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Abstract. We define a new class of linear canonical wavelet transform (LCWT) and study its properties like inner product relation, 
reconstruction formula and also characterize its range. We obtain Donoho-Stark’s uncertainty principle for the LCWT and give a 
lower bound for the measure of its essential support. We also give the Shapiro’s mean dispersion theorem for the proposed 
LCWT. 
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1. Introduction 

We first mention below some important abbreviations that will be used throughout this paper. 

List of Abbreviations 

FT Fourier transform 
FrFT Fractional Fourier transform 
LCT Linear canonical transform 
WT Wavelet transform 
FrWT Fractional wavelet transform 
WLCT Windowed linear canonical transform 
LCWT Linear canonical wavelet transform 
ONS Orthonormal sequence 
RKHS Reproducing kernel Hilbert Space 
UP Uncertainty principle 
 

As a generalization of FT [1] and FrFT [2, 3, 4], LCT is a four-parameter family of linear integral transform proposed by 
Mohinsky and Quesne [5] and is considered as the important tool for non-stationary signal processing. Because of the extra 
degrees of freedom, as compared to the FT and FrFT, its application can be found in a number of fields, including signal 
separation [6], signal reconstruction [7], filter designing [8] and many more. Recently, in [9], the authors studied octonion linear 
canonical transform. For more detail on LCT and its application, we refer the reader to work done by Healy et al. [10]. 

Even though the wavelet transform (WT) [11] is a potential tool for the analysis of non-stationary signals, it is incompetent for 
analyzing the signals with not well concentrated energy in the time-frequency plane, for example, the chirp-like signal, which is 
ubiquitous in nature [12]. On the other hand, for the signal whose energy in the frequency domain is not well concentrated, LCT 
is an appropriate tool. However, because of its global kernel, it is not capable of indicating the time localization of the LCT 
spectral components, and thus, LCT is not suitable for processing the non-stationary signal whose LCT spectral characteristics 
change with time. The WLCT [13], non-separable LCWT [14] is thus proposed to overcome this drawback. In this case, the original 
signal is first segmented with a time localization window, followed by performing the LCT spectral analysis for these segments. 
WLCT is capable of offering a joint signal representation in both the time and LCT domains, but its fixed window width limits the 
practical application; it is impossible to provide good time resolution and spectral resolution simultaneously. 

Thus, to circumvent these limitations of LCT, WT, and WLCT, we propose a novel LCWT. Wei et al. [15] and Guo et al. [16] 
generalized the FrWT, studied in [17], to the LCWT. Wei et al. [15] studied its resolution in time and linear canonical domains, and 
Guo et al. [16] studied its properties on Sobolev spaces. Dai et al. [12] gave a new definition of the FrWT (also see [18]), which we 
generalize in the context of the LCT and study the associated UP. 
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In Harmonic analysis, the UP is a relation between a function and its FT, which says that a function (non-zero) and its FT 
cannot be very well localized simultaneously. This general fact is interpreted in several different ways; for this, we refer the 
reader to a survey paper by Folland and Sitaram [19]. Shapiro, in [20], studied the localization for an ONS and proved that if an 

ONS {��} in �2(ℝ) and the sequence of their FT { ��̂} are such that their means and dispersions are uniformly bounded, then {��} 
is finite. Jaming and Powell [21] proved a quantitative version of Shapiro’s theorem, which says that for an ONS {��} in �2(ℝ) and 
� ∈ ℕ, 

∑(‖���‖�2(ℝ )2 + ∥���̂∥�2(ℝ )2 ) ≥�

�=1
(� + 1)2

2� .     

A multivariable quantitative version of Shapiro’s theorem for generalized dispersion was proved by Malinnikova [22]. It states 
that if {��} be an ONS in �2(ℝ!), � ∈ ℕ and # > 0 then ∃ '(,! for which: 

∑(∥|�|(2��∥�2(ℝ. )
2 + ∥|�|(2��̂∥�2(ℝ. )

2 ) ≥�

�=1
 '(,!�1+ (2!.  

Recently, in this direction Shapiro’s mean dispersion theorem has been proved for many integral transforms like short-time 
FT [23], WT [24], Hankel WT [25], Hankel Stockwell transform [26], Shearlet transform [27], Windowed LCT [28], etc. The main 
objectives of this paper are as follows: 

(i) To define a novel time-frequency analyzing tool, namely LCWT, which generalizes the FrWT studied in [12] in the context 
of LCT, and study some of its basic properties along with the inner product relation, reconstruction formula and also 
characterize its range. To the best of our knowledge, this LCWT has not been analyzed and does not exist in the literature. 

(ii) To study the time-LCT frequency analysis and the associated constant Q−factor. 
(iii) To establish an UP for the LCWT for a finite energy signal. The UP for the LCWT can be derived from the UP of the LCT 

following the strategy adopted by Wilczok [29] and Verma et al. [30] while deriving the UP for the WT and the FrWT 
respectively. Similar UP has been introduced for several integral transforms like fractional WT [31], non-isotropic angular 
Stockwell transform [32], etc. However, we are interested in proposing an uncertainty principle directly for the LCWT 
without using the UP associated with LCT. In this regard, we establish the Donoho-Stark’s UP for the LCWT, which in turn 
provides a lower bound for the measure of essential support of the LCWT. See also [13, 33], for similar results in the case 
of other integral transforms. 

(iv) To study the Shapiro’s mean dispersion theorem for the LCWT which gives the uncertainty principle for the orthonormal 
sequences. 

The paper is arranged as follows. In section 2, we recall the definition of LCT and some of its properties. In section 3, we 
define LCWT and study some of its basic properties, including inner product relation, reconstruction formula, and also 
characterize its range. Donoho-Stark’s UP for the proposed LCWT is studied in section 4. Section 5 is devoted to Shapiro’s mean 
dispersion theorem for LCWT. Finally, in section 6, we conclude our paper. 

2. Preliminaries 

We briefly recall the definition of LCT and its important properties that we will be using in the sequel. 
Definition 2. 1. The LCT of 1 ∈ 23(ℝ) with respect to a matrix parameter 4 = [6 78 9] such that 6,7, 8,9 ∈ ℝ and 69 −

78 = <, is defined as: 

(ℒ>?)(�) =
⎩{⎨
{⎧∫?(�)E> (�, �)

ℝ
F�, G ≠ 0

√J KL2MNO2?(J�), G = 0,
  

where E>(�, �) is a kernel given by: 

E> (�, �) = 1√2�PG KL2(QRS2−2ROS+NRO2), � ∈ ℝ. (1) 

Among several important properties of the LCT the important among them that will be used in the sequel is the Parseval’s 
formula: 

∫?(�)T(�)̅̅̅̅ ̅̅̅ ̅̅ ̅F�
ℝ

= ∫(ℒ>?)(�)(ℒ>T)(�)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅F�,
ℝ

 where ?, T ∈ �2(ℝ). (2) 

Particularly, if ? =  T, then we have the Plancherel’s formula: 

‖?‖�2(ℝ) = ‖ℒ>?‖�2(ℝ). (3) 

The LCTs satisfies the additive property, i.e.,  

ℒ>ℒ�? = ℒ>�?,where ? ∈ �2(ℝ), (4) 

and the inversion property, 

ℒ>−1(ℒ>?) = ?, (5) 

where, ]−1 denotes the inverse of ]. For convenience, we now denote the matrix ]  by (^,G; ',J). 
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3. LCWT 

We propose a new integral transform namely the LCWT. This definition generalizes the definition of FrWT defined by Dai et 
al. [12]. To the best of our knowledge this definition does not exist in the literature. We shall discuss some of its basic properties 
along with the inner product relation, reconstruction formula and also prove that its range is a RKHS.  

Motivated by the definition of the admissible wavelet pair in [34], we first define it in the setting of LCT domain. 
Definition 3. 1. A pair {`,a} of functions in 23(ℝ) is said to be an admissible linear canonical wavelet pair (ALCWP) if they 

satisfy the following admissibility condition: 

'b,c,> ≔ ∫ (ℒ>e)(�
f)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 

ℝ+
(ℒ>�)(�

f)Ff
f  (6) 

is a non-zero complex constant independent of � = ±1. In case e =  �, we denote 'b,b,>  by 'b,>  and the required admissibility 
condition reduces to: 

'b,> ≔ ∫ ∣ (ℒ>e)(�
f)∣2 

ℝ+

Ff
f  (7) 

is a positive constant independent of � = ±1. We call e ∈ �2(ℝ), satisfying equation (7), the admissible linear canonical wavelet 
(ALCW). 

For Example: Take ] = (^,G;', J) with G >  0 and: 

e(�) = (1 − �2)K−LQS2
2R −S22 . (8) 

Then, 

(ℒ>e)(�) = 1√2�PG KL2(NO2
R ) ∫(1 − �2)K−S22 K−LSOR

ℝ 
F�

= 1√PG (
�
G)2 K−L2(OR)2KL2(NO2

R ) .  

Thus using (7), we have: 

'b,> = 1
G ∫ ( �

Gf)4  K−( ORl)2

ℝ+
  Ff

f
= 1

2G,  

which is a positive constant independent of � = ±1. Thus, e given by (8) is an ALCW. In particular, for ] = (1, 12 ; 0, 1), the plot of 

real part of e is given in Fig. 1. 

Remark 3. 1. The function ` given by (8) is not the only example of ALCW. Many examples can be constructed from a given 
ALCW. If ` is an ALCW and `m ∈ 2n(ℝ) is any function satisfying (op`m)(q) = (op`m)(−q), then the function ` ⋆p  `m, where ⋆p  
denotes the linear canonical convolution [34] given by: 

(e ⋆>  e0)(�) = K−LQ2RS2 ([e(⋅)KLQ2R(⋅)2] ⋆ [e0(⋅)KLQ2R(⋅)2])(�)  

is also an ALCW. This can be concluded using the fact that (ℒ>(e ⋆>  e0))(�) = √2�PG (ℒ>e)(�) (ℒ>e0)(�)K−uv2wO2  and the function 
ℒ>e0 is bounded. 

 

 

Fig. 1. Real part of ALCW ` for 4 = (<, n3 ; x, <). 



A new class of linear canonical wavelet transform 67 
 

Journal of Applied and Computational Mechanics, Vol. 10, No. 1, (2024), 64-79 

We now give the definition of the novel LCWT. 
Definition 3. 2. Let 1 ∈ 23(ℝ), 4 = (6, 7;8, 9) be a matrix with 69 − 78 =  < and 7 ≠ x then we define the LCWT of 1   

with respect to 4  and an ALCW ` by: 

(yb>?)(f, z) = K−LQ2R{2 {?(�)KLQ2RS2 ⋆ √fe(−f�)K}Q2R(lS)2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅} (z), f ∈ ℝ+, z ∈ ℝ,  

where ⋆ denote the convolution given by: 

(? ⋆ T)(�) = ∫?(�)T(� − �)F�, � ∈ ℝ.
ℝ

  

Equivalently,  

(yb>?)(f, z) = K−LQ2R{2 ∫?(�)KLQ2RS2√fe(−f(z − �))K}Q2R(l(S−{))2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ℝ

F�
= ∫?(�)K−}Q2R{(S2−{2)−(l(S−{))2} √fe(f(� − z))̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ℝ
F�

= ∫?(�)el,{> (�)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ℝ

F�, 
 

where, with el,{(�) = √fe(f(� − z)): 
el,{> (�) = K−LQ2R{(S2−{2)−(l(S−{))2}el,{(�). (9) 

 
Thus, we have an equivalent definition of the LCWT as: 

(yb>?)(f, z) = ⟨?, el,{> ⟩�2(ℝ). (10) 

It should to be noted that depending on the different choice of the matrix �, we have different integral transform: 
1. For ] = (cos� , sin� ; − sin� , cos�), � ≠ ��, we obtain the FrWT as discussed in [12]. 
2. For ] = (0,1;−1,0) we obtain the traditional WT [35]. 
We now establish a fundamental relation between LCWT and the LCT. This relation will be useful in obtaining the resolution 

of time and linear canonical spectrum in the time-LCT-frequency plane and inner product relation associated with the LCWT. 
 

Proposition 3. 1. If ��p1 and op1 are respectively the LCWT and the LCT of 1 ∈ 23(ℝ). Then,  

ℒ> ((yb>?)(f,⋅)) (�) =
√−2�P G √f KLN2R(Ol)2(ℒ>?)(�)(ℒ>e)(�

f)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅. (11) 

Proof: Form the definition of the LCT and el,{> , it follows that: 

(ℒ>el,{> )(�) = ∫√f
ℝ

e(f(� − z)) √ 1
2�PG KL2{Q{2

R +QR(l(S−{))2−2ROS+NRO2}F�
= ∫√f

ℝ
e(f�) √ 1

2�PG KL2{Q{2
R +QR(lS)2− 2Rl(lS+l{)O+NRO2}F�

= 1√f∫e(�) √ 1
2�PG KL2(Q{2

R −2RO{+NRO2)KL2{Q{2
R −2RS(Ol)+NR(Ol)2}K−LN2R(Ol)2

ℝ
F�

= 1√fK−LN2R(Ol)2√2�PG ∫ e(�)E> (z, �)E> (�, �f)
ℝ 

F�. 
 

Therefore, we have: 

(ℒ>el,{> )(�) =
√2�PG√f K−LN2R(Ol)2E>(z, �)(ℒ>e)(�

f). (12) 

 
Using (2) in (10), we get: 

(yb>?)(f, z) = ⟨ℒ>?, ℒ>el,{> ⟩�2(ℝ).  

Using equation (12), we have: 

(yb>?)(f, z) =
√−2�P G √f ∫KLN2R(Ol)2(ℒ>?)(�)(ℒ>e)(�

f)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ E>−1(�, z)
ℝ

F�. (13) 

Therefore, it follows that: 
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ℒ> ((yb>?)(f,⋅)) (�) =
√−2�P G √f KLN2R(Ol)2(ℒ>?)(�)(ℒ>e)(�

f)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅.  

This completes the proof.  

3.1. Time-LCT frequency analysis 

From equation (10) it follows that if el,{>  is localized in the time domain, then the transform (yb>?)(f, z) gives the local 

information of the ?  in the time domain. Also, from equation (13), it follows that the LCWT can provide the local property of ?  in 
the linear canonical domain. Thus, the LCWT is capable of producing simultaneously the time-LCT frequency information and 
represent the signal in the time-LCT frequency domain. More precisely, if e and ℒ>e are window functions in time and linear 
canonical domain respectively with �b and �ℒ�b as centers and ∆b and ∆ℒ�b are radii, respectively. Then the center and radius 

of el,{>  are given respectively by: 

�[el,{> ] = 1
f�b + z,  

and 

�[el,{>  ] = 1
f�b.  

Similarly, the center and radius of window function (ℒ>e)(Ol) are given by: 

� [(ℒ>e)(�
f)] = f�ℒ�b  

and 

∆ [(ℒ>e)(�
f)] = f∆ℒ�b.  

 Thus, the Q-factor of the window function of the linear canonical transform domain is: 

� = ∆ℒ�b�ℒ�b 
,  

which is independent of the scaling parameter f for a given parameter ] . This is called the constant Q−property of the LCWT. 

3.2. Time-LCT frequency resolution  

The LCWT (yb>?)(f, z) localizes the signal ?  in the time window: 

[1f�b + z − 1
f�b, 1f�b + z + 1

f �b].  

Similarly, we get that the LCWT gives linear canonical spectrum content of � in the window: 

[f�ℒ�b − f∆ℒ�b, f�ℒ�b + f∆ℒ�b].   

Thus, the joint resolution of the LCWT in the time and linear canonical domain is given by the window: 

[1f�b + z − 1
f�b, 1f�b + z + 1

f �b] × [f�ℒ�b − f∆ℒ�b, f�ℒ�b + f∆ℒ�b],  

with constant area 4∆b∆ℒ�b in the time-LCT-frequency plane. Thus, it follows that for a given parameter ] , the window area 

depends on the linear canonical admissible wavelets and is independent of the parameters f and z. But it is to be noted that the 
window gets narrower for large value of f and wider for small value of f. Thus, the window given by the transform is flexible and 
hence, it is capable of simultaneously providing the time linear canonical domain information. This flexibility of the window 
makes the proposed LCWT more advantageous then the WLCT as in this case the window is rigid. 

Some basic properties of LCWT is given below. 

Theorem 3. 1. Let �,  ∈ 23(ℝ), ` and a are ALCWs, ¡, ¢ ∈ ℂ, ¤ >  x and ¥ ∈ ℝ. Then:   

1. yb> (�T + ¦ℎ) = �(yb>T) + ¦(yb>ℎ) 
2. y¨b+©c> (T) = �(̅yb>T) + ¦(̅yc>T) 
3. (yb>«¬T)(f, z) = (yb>̃T) (l¬ , z®), where («¬T)(�) = √®T(®�) and  ]̃ = (^, ®2G; M¬2 , J) 
4. (yb>°±T)(f, z) = Ku²w ±(±−{)(yb>Ku²w ±ST)(f, z − ³), where (°±T)(³) = T(� − ³). 
Proof: The proofs are immediate and can be omitted.  

If {e, �} is admissible linear canonical wavelet pair such that each � and e are ALCWs and ?, T ∈ �2(ℝ) are such that they are 
orthogonal then yb>? and yb>T are orthogonal in �2(ℝ+  × ℝ, FfFz). This result is justified by the following theorem, which further 

gives the resolution of identity for the LCWT. 
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Theorem 3. 2. (Inner product relation for LCWT). Let {`,a} be an ALCWP such that ` and a are ALCWs and 1, � ∈ 23(ℝ), then: 

⟨yb>?, yc>T⟩�2(ℝ+×ℝ ) = 2�|G|'b,c,> 〈?, T〉�2(ℝ), (14) 

where 'b,c,>  is provided in (6). 

Proof: Using equation (11), we get: 

⟨yb>?,yc>T⟩�2(ℝ+×ℝ ) = ∫ (yb>?)(f, z)(yc>T)(f, z)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅FfFz
ℝ+×ℝ

= ∫ (ℒ> ((yb>?)(f,⋅))) (�) (ℒ> ((yc>T)(f,⋅)))(�)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅F�Ff
ℝ+×ℝ

= ∫ 2�|G|
f (ℒ>?)(�) (ℒ>e)(�

f)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅    (ℒ>T)(�)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(ℒ>�)(�
f)F�Ff

ℝ+×ℝ
= 2�|G|∫(ℒ>?)(�) 

ℝ
(ℒ>T)(�)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ {∫ (ℒ>e)(�

f)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅  (ℒ>�)(�
f) 

ℝ+

Ff
f  }F�

= 2�|G|'b,c,>〈ℒ>?,ℒ>T〉�2(ℝ)=  2�|G|'b,c,> 〈?, T〉�2(ℝ). 

 

Remark 3. 2. Replacing ` =  a in equation (14), we have: 

⟨yb>?,yb>T⟩�2(ℝ+×ℝ ) = 2�|G|'b,>〈?, T〉�2(ℝ), (15) 

where 'b,>  is provided in (7). 

Remark 3. 3. (Plancherel’s theorem for ��p1) Replacing 1 =  � and a =  ` in equation (14) we have the Plancherel’s theorem 

for ��p   given by: 

∥yb>?∥�2(ℝ+×ℝ) = (2�|G|'b,>)12‖?‖�2(ℝ). (16) 

Thus, from equation (16), it follows that LCWT from �2(ℝ) into �2(ℝ+  × ℝ) is a continuous linear operator. If further ALCW e is 
such that 'b,> = 12¹|R|, then the operator is an isometry. 

Theorem 3. 3. (Reconstruction formula). Let {`,a} be an ALCWP such that ` and a are ALCWs and 1 ∈ 23(ℝ), then 1  can be 
given by the formula: 

?(�) = 1
2�|G|'b,c,>

∫ (yb>?)(f, z)�l,{> (�)
ℝ+×ℝ

FfFz f. K. � ∈ ℝ. (17) 

Proof: From equation (14), we get: 

2�|G|'b,c,>〈?, T〉�2(ℝ) = ⟨yb>?,yc>T⟩�2(ℝ+×ℝ )
= ∫ (yb>?)(f, z)

ℝ+×ℝ
(∫T(�)�l,{> (�)̅̅̅̅̅̅ ̅̅̅̅̅ ̅̅̅̅̅ ̅

ℝ
)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ FfFz

= ⟨∫ (yb>?)(f, z)
ℝ+×ℝ

�l,{> (�)FfFz, T(�)⟩
�2(ℝ)

.  

Since T ∈ �2(ℝ) is arbitrary, we have: 

?(�) = 1
2�|G|'b,c,>

∫ (yb>?)(f, z)�l,{> (�)
ℝ+×ℝ

FfFz f. K.   

The proof is complete. 
In particular, if e =  � then we have the following reconstruction formula: 

?(�) = 1
2�|G|'b,c,>

∫ (yb>?)(f, z)el,{> (�)
ℝ+×ℝ

FfFz f. K. � ∈ ℝ.  

The following theorem characterizes the range of the LCWT and proves that the range is a RKHS. It also gives the explicit 
expression for the reproducing kernel. 

Theorem 3. 4.  For ` being ALCW, ��p (23(ℝ)) is a RKHS with the kernel: 

Eb> (�, ³; f, z) = 1
2�|G|'b,>

⟨el,{> , e¾,±> ⟩�2(ℝ), (�, ³), (f, z) ∈ ℝ+ × ℝ.  
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Moreover, the kernel is such that ∣Eb> (�, ³; f, z)∣ ≤ 12¹|R|MÁ,� ‖e‖�2(ℝ)2 . 
Proof: For (f, z) ∈ ℝ+ × ℝ, we see that: 

Eb>(�, ³; f, z) = 1
2�|G|'b,>

(yb>el,{> )(�, ³) for all (�, ³) ∈ ℝ+ × ℝ.  

Now, 

∥Eb> (⋅,⋅; f, z)∥�2(ℝ+×ℝ)2 = 1
(2�|G|'b,>)2 ∥yb>el,{> ∥�2(ℝ+×ℝ)2  

= 1
2�|G|'b,>

‖e‖�2(ℝ)2 .  

Therefore, for (f, z) ∈ ℝ+ × ℝ, Eb>(�, ³; f, z) ∈ �2(ℝ+ × ℝ). Now, let ? ∈ �2(ℝ): 
(yb>?)(f, z) = ⟨?, el,{> ⟩�2(ℝ)

= 1
2�|G|'b,> 

⟨yb>?, 2�|G|'b,>Eb>(⋅,⋅; f, z)⟩�2(ℝ+×ℝ)
= ⟨yb>?, Eb>(⋅,⋅; f, z)⟩�2(ℝ+×ℝ).  

Thus, it follows that: 

Eb>(�, ³; f, z) = 1
2�|G|'b,>

⟨el,{> , e¾,±> ⟩�2(ℝ),  

is the reproducing kernel of yb> (�2(ℝ)). 
Again, 

∣Eb>(�, ³; f, z)∣ = 1
2�|G|'b,>

∣⟨el,{> , e¾,±> ⟩�2(ℝ)∣
≤ 1

2�|G|'b,>
∥el,{> ∥�2(ℝ)∥e¾,±> ∥�2(ℝ)

= ‖e‖�2(ℝ)2
2�|G|'b,>

. 
 

This completes the proof. 

4. Uncertainty Principle  

We prove some UPs that limits the concentration of the LCWT in some subset in ℝ+ × ℝ  of small measure. For related results 
in case of Fourier transform and windowed Fourier transform we refer the reader to [36, 37]. Kou et al. [38] studied the same for 
the WLCT. 

Definition 4. 1. Let x ≤ Æ < <, 1 ∈ 23(ℝ) and È ⊂ ℝ be measurable, then 1  is Æ −concentrated on È if: 

(∫ |?(�)|2 F�
ÊË

 )
12 ≤ Ì ‖?‖�2(ℝ).  

If  0 ≤ Ì ≤ 12, then we say that most of the energy of ?  is concentrated on � and � is called an essential support of ? . If Ì = 0, 
then support of ?  is contained in �. 

Lemma 4. 1. If ` is an ALCW and 1 ∈ 23(ℝ). Then ��p1 ∈ 2Í(ℝ+ × ℝ), for all Î ∈ [Ð,∞]. Moreover,  

∥yb>?∥�Ó(ℝ+×ℝ) ≤ (2�|G|)1('b,>
1(  ‖?‖�2(ℝ)‖e‖�2(ℝ)

1−2( , # ∈ [2,∞) (18) 

∥yb>?∥�∞(ℝ+×ℝ) ≤ ‖e‖�2(ℝ)‖?‖�2(ℝ). (19) 

 Proof: Since ` is an ALCW, it follows that ��p1 ∈ 23(ℝ+ × ℝ). Again: 

∣(yb>?)(f, z)∣ ≤ ‖e‖�2(ℝ)‖?‖�2(ℝ).  

Thus, yb>? ∈ �∞(ℝ+ × ℝ). Also, since yb>? ∈ �2(ℝ+ × ℝ), we have yb>? ∈ �((ℝ+ × ℝ), # ∈ [2,∞). Moreover, 
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∥yb>?∥�Ó(ℝ+×ℝ) ≤ ∥yb>?∥�2(ℝ+×ℝ)
2( ∥yb>?∥�∞(ℝ+×ℝ)

1−2(

≤ (2�|G|'b,>)1( ‖?‖�2(ℝ)
2(

 ‖?‖�2(ℝ)
1−2(

 ‖e‖�2(ℝ)
1−2( .  

This proves the lemma. 

Definition 4. 2. Let x ≤ Æ < <,Ö ∈ 23(ℝ+ × ℝ ) and × ⊂ ℝ+ × ℝ be measurable, then Ö  is Æ − concentrated on × if: 

(∫  |Ø(�, ³)|2 F�F³
Ωc

)
12 ≤ Ì‖Ø‖�2(ℝ+×ℝ ).  

If 0 ≤  ϵ ≤ 12 , then we say that most of the energy of Ø is concentrated on Ω and Ω is called an essential support of Ø . If ϵ = 0, 
then support of Ø  is contained in Ω. 

We now prove the Donoho-Stark’s UP for the propose LCWT. 

Theorem 4. 1. Let x ≤ Æ < <, � is an ALCW. Also let there exists a non-zero 1 ∈ 23(ℝ) such that ��p1 is Æ − concentrated on 

× ⊂ ℝ+ × ℝ  then: 

|Ω|‖e‖�2(ℝ)  2 ≥ 2�|G|'b,> (1 − Ì2), (20) 

where |Ω| denotes the measure of Ω. 
Proof: In equation (16), we have: 

∥yb>?∥�2 (ℝ+×ℝ)2 = 2�|G|'b,>  ‖?‖�2(ℝ)2 .  

Now, 

∫  ∣(yb>?)(f, z)∣
ℝ+×ℝ 

2 FfFz ≤ ∫ ÝΩ(f, z)
ℝ+×ℝ 

∣(yb>?)(f, z)∣2 FfFz + Ì2 ∥yb>?∥�2(ℝ+×ℝ)2 .  

This gives: 

(1 − Ì2)∥yb>?∥�2(ℝ+×ℝ)2 ≤ |Ω|∥yb>?∥�∞(ℝ+×ℝ)2 .  

Thus, using (19), we get: 

2�|G|'b,> (1 − Ì2) ‖?‖�2(ℝ)2 ≤ |Ω|‖?‖�2(ℝ) 2 ‖e‖�2(ℝ)2 .  

 The result follows, since ? ≠ 0. 
Corollary 4. 1. If 1 ∈ 23(ℝ) ∩ 2ß(ℝ),  in 23(ℝ) - norm, is Æà − concentrated on È ⊂ ℝ and ��p1 is Æá −concentrated on × ⊂

ℝ+ × ℝ, then: 

|Ω|â(�)‖e‖�2(ℝ)2 ‖?‖�4(ℝ)4 ≥ 2�|G|'b,>  (1 − ÌΩ2 )(1 − ÌÊ2 )2 ‖?‖�2(ℝ)4 ,  

where â(�) denotes the measure of �. 

Proof: Since yb>? is ÌΩ −concentrated on Ω ⊂ ℝ+ × ℝ in �2(ℝ+ × ℝ) −norm, so we have |Ω|‖e‖�2(ℝ)2 ≥ 2�|G|'b,> (1 − ÌΩ2 ).  Again, 

since ?  is ÌÊ − concentrated, we have: 

(∫ |?(�)|2 F�
ÊË

 )
12 ≤ ÌÊ ‖?‖�2(ℝ),  

which further implies that: 

‖?‖�2(ℝ)2 (1 − ÌÊ2 ) ≤ ∫ÝÊ(�)|?(�)|2F�.
ℝ

  

We have by Hölder’s inequality: 

∫ÝÊ(�)|?(�)|2F� ≤
ℝ

(∫|ÝÊ(�)|2 F� 
ℝ

)
12 ‖?‖�4(ℝ)2 .  

Thus, 

(1 − ÌÊ2 )‖?‖�2(ℝ) 2 ≤ (â(�))12‖?‖�4(ℝ)2 . (21) 

Therefore,  
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|Ω|â(�)‖e‖�2(ℝ) 2 ‖?‖�4(ℝ) 4 ≥ 2�|G|'b,>(1 − ÌΩ2 )(1 − ÌÊ2 )2 ‖?‖�2(ℝ)4 .  

This proof is complete. 

Corollary 4. 2. If 1 ∈ 23(ℝ) ∩ 2∞(ℝ),  in 23(ℝ)-norm, is Æà −concentrated on È ⊂ ℝ and ��p1 is Æá −concentrated on × ⊂
ℝ+ × ℝ, then: 

|Ω|â(�)‖e‖�2(ℝ)2 ‖?‖�∞(ℝ)2 ≥ 2�|G|'b,>  (1 − ÌΩ2 )(1 − ÌÊ2 ) ‖?‖�2(ℝ)2 .  

Proof: Since yb>? is ÌΩ −concentrated on Ω ⊂ ℝ+ × ℝ in �2(ℝ+ × ℝ) − norm, so we have |Ω|‖e‖�2(ℝ)2 ≥ 2�|G|'b,>(1 − ÌΩ2 ).  Again, 

since ?  is ÌÊ − concentrated, we have: 

( ∫  |?(�)|2 F� 
ÊË

)
12  ≤ ÌÊ ‖?‖�2(ℝ),  

which further implies that: 

‖?‖�2(ℝ)2 (1 − ÌÊ2 ) ≤ ∫|?(�)|2ÝÊ(�)F�.
ℝ

  

Since ? ∈ �∞(ℝ), so: 

∫ÝÊ(�)|?(�)|2 
ℝ

F� ≤ â(�)‖?‖�∞(ℝ)2 .  

Thus, 

‖?‖�∞(ℝ)2 â(�) ≥ (1 − ÌÊ2 )‖?‖�2(ℝ)2 . (22) 

  
Therefore, 

|Ω|â(�)‖e‖�2(ℝ)2 ‖?‖�∞(ℝ)2 ≥ 2�|G|'b,>  (1 − ÌΩ2 )(1 − ÌÊ2 ) ‖?‖�2(ℝ)2 .  

 The proof is complete. 

5. Orthonormal Sequences and Uncertainty Principle  

We now express the UP in term of the generalized dispersion of yb>  , which is defined by: 

ä((yb>?) = (∫ |(f, z)|( ∣(yb>?)(f, z)∣2 FfFz
ℝ+×ℝ

)
1(, (23) 

where |(f, z)| = √f2 + z2, # > 0. 
Definition 5. 1. Let å  be a bounded linear operator on a Hilbert space ℍ over the field ç (where ç is ℝ or ℂ) and {èé}é∈ℕ be an 

orthonormal basis of ℍ, then å  is called a Hilbert-Schmidt operator if: 

‖ê ‖ëì = (∑‖êíî‖2∞

î=1
)

12 < ∞.  

It is to be noted that the Hilbert-Schmidt norm does not depend on the choice of orthonormal basis. 
Before discussing the main result of this section, we estimate the Hilbert-Schmidt norm of the product of some orthogonal 

projection operators and use it to estimate the concentration of yb>? on subset of ℝ+ × ℝ. Similar results were first studied by 

Wilczok [29] in the case of windowed FT and WT. 

Theorem 5. 1. Let 1 ∈  23(ℝ), ` is an ALCW and × ⊂ ℝ+ × ℝ such that |×| < 3ï|ð|ñò,ó‖�‖ôõ(ℝ)õ . Then: 

∥ÝΩcyb>?∥�2(ℝ+×ℝ) ≥ √2�|G|'b,> − |Ω|‖e‖�2(ℝ)2  ‖?‖�2(ℝ).  

Proof: We consider the orthogonal projections ÷b  from �2(ℝ+ × ℝ, FfFz) on the RKHS yb> (�2(ℝ)) and ÷ø on �2(ℝ+ × ℝ, FfFz) 
defined by ÷øØ = ÝøØ , for all Ø ∈ �2(ℝ+ × ℝ, FfFz). According to Saitoh [39], for every (f, z) ∈ ℝ+ × ℝ and Ø ∈ �2(ℝ+ × ℝ, FfFz), we 
get: 

(÷Ω÷bØ)(f, z) = ÝΩ(f, z)⟨Ø,Eb> (⋅,⋅; f, z)⟩�2(ℝ+×ℝ,!l!{)
= ∫ ÝΩ(f, z)Ø(�, ³)Eb> (�, ³; f, z)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ℝ+×ℝ
F�F³.  
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Thus, the integral operator ÷Ω÷b has the kernel ùb,Ω>  defined on (ℝ+ × ℝ)2 by: 

ùb,Ω> (�, ³; f, z) = χΩ(f, z)Eb>(�, ³; f, z)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅  

such that, 

∫ ∫ ∣ùb,Ω> (�, ³; f, z)∣2F�F³FfFz
ℝ+×ℝℝ+×ℝ
= ∫ (∫ ∣Eb> (�, ³; f, z)∣2

ℝ+×ℝ
F�F³) |ÝΩ(f, z)|2FfFz

ℝ+×ℝ
= ∫ ÝΩ(f, z)∥Eb> (⋅,⋅; f, z)∥�2(ℝ+×ℝ,!l!{)2 FfFz

ℝ+×ℝ
= |Ω|‖e‖�2(ℝ)2  

2�|G|'b,> 
. 

 

Now,  

ÝΩyb>? = ÷Ω÷b(yb>?)  

Implies, 

∥ÝΩyb>?∥�2(ℝ+×ℝ)2 ≤ ∥÷Ω÷b∥2∥yb>?∥�2(ℝ+×ℝ)2 .  

Therefore, 

∥yb>?∥�2(ℝ+×ℝ)2 ≤ ∥÷Ω÷b∥2∥yb>?∥�2(ℝ+×ℝ)2 + ∥ÝΩcyb>?∥�2(ℝ+×ℝ)2   

i. e. , ∥ÝΩcyb>?∥�2(ℝ+×ℝ)2 ≥ (1 − ∥÷Ω÷b∥2)2�|G|'b,>‖?‖�2(ℝ)2 .  

Now using the fact that ∥÷Ω÷b∥ ≤ ∥÷Ω÷b∥ëì, where ‖ ⋅ ‖ denotes the operator norm, we obtain: 

∥ÝΩcyb>?∥�2(ℝ+×ℝ)2 ≥ (1 − ∥÷Ω÷b∥ëì2 )2�|G|'b,>‖?‖�2(ℝ)2 .  

Hence, we obtain: 

∥ÝΩcyb>?∥�2(ℝ+×ℝ) ≥ √2�|G|'b,> − |Ω|‖e‖�2(ℝ)2 ‖?‖�2(ℝ).  

This proves the theorem. 

Theorem 5. 2. If ` is an ALCW, {aé}é∈ℕ ⊂ 23(ℝ) be an ONS and × ⊂ ℝ+ × ℝ be such that its measure |×| < ∞, then for any 
non-empty ∧ ⊂ ℕ, 

∑
⎝
⎜⎜⎜
⎛1 − ∥ÝΩcyb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞∥

�2(ℝ+×ℝ,!l!{)⎠⎟
⎟⎟⎞

î∈∧
≤ |Ω|‖e‖�2(ℝ)2  

2�|G|'b,>
. (24) 

Proof: Consider the orthonormal basis {ℎî}î∈ℕ  of �2(ℝ+ × ℝ, FfFz). It has been proved in the above theorem that ÷Ω÷b is a 

Hilbert-Schmidt operator such that ∥÷Ω÷b∥ëì2 = |Ω|‖b‖�2(ℝ)
2

2¹|R|MÁ,� . 
Since ÷Ω2 = ÷Ω  and both ÷b, ÷Ω are self-adjoint, the operator ê = (÷Ω÷b)⋆( ÷Ω÷b) = ÷b÷Ω÷b is positive and is such that: 

∑〈êℎî, ℎî〉�2(ℝ+×ℝ,!l!{) î∈ℕ
= ∑⟨÷Ω÷bℎî, ÷Ω÷bℎî⟩�2(ℝ+×ℝ,!l!{)î∈ℕ= ∑∥÷Ω÷bℎî∥�2(ℝ+×ℝ,!l!{)2

î∈ℕ=∥÷Ω÷b∥ëì2

= |Ω|‖e‖�2(ℝ)2
2�|G|'b,> 

< ∞. 
 

Therefore, ê  is a trace class operator with ê�(ê ) = |Ω|‖b‖�2(ℝ)
2

2¹|R|MÁ,� . 
Now as {�î}î∈ℕ is an ONS, from equation (15), it follows that {yb> ( c�

√2¹|R|MÁ,�
)}

î∈ℕ
is an ONS in �2(ℝ+ × ℝ, FfFz). 
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Hence, we have: 

∑ ⟨÷Ωyb>
⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞ ,yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞⟩

�2(ℝ+×ℝ,!l!{)
î∈∧

= ∑ ⟨÷b÷Ω÷b
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ ,yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞⟩

�2(ℝ+×ℝ,!l!{)
î∈∧

= ∑ ⟨ê
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ , yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞⟩

�2(ℝ+×ℝ,!l!{)
î∈∧

≤ ∑ ⟨ê
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ , yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞⟩

�2(ℝ+×ℝ,!l!{)
î∈ℕ

= ê�(ê ) = |Ω|‖e‖�2(ℝ)2
2�|G|'b,> 

. 

 

 For each n ∈ ∧, we have: 

⟨÷Ωyb>
⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞ , yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞⟩

�2(ℝ+×ℝ,!l!{)

= ⟨ÝΩyb>
⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞ , yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞⟩

�2(ℝ+×ℝ,!l!{)

= 1 − ⟨ÝΩcyb>
⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞ , yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞⟩

�2(ℝ+×ℝ,!l!{)

≥  1 − ∥ÝΩcyb>
⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞∥

�2(ℝ+×ℝ,!l!{)
. 

 

Thus, we have: 

∑
⎝
⎜⎜⎜
⎛1 − ∥ÝΩcyb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞∥

�2(ℝ+×ℝ,!l!{)⎠⎟
⎟⎟⎞ ≤

î∈∧
|Ω|‖e‖�2(ℝ)2
2�|G|'b,> 

.  

This proves the theorem.  

The theorem below shows that, if the LCWT of each member of an ONS are Ì − concentrated in a set of finite measure then 
the sequence is necessarily finite. The theorem also gives an upper bound of the cardinality of the so proved finite sequence. 

Theorem 5. 3. Let 
, Æ > x such that Æ < <. Let ��  = {(, �) ∈ ℝ+ × ℝ ∶  3  + �3  ≤ 
3} and ` is an ALCW. Also let ∧ ⊂ ℕ be non-

empty and {aé}é∈∧  ⊂ 23(ℝ) be an ONS. If ��p ( ��
√3ï|ð|ñò,ó

)is Æ −concentrated in �� for all � ∈ ∧, then ∧ is finite and: 

'f�F(∧) ≤ �2‖e‖�2(ℝ)2
4|G|'b,>(1 − Ì) , (25) 

where 'f�F(∧) denotes the cardinality of ∧. 
Proof: Applying Theorem 5. 2, we have: 

∑
⎝
⎜⎜⎜
⎛1 − ∥ÝG�c yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞∥

�2(ℝ+×ℝ,!l!{)⎠⎟
⎟⎟⎞ ≤

î∈∧
|��|‖e‖�2(ℝ)2
2�|G|'b,> 

.  
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Again, since for each yb> ( c�
√2¹|R|MÁ,�

)is Ì − concentrated in ��, we have: 

∥ÝG�c yb>
⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞∥

�2(ℝ+×ℝ,!l!{)
≤ Ì.  

Therefore, it follows that: 

∑(1 − Ì) ≤
î∈∧

|��|‖e‖�2(ℝ)2
2�|G|'b,> 

, 

 i. e. , 'f�F(∧)(1 − Ì) ≤ |��|‖e‖�2(ℝ)2
2�|G|'b,> 

. 
 

Thus, 'f�F(∧) is finite and using |��| = ¹�2
2 , we obtain: 

'f�F(∧) ≤ �2‖e‖�2(ℝ)2
4|G|(1 − Ì)'b,> 

.  

The proof is complete. 

Corollary 5. 1. Let Î > x, � > x and ` is an ALCW. Also let ∧ ⊂ ℕ, be non-empty and {aé}é∈∧ ⊂ 23(ℝ) be an ONS. Then ∧ is 

finite if {�Í (��p ( ��
√3ï|ð|ñò,ó

))}
é∈∧

 is uniformly bounded. Moreover, if it is uniformly bounded by �, then: 

'f�F(∧) ≤ 24(+1�2‖e‖�2(ℝ)2
4|G|'b,> 

.  

Proof: Since for each � ∈ ∧, ä( (yb> ( c�
√2¹|R|MÁ,�

)) ≤ �, and thus: 

∫ ∣∣∣
∣
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ (f, z)∣∣∣

∣2 FfFz
|(l,{)|≥"22Ó

= ∫ |(f, z)|−(|(f, z)|( ∣∣∣
∣
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ (f, z)∣∣∣

∣2 FfFz
|(l,{)|≥"22Ó

≤ 1
(�22()( ∫ |(f, z)|( ∣∣∣

∣
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ (f, z)∣∣∣

∣2 FfFz
ℝ+×ℝ

≤ 1
4. 

 

Thus, it follows that, for each � ∈∧,yb> ( c�
√2¹|R|MÁ,�

) is 12 −concentrated in: 

�"22Ó = {(f, z) ∈ ℝ+ × ℝ: |(f, z)| < �22(}.  

Thus, from Theorem 5. 3, it follows that ∧ is finite and: 

'f�F(∧) ≤ (�22()2  ‖e‖�2(ℝ)2

4|G|(1 − 12)'b,> 
, 

i. e. , 'f�F(∧) ≤ 24(+1�2‖e‖�2(ℝ)2
4|G|'b,> 

. 
 

Thus, the proof is complete. 

Lemma 5. 1. Let Î > x, ` is an ALCW and {aé}é∈ℕ  ⊂ 23(ℝ) be an ONS, then ∃ $m ∈ ℤ for which: 

ä(
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ ≥ 2&0 ,∀ � ∈ ℕ.  
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Proof: Define ÷& = {� ∈ ℕ: ä( (yb> ( c�
√2¹|R|MÁ,�

)) ∈ [2&−1, 2&)} , for each â ∈ ℤ.  
Then for each � ∈ ÷&, we get: 

∫ |(f, z)|( ∣∣∣
∣
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ (f, z)∣∣∣

∣2 FfFz
ℝ+×ℝ

< 2&(.  

Now,  

∫ ∣∣∣
∣
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ (f, z)∣∣∣

∣2 FfFz
|(l,{)|≥2)+2Ó

≤ 1
2&(+2 ∫ |(f, z)|( ∣∣∣

∣
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ (f, z)∣∣∣

∣2 FfFz
ℝ+×ℝ

≤ 1
2&(+2

⎩{⎨
{⎧ä(

⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞⎭}⎬

}⎫(

. 

 

This gives, 

∫ ∣∣∣
∣
⎝
⎜⎜⎜
⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>⎠⎟⎟
⎞

⎠⎟
⎟⎟⎞ (f, z)∣∣∣

∣2 FfFz
|(l,{)|≥22Ó+) ≤ 1

4.  

Thus, it follows that, for each � ∈ ÷&, yb> ( c�
√2¹|R|MÁ,�

) is 12 −concentrted on the set: 

�2)+2Ó = {(f, z) ∈ ℝ+ × ℝ: |(f, z)| < 2&+2(}.  

Therefore, ÷& is finite and: 

'f�F(÷&) ≤ 22&+4(+1‖e‖�2(ℝ)2
4|G|'b,> 

, for all  â ∈ ℤ.  

 Letting â → −∞, we get: 

lim&→−∞ 'f�F(÷&) = 0.  

Hence, ∃ â0 ∈ ℤ  such that for all â < â0, ÷& are empty sets. Therefore,  ä( (yb> ( c�
√2¹|R|MÁ,�

)) ≥ 2&0 , ∀ � ∈ ℕ.  
Theorem 5. 4. (Shapiro’s Dispersion theorem). Let ` be an ALCW and {aé}é∈ℕ ⊂ 23(ℝ) be an ONS, then for every Î > x and 

non-empty finite ∧ ⊂ ℕ, 

∑
⎩{⎨
{⎧ä(

⎝
⎜⎜⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>  ⎠⎟⎟
⎞ ⎠⎟⎟

⎞
⎭}⎬
}⎫

î∈∧

(
≥ ('f�F(∧))(2+1

2(+1 ⎝
⎜⎛ 3|G|'b,>

24(+2 ‖e‖�2(ℝ)2   ⎠⎟⎞
(2
.  

Proof. Let â0 be an integer defined in the Lemma 5. 1. Let 1 ∈ ℤ such that 1 ≥ â0. Define �� = ⋃ ÷&�&=&0 . Then we have: 

'f�F(��) =  ∑ 'f�F(÷&) �

&=&0
≤ ∑ 22&+4(+1 ‖e‖�2(ℝ)2

4|G|'b,>
�

&=&0

= 24(+1  ‖e‖�2(ℝ)2
4|G|'b,>

∑ 22&�

&=&0

≤ 24(+1  ‖e‖�2(ℝ)2
4|G|'b,>

 22�+23 , 

i. e. , 'f�F(��) ≤ 24(+1  ‖e‖�2(ℝ)2  3|G|'b,>
 22� . 
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Let ' = 24Ó+2  ‖b‖�2(ℝ)
2  3|R|MÁ,�  . Then 'f�F(��) ≤ M2  22�. If 'f�F(∧) > 22(&0+1)',  then 12 log2 log(Ml8!(∧)M ) > â0 + 1.  Let us choose an integer 1 >

â0 + 1 such that: 

1 − 1 ≤ 1
2 log 2 log ('f�F(∧)

' ) < 1.  

Then, it results in: 

'22(�−1) ≤ 'f�F(∧) < '22�.  

Thus, we have: 

'f�F(��−1) ≤ '2 22(�−1) ≤  'f�F(∧)
2 .  

This shows that at least half of the elements of ∧ are not in ��−1. Thus, we have: 

∑
⎩{⎨
{⎧ä(

⎝
⎜⎜⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>  ⎠⎟⎟
⎞ ⎠⎟⎟

⎞
⎭}⎬
}⎫

î∈∧

(
≥ ∑

⎩{⎨
{⎧ä(

⎝
⎜⎜⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>  ⎠⎟⎟
⎞ ⎠⎟⎟

⎞
⎭}⎬
}⎫

î∈∧∖:;−1

(

≥ 'f�F(∧)
2 2(�−1)(

= 'f�F(∧)
2(+1 2�(. 

 

Since, 'f�F(∧) ≤ '22�, we have (Ml8!(∧)M )Ó2 ≤ 2�(.  
Therefore,   

∑
⎩{⎨
{⎧ä(

⎝
⎜⎜⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>  ⎠⎟⎟
⎞ ⎠⎟⎟

⎞
⎭}⎬
}⎫

î∈∧

(
≥ ('f�F(∧) ) (2+1 

2(+1 (1
')

(2.  

Again, if 'f�F(∧) ≤ '22(&0+1), then: 

∑
⎩{⎨
{⎧ä(

⎝
⎜⎜⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>  ⎠⎟⎟
⎞ ⎠⎟⎟

⎞
⎭}⎬
}⎫

î∈∧

(
≥  'f�F(∧)2&0( , (using Lemma 5. 1).  

Now, 'f�F(∧) ≤ '22(&0+1) implies 12Ó  (Ml8!(∧)M )Ó2 ≤ 2&0(. Thus, we have: 

∑
⎩{⎨
{⎧ä(

⎝
⎜⎜⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>  ⎠⎟⎟
⎞ ⎠⎟⎟

⎞
⎭}⎬
}⎫

î∈∧

(
≥ ('f�F(∧) ) (2+1 

2( (1
')

(2.  

Hence, for any non-empty finite ∧ ⊂ ℕ, we have: 

∑
⎩{⎨
{⎧ä(

⎝
⎜⎜⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>  ⎠⎟⎟
⎞ ⎠⎟⎟

⎞
⎭}⎬
}⎫

î∈∧

(
≥ ('f�F(∧) ) (2+1 

2(+1 (1
')

(2.  

Therefore, putting the value of ' we get: 

∑
⎩{⎨
{⎧ä(

⎝
⎜⎜⎛yb>

⎝
⎜⎜⎛ �î

√2�|G|'b,>  ⎠⎟⎟
⎞ ⎠⎟⎟

⎞
⎭}⎬
}⎫

î∈∧

(
≥ ('f�F(∧))(2+1

2(+1 ⎝
⎜⎛ 3|G|'b,>

24(+2 ‖e‖�2(ℝ)2   ⎠⎟⎞
(2
.  

This completes the proof. 

6. Conclusions 

We have proposed a novel time-frequency analyzing tool, namely LCWT, which combines the advantages of the LCT and the 
WT and offers time and linear canonical domain spectral information simultaneously in the time LCT-frequency plane. We have 
studied its properties like inner product relation, reconstruction formula and also characterized its range. We also gave a lower 
bound of the measure of essential support of the LCWT via UP of Donoho-Stark. Finally, we have studied the Shapiro’s mean 
dispersion theorem associated with the LCWT. 
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