) = ⎝⎜⎛

� + ℎ2ℎ1 + ℎ2⎠⎟⎞
�
,   − ℎ2 ≤ � ≤ ℎ1,

� (2)(�) = 1,                   ℎ1 ≤ � ≤ ℎ2,
� (3)(�) = ⎝⎜⎛

� − ℎ2ℎ2 − ℎ2⎠⎟⎞
�
, ℎ2 ≤ � ≤ ℎ2 .

 (1) 

 

 

(a) 

  
(b) (c) 

Fig. 1. (a) The structure of functionally graded sandwich plate with (b) even and (c) linear-uneven porosity distributions. 
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Volume fraction of the layers for sigmoid–law (S-law) can be expressed as [22]: 

⎩{{
⎨{
{⎧� (1)(�) = 12 ⎝⎜⎛

� + ℎ2ℎ! + ℎ2⎠⎟⎞
�
,             − ℎ2 ≤ � ≤ ℎ!,

� (1)(�) = 1 − 12 ( � − ℎ1ℎ! + ℎ1)
� ,          ℎ! ≤ � ≤ ℎ1,

 

  � (2)(�) = 1                       ℎ1 ≤ � ≤ ℎ2, 

⎩{{
⎨{
{⎧� (3)(�) = 1 − 12 ( � − ℎ2ℎ� + ℎ2)

� ,           ℎ2 ≤ � ≤ ℎ�,
� (3)(�) = 12⎝⎜⎛

� − ℎ2ℎ� − ℎ2⎠⎟⎞
�
,                 ℎ� ≤ � ≤ ℎ2 . 

(2) 

The values ℎ! and ℎ� denote the middle of the lower and upper layers respectively and have the following form: 

ℎ! = 12 (ℎ1 − ℎ2) , ℎ� = 12(ℎ2 + ℎ2).  

In this study, the effective material properties of FGMs are calculated for two models of the porosity distribution (even and 
linear- uneven) [22], which are independent for each layer.  

The effective material properties for imperfect FGM with even porosities are defined as: 

⎩{{
⎨{
{⎧$ (1)(�) = $! + ($% − $!)� (1)(�) − &2 ($% + $!),

$ (2)(�) = $! + ($% − $!)� (2)(�),                    
$ (3)(�) = $! + ($% − $!)� (3)(�) − &2 ($% + $!).

 (3) 

The effective material properties for imperfect FGM with linear-uneven porosities are defined as: 

⎩{{
{{⎨
{{{
{⎧ $ (1)(�) = $! + ($% − $!)� (1)(�) − &2 ($% + $!)⎝⎜⎛1 + � − ℎ1ℎ2 + ℎ1⎠⎟⎞,

$ (2)(�) = $! + ($% − $!)� (2)(�),                                        
$ (3)(�) = $! + ($% − $!)� (3)(�) − &2 ($% + $!)⎝⎜⎛

� − ℎ2ℎ2 − ℎ2⎠⎟⎞.       
 (4) 

By FSDT [16, 43], the displacements ',  (,)  at any point in the plate are expressed as functions of the middle surface 
displacements '0, (0 and ) in the +,, +- and +� directions and the independent rotations ./, .0 of the transverse normal to 

middle surface about the +- and +, axes, respectively: 

'(,, -, �, 1) = '0(,, -, 1) + �./(,, -, 1), 
((,, -, �, 1) = (0(,, -, 1) + �.0(,, -, 1), 

)(,, -, �, 1) = )0(,, -, 1). 
(5) 

The strain components {3} = {311, 322, 312}5  and {60} = {313, 323}5  are expressed as {3} = {30} + �{7}, where: 

{30} = {'0,/,    (0,0,    '0,0 + (0,/}5 , (6) 

{7} = {;/,/,    ;0,0,     ;/,0 + ;0,/}5 . (7) 

Comma defines the differentiation of the function with respect to argument that follows for it.  
The total in plane resultant force < = (<11,<22,<12)5 ,  the total resultant moment = = (=11,=22,=12)5   and the transverse 

force resultants > = (>/,>0)5  are given by: 

{<} = [B]{3} + [D]{7},     {=} = [D]{3} + [E]{7},     {>} = FG2B66{313, 323}5 ,  (8) 

where FG2 denotes the shear correction factor. In this paper, we take ��
�=5/6. Note that the elements BLM, DLM, ELM of the matrices 

[A], [B] and [D] in relations (8) are calculated by:  

BLM = ∑ ∫ >LM(P)Q�RS+1RS
3P=1 ,     DLM = ∑ ∫ >LM(P)�Q�RS+1RS

3P=1 ,     ELM = ∑ ∫ >LM(P)�2Q�RS+1RS
3P=1 ,  (9) 

where �1 = −ℎ 2⁄ , �2 = ℎ1, �3 = ℎ2, �4 = ℎ/2 . The general thickness ℎ  is a constant value. The values ℎ1  and ℎ2  determine the 

position of the lower and upper borders of the middle layer (core). The values >LM(P)(W, X = 1,2,6)  are defined by the following 

expressions: 

>11(P) = >22(P) = Y(P)
1 − (Z(P))2 ,     >12(P) = Z(P)Y(P)

1 − (Z(P))2 , >66(P) = Y(P)
2(1 + Z(P)). (10) 

Here, Y(P), Z(P) are the Young’s modulus and Poisson’s ratio of the corresponding layer, respectively.  
Let us present the analytical expression of elements BLM, DLM, ELM for two cases of the porosity distribution. For a short record, 

we introduce the following auxiliary designations: 

Y%! = Y% − Y!, Y%!(G) = &Y% + Y!2 ,   ℎ% = ℎ2 − ℎ1, B[1 = ℎ1 + ℎ2 , B[ 2 = ℎ2 −ℎ2.   
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Then, the following analytical expressions can be presented: 

B11(1,2) = 11 − Z2 (B11(%]!) − Y%!(G) $11(1,2)), D11(1,2) = 11 − Z2 (D11(%]!) − Y%!(G) $12(1,2)), E11(1,2) = 11 − Z2 (E11(%]!) − Y%!(G) $13(1,2)).  (11) 

Here, the superscripts, (1,2) correspond to even (1) and linear-uneven (2) distribution of porosity. The expressions B11(%]!),   D11(%]!),
E11(%]!) are defined by different formulas for P-law and S-law porosity distributions as: 

P-law:  

B11(%]!) = B11(_`),      D11(%]!) = D11(_`),    E11(%]!) = E11(_`).  

where, 

B11(_`) = Y!ℎ + Y%! (ℎ + a ℎ%a + 1 ),      D11(_`) = Y%! (ℎ22 − ℎ122 + B[12 − B[22
a + 2 − ℎ(B[1 + B[2)2(a + 1) ),  

(12) 

E11(_`) = Y! ℎ3
12 + Y%! (B[13 − B[23

a + 3 − ℎ (B[12 + B[22)a + 2 + ℎ2(B[1 − B[2)4(a + 1) + ℎ23 − ℎ133 ). 
S-law: 

B11(%]!) = B11(_e),     D11(%]!) = D11(_e), E11(%]!) = E11(_e),  

where B11(_e), D11(_e), E11(_e) are: 

B11(_e) = Y!ℎ + 12 Y%!(ℎ + ℎ%),              D11(_e) = 12 Y%!(ℎ�2 − ℎ!2 ) + B[22 − B[12
2(a + 1)(a + 2), 

(13) 

E11(_e) = Y! ℎ3
12 + Y%! ⎝⎜⎛

ℎ�3 − ℎ!33 + B[22 (ℎ2 + ℎ2) − B[12 (ℎ1 − ℎ2)
4(a + 1)(a + 2) ⎠⎟⎞. 

The coefficients $11(1,2), $12(1,2), $13(1,2) for P-law and S-law cases have the same form. Even distribution of the porosity takes the 
form: 

$11(1) = (ℎ − ℎ%), $12(1) = (ℎ12 − ℎ222 ),     $13(1) = (ℎ3
12 − ℎ23 − ℎ133 ), (14) 

The linear-uneven distribution of the porosity can be defined as: 

$11(2) = 12 (ℎ − ℎ%), $12(2) = (B[12 − B[22
3 − 14ℎ(ℎ1 + ℎ2)), 

$13(2) = (13(ℎ3
8 + ℎ13) − B[13 + B[23

4 + 2ℎ1 B[12 − ℎ B[22
3 − 12(B[1 ℎ12 + B[2 ℎ2

4 )). 
(15) 

The values B12, B66, D12, D66, E12, E66 are defined as: 

B12 = ZB11,     B22 = B11, B66 = 1 − Z2 B11, 
D12 = ZD11,     D22 = D11,     D66 = 1 − Z2 D11, 
E12 = ZE11,     E22 = E11, E66 = 1 − Z2 E11. 

(16) 

The equations of motions are presented below: 

B11(i11' + i12() + D11(i14./ + i15.0) = k0 l2'l12 + k1 l2./l12 , (17) 

B11(i21' + i22() + D11(i24./ + i25.0) = k0 l2(l12 + k1
l2.0l12 , (18) 

i33) + i34./ + i35.0 = k0 l2)l12 , (19) 

D11(i41' + i42() + i43) + (E11i44 − FGB66)./ + (E11i45 − FGB66).0 = k1 l2'l12 + k2 l2./l12 , (20) 

D11(i51' + i52() + i53) + E11i54./ + (E11i55 − FGB66).0 = k1 l2(l12 + k2
l2.0l12 . (21) 

The linear operators have the following forms: 

i11 = i14 = i41 = i44 = 11 − Z2
l2
l,2 + 12(1 + Z) l2

l-2,  (22) 
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i22 = i25 = i52 = i55 = 11 − Z2
l2
l-2 + 12(1 + Z) l2

l,2 ,          i33 = FGB66 ( l2
l,2 + l2

l-2), (23) 

i12 = i21 = i24 = i42 = i45 = i54 = i15 = i51 = 12(1 − Z) l2
l,l-,  (24) 

i34 = FGB66 ll, ,   i35 = FGB66 ll- ,   i43 = −i34,   i53 = −i35.  (25) 

The cofactors k0, k1, k2 in equations (17) to (21), are expressed by:  

(k0, k1, k2) = ∑∫ (o(P))(1, �, �2)RS+1

RS

3
P=1

Q�.  (26) 

The mass density o(P) of the r-th layer is calculated by formulas (3) and (4). The expressions of the values k0, k1, k2 is carried 
out by the following analytical expressions:  

P-law: 

k0(1,2) = (kB11(%0!) − o%!(G) $11(1,2)),       k1(1,2) = (kD11(%]!) − o%!(G) $12(1,2)),      k2(1,2) = (kE11(%]!) − o%!(G) $13(1,2)),  (27) 

where the expressions kB11(%]!),  kD11(%]!),  kE11(%]!) are defined as: 

P-law:  

kB11(%]!) = kB11(_`),     kD11(%]!) = kD11(_`), kE11(%]!) = kE11(_`),  

where, 

kB11(_`) = o!ℎ + o%! (ℎ + a ℎ%a + 1 ), 
kD11(_`) = o%! (ℎ22 − ℎ122 + B[12 − B[22

a + 2 − ℎ(B[1 + B[2)2(a + 1) ), 
kE11(_`) = o! ℎ3

12 + o%! (B[13 − B[23
a + 3 − ℎ (B[12 + B[22)a + 2 + ℎ2(B[1 − B[2)4(a + 1) + ℎ23 − ℎ133 ). 

(28) 

S-law: 

kB11(%]!) = kB11(_e),     kD11(%]!) = kD11(_e),    kE11(%]!) = kE11(_e).  

where the terms kB11(_e), kD11(_e), kE11(_e) are described as: 

kB11(_e) = o!ℎ + 12o%!(ℎ + ℎ%), kD11(_e) = 12o%!(ℎ�2 − ℎ!2 ) + B[22 − B[12
2(a + 1)(a + 2), 

kE11(_e) = o! ℎ3
12 + o%! ⎝⎜⎛

ℎ�3 − ℎ!33 + B[22 (ℎ2 + ℎ2) − B[12 (ℎ1 − ℎ2)
4(a + 1)(a + 2) ⎠⎟⎞. 

(29) 

The expressions $11(1,2), $12(1,2), $13(1,2) in formulas (27) have the form (14) and (15). 

3. Method of Solution 

It is known that the Rayleigh-Ritz method is one of the effective methods for solving problems of vibrations of plates and shells. 
However, the construction of admissible functions is a main difficulty that arises when this method is supposed to be applied for 
the case of a complex geometry. This problem can be solved by the R-functions theory, since it allows to construct the necessary 
sequences of admissible functions in case of the complex domain and different boundary conditions. Note that these admissible 
functions satisfy exactly the given boundary conditions. As a result, the desired solution is presented in an analytical form. This is 
a great advantage of this method (RFM) in comparison with other numerical methods. The corresponding set of admissible 
functions is constructed on the base of the so-called solution structures [33-34]. To use the Rayleigh-Ritz method let us present 
variational formulation of the given problem. We should find the extremum of the following functional: 

П = p − q, (30) 

where the strain energy p , and the kinetic energy q  in the given case are defined by following expressions: 

p = ∫(<11311(0) + <22322(0) + <12612(0) + =11711 + =22722 + =12712 + >1613 + >2623)Qr
s

, (31) 

q = 12 ∫ (k0 ((l'0l1 )2 + (l(0l1 )2 + (l)0l1 )2)
s

+ 2k1 (l./l1 l'0l1 + l.0l1 l(0l1 ) + k2 ((l./l1 )2 + (l.0l1 )2)⎠⎟
⎞Qr. (32) 

The minimization of functional (30) is performed using the Ritz method. The sequence of coordinate functions in case of the 
complex planform of the plate is constructed by the R-functions theory [35, 38]. 
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Table 1. Comparison of non-dimensional frequencies for square simply supported plate of FGM material Bt2 +3/Bt,  a = 2, ℎ 2u⁄ = 0.1. 

& Method 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1 

P-FGM (imperfect I) 

0 
[22] 1.0615 1.1885 1.3024 1.1225 1.2439 1.1653 

RFM 1.0584 1.1857 1.3002 1.1195 1.2415 1.1627 

0.1 
[22] 0.9826 1.1207 1.2493 1.0471 1.1819 1.0935 

RFM 0.9885 1.1271 1.2549 1.0531 1.1880 1.1007 

0.2 
[22] 0.8787 1.0420 1.1915 1.9549 1.1105 1.0056 

RFM 0.8913 1.0551 1.2026 0.9684 1.1228 1.0188 

P-FGM (imperfect II) 

0.1 
[22] 1.0556 1.1708 1.2842 1.1084 1.2270 1.1512 

RFM 1.0565 1.1725 1.2864 1.0941 1.2277 1.1512 

0.2 
[22] 1.0521 1.1526 1.2658 1.0939 1.2097 1.1376 

RFM 1.0544 1.1581 1.2717 1.0984 1.2126 1.1383 

S-FGM (imperfect I) 

0 
[22] 1.1617 1.3119 1.4155 1.2427 1.3594 1.2797 

RFM 1.1588 1.3096 1.4137 1.2401 1.3573 1.2774 

0.1 
[22] 1.1039 1.2595 1.3718 1.1862 1.3113 1.2262 

RFM 1.1105 1.2676 1.3792 1.1942 1.3189 1.2339 

0.2 
[22] 1.0315 1.2011 1.3256 1.1208 1.2580 1.1632 

RFM 1.0467 1.2173 1.3399 1.1371 1.2732 1.1797 

S-FGM (imperfect II) 

0.1 
[22] 1.1615 1.2992 1.4001 1.2340 1.3470 1.2712 

RFM 1.1641 1.3029 1.4046 1.2374 1.3502 1.2740 

0.2 
[22] 1.1620 1.2864 1.3859 1.2255 1.3346 1.2628 

RFM 1.1699 1.2957 1.3948 1.2343 1.3424 1.2702 

4. Numerical Results 

In order to verify the accuracy of the proposed method, we solve the test problem for square simply-supported three-layer plate 
with side 2u. The bottom and top layers are made of alloy Bt2 +3/Bt and the core is made of ceramics. Thickness of the layers and 
volume fraction index p vary. The material properties of the FGM mixture Bt2 +3/Bt are given by [19-23]: 

Bt:                Y! = 70y$B,         Z! = 0.3,        o! = 2707z{/|3, 
Bt2 +3:        Y% = 380y$B,      Z% = 0.3,      o% = 3800z{/|3. (33) 

The total thickness of the plate is equal to ℎ 2u⁄ = 0.1. The boundary conditions are given by the next formulas: 

) = ( = .0 = <11 = =11 = 0 at , = ±u, 

) = ' = ./ = <22 = =22 = 0 at - = ±u. 
 

This problem has been solved in [22] using a simple higher-order shear deformation theory. Table 1 demonstrates a comparison 
of the calculated dimensionless frequency: 

~ = �(2u)2
ℎ √o0Y0, (34) 

with results reported by [22] in relation with the geometrical ratios (ℎ� − ℎ% − ℎ�). In formula (34), it is assumed that Y0 = 1 y$u, o0 = 1 z{ |3⁄ . 
Comparison of data in Table 1 indicates a good agreement between the results obtained and those known in the literature. 

  

(a) (b) 

Fig. 2. Effect of volume fraction index p on non-dimensional frequency of FG sandwich simply supported porous plate: (a) P-I; (b) S-I; (c) P-II; (d) S-II. 
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(c) (d) 

Fig. 2. Continued. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 3. Effect of volume fraction index p on non-dimensional frequency of FG porous sandwich clamped square plate: (a) P-I; (b) S-I; (c) P-II; (d) S-II. 

 

Figures 2 and 3 show the influence of the volume fraction index p on non–dimensional frequency of FG sandwich porous square 
plate. Results for two models P-FGM and S-FGM for simply supported (SS, Fig. 2a, b, c, d)) and clamped (CL, Fig. 3a, b, c, d) are 
presented. The porosity coefficient is taken as & = 0.2. The different lay-up schemes are studied. 

It is seen that the frequencies decrease with increasing volume fraction index p for all cases under consideration because the 
stiffness of the FG sandwich plate is reduced. The greatest value of the frequencies is observed for lay-up scheme 1-2-1 for two 
cases of the porosity distribution P-FGM (P-I, P-II) and S-FGM (S-I, S-II) and both the boundary conditions. Obviously, in this case, 
the proportion of ceramics predominates, and the rigidity of the plate increases. With a uniform distribution of porosity (P-I, S-I), 
the frequency values are less than with an uneven (P-II, S-II) distribution for all lay-up schemes. This is due to the fact that a large 
area is occupied by voids with a uniform distribution and the rigidity of the plate decreases. 

Let us consider the FG sandwich porous plate with complex planform as shown in Fig. 4. 
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Fig. 4. Sandwich FGM porous plate of complex geometry and its plan form. 

Suppose that the plate is clamped along the whole boundary, including the hole. As for the previous problems, it is assumed 
that the effective properties of FGM to vary through the thickness according to the power and sigmoid laws. Two types of porosity 
distribution (even and linear-uneven) are considered.  

The geometric parameters of the given plate are as follows:  

  ℎ2u =  0.1;    �u = 1;    u1u = 0.45;     �1u = 0.3; 
�2u = 0.7;       �12u = 0.1;     �2/2u = 0.2828.   

To use the variational Rayleigh-Ritz method we should construct the sequence of the admissible functions. Applying the R-
functions theory [33, 34], first let us construct the corresponding solution structures, which satisfy the given boundary conditions: 

)(,, -) = 0,      '(,, -) = 0,      ((,, -) = 0,     ./(,, -) = 0,    .0(,, -) = 0. (35) 

Obviously, the solution structures can be taken in the following form: 

) = ��1,  ' = ��2,  ( = ��3, ./ = ��4, .0 = ��5,  (36) 

where �L,  W = 1,5 are undetermined components of the solution structures. They are expanded in a power series. In formula (36), � = 0 is an equation of the whole border. The function �(,, -) is constructed by the R-functions theory and have the following form: 

� = (�1 ∨0 �2) ∧0 (�3 ∧0 (�4 ∧0 �5)) ∧0 (�6 ∧ �7).  

The signs ∧0 and ∨0 define the R-operators: R-conjunction and R-disjunction relatively [33]. Functions �L,  W = 1,7 are defined 
as: 

�1 = (u12 − ,2)2u1 ≥ 0,       �2 = (�12 − -2)2�1 ≥ 0,       �3 = (,2 + -2 − �12)2�1 ≥ 0, 
�4 = (,2 + (- − �)2 − �22)2�2 ≥ 0,      �5 = (,2 + (- + �1)2 − �22)2�2 ≥ 0, 

�6 = (u2 − ,2)2u ≥ 0, �7 = (�2 − -2)/2� ≥ 0. 
 

The effect of volume fraction exponent p on non-dimensional fundamental frequency ~ = � (2u)2√o0/Y0/ℎ  for FG Bt2 +3/Bt  plates with sigmoid porosity distribution is shown in Table 2 (S-I, even case) and Table 3 (S-II, linear- uneven case). 

Table 2. Non-dimensional fundamental frequency of vibration of clamped plates with ℎ 2u⁄ = 0.1, Bt2 +3/Bt, & = 0.2. 

p 
S-I, Al2O3/Al, & = 0.2 

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1 

0 9.5334 9.6685 9.8711 9.5975 9.8221 9.7202 

0.5 8.6490 9.1495 9.5751 8.9051 9.3755 9.0848 

1 8.1282 8.8916 9.4372 8.5368 9.1551 8.7459 

2 7.5926 8.6562 9.3167 8.1856 8.9555 8.4223 

5 7.1318 8.4750 9.2272 7.9047 8.8028 8.1634 

10 6.9918 8.4235 9.2023 7.8230 8.7596 8.0881 

20 6.9435 8.4062 9.1940 7.7953 8.7450 8.0625 

Table 3. Non-dimensional fundamental frequency of vibration of clamped plates with ℎ 2u⁄ = 0.1, Bt2 +3/Bt, & = 0.2. 

p 
S-II, Al2O3/Al, & = 0.2 

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1 

0 9.7047 9.8532 10.026 9.7862 9.9746 9.8729 

0.5 9.0032 9.4182 9.7667 9.2201 9.5948 9.3519 

1 8.6111 9.2051 9.6466 8.9278 9.4104 9.0822 

2 8.2281 9.0128 9.5421 8.6548 9.2448 8.8296 

5 7.9041 8.8663 9.4648 8.4405 9.1193 8.6313 

10 7.8094 8.8249 9.4433 8.3789 9.0839 8.5743 

20 7.7771 8.8109 9.4361 8.3581 9.072 8.5551 
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(a) (b) 

Fig. 5. The variation of the non-dimensionless fundamental frequency of FG plate versus power-law index: (a) models P-I; (b) models P-II. 

 

  

(a) (b) 

Fig. 6. Effect of the porosity coefficient α on natural frequencies of the clamped FGM Al2O3/Al sandwich porous plate with complex planform:  
(a) models P-I, S-I; (b) models P-II, S-II. 

 

Comparison of Table 2 and Table 3 shows that for both types of the sigmoid porosity distribution, the natural frequencies 
decrease while the power-law index p increases for the considered lay-up schemes. The non-dimensional frequencies of the plates 
with lay-up 1-2-1 scheme are greater than corresponding frequencies of the plates with another lay-up schemes in both cases of 
the porosity distribution. For lay-up scheme 1-0-1, we have values of the non-dimensional frequencies less than those obtained 
from other lay-up schemes. This is explained by the lower rigidity of the plate with lay-up scheme 1 - 0 - 1. 

The analogous results for the power-law FG sandwich plates are shown in Fig. 5a (P-I distribution) and Fig. 5b (P-II distribution). 
Behavior of the FGM sandwich plates for considered law of porosity is similar to S-law of porosity. But the frequencies for the law 
(P-I, II) porosity distribution are slightly greater than for the sigmoid law (S-I, II). 

The variations of non-dimensional frequency for P, S-FGM plate versus parameter porosity α for clamped porous plate (Fig. 4) 
made of FGM Bt2 +3/Bt and fixed value of the volume fraction index p = 2 are shown in Fig. 6 (a, b). There are considered the 
different lay-up schemes of layers (1-1-1; 1-2-1; 2- 1- 2).  

From the illustrated results, it follows that the increase of the porosity coefficient produced the decrease in the frequencies for 
both laws of the porosity distributions. But in case linear–uneven imperfect FGM sandwich plate (P-II, S-II) this decrease is 
insignificant. 

The effect of different distribution porosities models on natural frequencies is presented in Fig. 6a (models P-I, S-I) and in Fig. 
6b (models P-II, S-II). The increase of porosity coefficient α induces the decrease in the value of natural frequencies for all lay-up 
schemes of the layers. It is seen that influence of the porosity coefficient α on frequencies is more significant for an even distribution 
of porosity than for linear-uneven distribution.  

The influence of the porosity coefficient α on natural frequencies of the plates made of alloy Si3N4/Sus304 and ZrO2/Ti-6Al-4V 
with fixed arrangement of layers 2-1-2 and volume fraction index p = 2 is shown in Fig. 7a and Fig. 7b. 
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(a) (b) 

Fig. 7. Effect of the porosity coefficient α on natural frequencies of the clamped sandwich plate for alloys: (a) Si3N4/Sus304; (b) ZrO2/Ti-6Al-4V. 

 

  

(a) (b) 

Fig. 8. Comparison of the behavior of the natural frequencies for various types of alloys versus porosity coefficient α: (a) P-I, S-I; (b) P-II, S-II. 

 

The material properties of these materials were taken as follows [42]: 

[W3<4:     Y = 322.27Y0,    o = 2370o0;     [p[304:Y = 207.78Y0,    o = 8166o0; 
��+2:     Y = 162Y0,  o = 3000o0;    qW − 6Bt − 4�Y = 105.69Y0,  o = 4427o0;    

where Y0 = 1 y$u, o0 = 1 z{/|3. 
Qualitatively, the behavior of natural frequencies with increasing the porosity coefficient α is the same for both materials. 

However, the frequency values for alloy Si3N4/SUS304  are greater than the corresponding values of the frequencies for alloy ZrO2/Ti-6Al-4V. It is interesting to note that for both these materials in case of sigmoid linear-uneven porosity model the natural 
frequencies increase slightly if the porosity coefficient α decreases. 

In Figs. 8a and 8b, the effect of the porosity coefficient α on natural frequencies of the clamped sandwich plate (2-1-2) for 
various alloys Al2 O3/Al, Si3N4/SUS304 and ZrO2/Ti-6Al-4V and different porosity models are presented. It should be noted that 
for all considered FGM materials, the porosity coefficient mainly affects the frequencies for the uniform distribution model for the 
power-law and sigmoid FGM plate. 

5. Conclusion 

Free vibration analysis of sandwich FGM porous plates with a complex planform was carried out by using the first-order shear 
deformation theory. The various models for power and sigmoid-law of the porosity distribution were considered and analytical 
expressions for calculating the components of the stiffness matrix were obtained. The R-functions theory together with the 
Rayleigh-Ritz method was used for the first time to solve such a class of the problem. Validation of the proposed method was 
confirmed by comparison of the obtained results for rectangular plates with known ones. New results were obtained for natural 
frequencies of the clamped porous plate with external cutouts and an internal hole. These results have been carefully studied for 
various types of FGM materials. The effect of the volume fraction index on natural frequencies was studied for various models of 
porosity distribution in sandwich plates. The numerical results showed that: 

1) The natural frequencies decrease if volume fraction index increases for all cases; 
2) The increase in the porosity coefficient causes the decrease in frequencies for all considered types of FGM and lay-up 

schemes, except for option S-II (2-1-2). There is a slight increase in frequencies with increasing porosity; 
3) The effect of the porosity coefficient is more significant for even distribution of plate porosity than for linear-uneven one. 
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