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Abstract. Planetary gear trains (PGTs) with one or more degrees of freedom (DOFs) have numerous uses in PGT-based 
mechanisms. The majority of the currently available synthesis methods have focused on 1-DOF PGTs, with only a few 
investigations on multi-DOF PGT synthesis. The method for synthesizing 7-link 3-DOF PGMs is outlined. All possible link 
assortments are produced, labeled spanning trees are generated, and potential geared graphs are constructed. The guidelines for 
including geared edges and how to synthesize geared graphs are outlined. Vertex-degree arrays are generated to validate the 
geared graphs. Isomorphic geared graphs are identified by comparing the isomorphic identification numbers of geared graphs 
with the same spanning tree. Fractionated geared graphs are identified using the reachability matrix method. The new method 
has a straightforward algorithm. In contrast to what is reported in the literature, the results of the synthesis of 7-link 3-DOF PGMs 
show that there are seven non-fractionated mechanisms. MATLAB programs are used to acquire the vertex-degree arrays. 

Keywords: Fractionated, Isomorphic, Link assortment, Planetary gear trains, Structural synthesis, Spanning tree. 

1. Introduction 

Planetary gear train (PGT) based mechanical equipment are extensively employed in vehicles transmissions, robot reduction 
devices, pulley blocks, machine and electrical equipment, robots, etc. The development of such equipment is heavily dependent 
on the development of planetary gear mechanisms (PGMs) [1-4]. PGTs are composed of central gears and planetary gears that 
revolve around them. Each pair of meshing gears is supported by a link known as the planet gear carrier, which keeps the 
distance between gear centers constant. Figure 1(a) depicts the functional schematic of the contra rotating gear train mechanism, 
whereas Fig. 1(b) depicts the related PGT graph. The contra rotating PGM is an eight-link three-DOF fractionated PGM comprised 
of a seven-link two-DOF fractionated PGT connected in series with its casing. The third degree of freedom is achieved simply by 
allowing the gear train to spin as a unit. A fractionated PGM has one or more separation links that can be broken into two or more 
parts to separate the PGM into distinct components. The basic structure of this mechanism is a seven-link two-DOF fractionated 
PGT, as shown in Fig. 1 (b). 

Mechanism synthesis is easily handled by a computer when the structure of the mechanism can be defined by a topological 
graph and an adjacency matrix. PGT structure synthesis is a rapidly developing field in mechanism studies [5, 6]. 

                      

  

(a) Contra rotating PGM (b) Contra rotating PGT 

Fig. 1. The contra-rotating PGM and its PGT. 

 



206 Sajad H. Abdali and Essam L. Esmail, Vol. 10, No. 1, 2024 

 

Journal of Applied and Computational Mechanics, Vol. 10, No. 1, (2024), 205-223 

The vast majority of earlier synthesis methods [7–18] solely dealt with 1-DOF PGTs. The parent-graph-based approaches [15, 
16, 19-22], recursive approaches [3, 7, 23, 24], acyclic-graph-based approaches [11, 25], and genetically compatible approaches [26] 
are fundamentally four unique approaches to the structural synthesis of PGTs. Shanmukhasundaram et al. [27] explored the 
majority of these approaches, whereas Xue et al. [28] investigated graph-based methods. Graph-based techniques may have 
issues with uniquely representing mechanisms. Graph-based approaches have also been applied to the study of two-degrees-of-
freedom PGTs with up to nine links [29]. 

With the topology of a mechanism described by the topological graph and incidence matrix, the mechanism synthesis can be 
readily handled by a computer. Then it will be possible to automate the synthesis of mechanisms. A crucial step in the structural 
synthesis of PGMs is isomorphism determination; the accuracy of the isomorphism determination technique directly affects the 
quality of the results of the structural synthesis of PGMs. When two graphs are isomorphic, there is a one-to-one correspondence 
between each of the vertices and edges, preserving incidence. Detecting isomorphism in kinematic chains is a complex topic that 
has been studied for many years.  

Methods to identify and remove isomorphic graphs were used during the synthesis of PGTs [10, 13, 15, 16, 17, 19, 20, 21, 29, 30, 
31, 32]. Two graphs are said to be isomorphic if their edges and vertices maintain adjacency characteristics. Ravisankar and 
Mruthyunjaya [21] proposed an approach for detecting isomorphism in unlabeled graphs by employing adjacency matrix 
characteristic coefficients. Rao and Rao [13] identified isomorphic graphs using the Hamming matrix approach and the moment 
technique. Based on their prior perimeter-loop-based isomorphism identification approach, Yang and Ding [16, 30, 31] introduced 
a fully automated methodology for detecting isomorphic PGTs. Rai and Punjabi [32] described a simple link labeling approach that 
was utilized to identify a binary sequence that yields the largest binary code. To compare the isomorphism of PGTs, maxi codes 
are constructed, involving binary code and binary sequence. There are several empirical isomorphism testing methods that rely 
on a number of distinctive characteristics that, when combined, are sufficient to detect isomorphism [33-38]. However, there is a 
chance that structural isomorphism will go undetected. Counterexamples have been reported [39, 40]. 

Mruthyunjaya and Raghavan [41] introduced a matrix-based approach for analyzing kinematic chain structural characteristics. 
Ravishankar and Mruthyunjaya [42] proposed a completely computerized method for analyzing the structural properties of PGTs. 
Tsai [7] presented a method for synthesizing the topology of PGTs based on the linkage characteristic polynomial that uses 
random numbers. The graph-matrix algorithm was developed by Hsu and Lam [43] to analyze the kinematics of PGTs. Hsu [44] 
developed a novel approach to generating PGT graphs with up to seven links. He additionally established a straightforward 
approach for PGT structural synthesis. Hsu et al. [10] proposed an automated method for building PGT displacement graphs and 
employed structural code to detect graph isomorphism. Hsu [39] introduced a new graphical representation method for 
automatically generating displacement graphs for PGTs. Salgado and Castillo [45] used a computer program to generate all graphs 
with up to 9 links using the fundamental circuits of PGTs. Yang and Ding [16] developed the completed nine-link set of one-
degree-of-freedom PGTs. Hsu et al. [43, 11] were the first to represent displacement graphs of PGTs using acyclic graphs. A portion 
of a connected graph with all of its edges having the same labels is represented as a polygon. In order to create displacement 
graphs from rotation graphs, Shanmukhasundaram et al. [17] suggested a new method based on kinematic units and acyclic 
graphs. 

1.1. Scope and contributions 

The goal of PGT structural synthesis is to create a catalog of all possible PGT topologies to aid designers in selecting the 
optimal topological structure for their PGT-based mechanisms.  

Many multi-DOF PGTs can be created from a set of 1-DOF PGTs, but the former has received much less attention, and the 
literature on their synthesis results is inconsistent [16, 29]. Because the discrepancy in the results has yet to be resolved, the 
synthesis results are far from complete. No matter how many approaches to the topological synthesis of PGTs have been 
proposed, there is always the possibility of adopting new, simple methods for synthesizing PGTs that may produce different 
results. This paper describes a method for synthesizing 7-link 3-DOF PGMs (or 6-link 2-DOF PGTs). 

A new method for synthesizing PGTs is devised by adding geared edges to spanning trees. The spanning trees of an N-link, F-
DOF PGM are first counted using link assortment arrays. After that, the vertex degree arrays of the geared graphs are counted. The 
procedures for including geared edges and constructing geared graphs from spanning trees are described in detail, and geared 
graphs that contradict the vertex degree arrays are eliminated. 

To detect isomorphic graphs, a method based on the weighted vertex degree array and the weighted vertex-circuit matrix is 
devised. The isomorphic identification numbers of geared graphs with the same spanning tree are compared to identify 
isomorphic geared graphs. If the isomorphic identification numbers of two graphs are the same, they are isomorphic.  

The reachability matrix approach is used to identify fractionated geared graphs. Previous approaches to fractionated detection 
that rely on independent loop combinations varied greatly from the suggested method. The new approach is simple to implement 
and works for all potential graph representations. 

Because other graph representations have difficulty adequately representing a PGM with multiple joints, the rooted graph 
(which matches to its mechanism) was employed in this work. 

  
(a) Conventional graph representation. (b) Hollow vertex graph [15]. 

Fig. 2. Different graph representations of the contra-rotating PGM and its fractionation process. 
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(c) Applying the vertex selection technique. (d) Seven-link two-DOF PGT and its casing. 

 

(e) Rooted graph representation. 

Fig. 2. Continued. 

2. Preliminary Discussion to Graph Representation 

2.1. Graph representation 

According to the method created by Buchsbaum and Freudenstein [19], the conventional graph of the Contra rotating PGT can 
be represented as in Fig. 2(a). In graph representation, a vertex stands for a link and an edge stands for a joint. In this work, a 
revolute pair is represented by a thin edge and a geared pair is represented by a dashed edge. The conventional graph 
representation may lead to the generation of pseudo-isomorphic graphs [4, 15, 27, 38]. Pseudo-isomorphic graphs are those that 
are kinematically and functionally equivalent to their corresponding PGTs but are mathematically non-isomorphic. These PGTs 
are considered to be functionally isomorphic [5]. The detection of isomorphism will be greatly complicated or prone to errors if 
there are pseudo-isomorphic graphs present. As a result, whenever possible, such graphs should be avoided. 

Yang et al. [15] represented the structure of PGTs by using a new graph model with solid and hollow vertices. Hollow vertices 
represent multiple revolute joints on the same level. Therefore, PGTs with revolute joints of different levels only have solid 
vertices. The graph representation in accordance with the method of Yang et al. [15] is shown in Fig. 2(b). For this graph 
representation model, there are two different types of graphs: graphs with one or more hollow vertices and graphs without a 
hollow vertex. Since the vertices represent the links, the number of vertices should not exceed the number of links. In a hollow 
vertex graph, the number of vertices exceeds the number of links; hence, there is no one-to-one correspondence with the PGT. 
The graph in Fig. 2(b) has the following adjacency matrix: 

A =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  v0 v1 v2 v3 v4 v5 ⋮ v6 v7v0 0 1 1 1 1 1 ⋮ 0 0v1 1 0 0 0 0 0 ⋮ 1 0v2 1 0 0 0 0 0 ⋮ 1 0v3 1 0 0 0 0 0 ⋮ 1 1v4 1 0 0 0 0 0 ⋮ 0 1v5 1 0 0 0 0 0 ⋮ 0 1⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯v6 0 1 1 1 0 0 ⋮ 0 0v7 0 0 0 1 1 1 ⋮ 0 0 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (1) 

Links 1, 2, 3, 4, and 5 in the graph depicted in Fig. 2 (b) share a common joint axis, "a". Vertex selection is the act of changing a 
revolute edge with one that is of the same level [5]. Figure 2(c) illustrates how the vertex selection approach can be used to 
rearrange the graph in order to check for a cut vertex. Figure 2(d) reveals a cut vertex, indicating that the graph represents a 3-DOF 
PGM with fractional DOF. The formula for the degree of freedom (F) of a v-vertex graph is: 

� =  3 × ( � − 1) − 2 × �  − 1 × �! (2) 

where the number of revolute edges is denoted by �  =  � − 1 and the number of geared edges is denoted by �! = � − 1 − � . 
For the Contra rotating PGM shown in Fig. 2(b), we have � =  8 and �  =  7, �!  =  4. Equation (2) gives � =  3(8  −  1) − 2 × 7 −4 =  3. For the PGT shown in Fig. 2(a), we have � =  7 and � = 6, �! = 4. Equation (2) gives � = 3(7  −  1) − 2 × 6 − 4 =  2. Figure 2(d) 

shows the graphs of the contra rotating PGT and its casing. Therefore, it is a fractionated 3-DOF PGM. It consists of a 2-DOF PGT 
that is held up by the frame on a central axis. However, this graph model has trouble accurately modeling a PGM containing 
multiple joints. This necessitated the use of a graph that is consistent with its mechanism, called the rooted graph. The vertex 
that represents the frame of a mechanism is referred to as the root in a rooted graph representation. Because at least one link in 
the PGT has its geometric axis rotated around the fixed axis of the mechanism, all graphs must have a root. Figure 2(e) shows the 
rooted graph for the contrs rotating PGM. Vertex 0 is the root. 
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(a) Rooted graph representation. (b) Applying the vertex selection technique. 

  

(c) Seven-link two-DOF PGT and its casing. (d) Vertex-fractionation of the seven-link two-DOF PGT. 

 

 

(e) Four-link one-DOF PGT (f) Four-link one-DOF PGT 

Fig. 3. Rooted graph representation of the contra-rotating PGM and its fractionation process. 

2.2. Fractionated graphs 

A fractionated mechanism consists of two kinematic chains that share either a common joint but no common link or a 
common link but no common joint. A cut vertex is a vertex in a graph that, when removed, creates more subgraphs. If, after 
applying vertex selection once or more times, one of the pseudo isomorphic graphs of a given kinematic chain has one or more 
cut vertices, we say that the graph is fractionated. However, there can be as many as (&)'−2 pseudoisomorphic graphs in a graph 
with & vertices connected by revolute edges of the same edge level. As the number of edges sharing a common edge level grows, 
it becomes more challenging to derive all the pseudo isomorphic graphs. 

The graph in Fig. 3(a) can be reconfigured using the vertex selection technique to become one with a separating vertex, as 
seen in Fig. 3(b). A cut vertex is a vertex in a graph whose removal, in conjunction with the removal of incident edges, yields a 
graph with more components than the original [5, 15]. If a graph is connected and has no cut vertices, it is referred to as a block. 
The separating vertex that can divide the graph into two sub-graphs is vertex 2 as shown in Fig. 3(c). This mechanism is a typical 
fractionated one in that links 1, 2, 3, 4, 5, 6, and 7 together contribute to making a 2-DOF gear train. The third degree of freedom is 
made possible by the PGT's ability to spin as a unit about axis "a," which represents the fixed link 0. 

Also, vertex 3 is a separation vertex in the 2-DOF PGT. The separating link that can divide the seven-link two-DOF PGT into two 
four-link one-DOF PGTs is link 3 as shown in Figs. 3(d) and (f). 

Despite the advantages, fractionated PGTs are often synthesized by splitting larger PGTs down into their fractionated parts 
with a reduced degree of freedom. It is quite simple and is not the subject of this study. When working on the synthesis of higher-
degree-of-freedom PGTs, it is important to identify and get rid of any fractionated PGTs. Here, we introduce a straightforward new 
technique for identifying fractionated PGT graphs. Previous techniques relied on rotation graphs rather than displacement graphs 
to detect fractionation. When the graph of a fractionated PGT is transformed into a rotation graph, the cut vertex is the one whose 
removal results in a larger number of components. The new method relies on the successive deletion of revolute joints with the 
same labeling from the geared graphs. A graph is considered to be fractionated if at least one of its resulting sub-graphs is also 
fractionated with a larger number of components using a single application of upper-level vertex separation. 

2.3. Correspondence between PGMs and rooted graphs 

Because a PGM's structure may be expressed as a graph, a number of desired graph characteristics can be transformed into 
PGM characteristics. 

Assume (  represents the number of revolute joints and (! represents the number of gear joints. Because gear joints have two 
degrees of freedom and revolute joints have one degree of freedom, the total number of joints is given by: 

( = (!  + (   (3) 

The degrees of freedom as a whole can be expressed as: 

∑ +,
-

,=1
=  2(  + (!  (4) 
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where +, denote the DOF in the ./ℎ joint. Therefore, an n-link PGM has an overall DOF of: 

12� =  3(3 −  1) −  2(   − (!  (5) 

An important consideration for geared kinematic chains is that the number of gear joints is always less than that of revolute 
joints and it is based on the following inequality: 

(  ≥ (! + 1 (6) 

Since an n-link PGM has � vertices in its rooted graph, and the revolute edges are always in the shape of a tree, therefore the 
number of revolute edges is limited by the following equation: 

� = � − 1 (7) 

And the number of revolute joints is: 

(  = 3 − 1 (8) 

Consequently, a PGM's overall number of joints should equal: 

( = (  + (!  (9) 

Since each edge in the rooted graph represents a joint, the sum of the revolute edges �  and the geared edges �! equals the 
number of joints in the PGM: 

� = � + �! = (  (10) 

Eq. (5) can be rewritten using the number of vertices and edges as: 

12� =  3(� −  1) − (2� + �!) (11) 

Substituting Equations (7) and (10) into Eq. (11) yields: 

12�  =  2� − � − 2 (12) 

Substituting Eq. (7) into Eq. (11), simplifying and arranging yields: 

�! = � − 1 − 12�  (13) 

Therefore, an n-DoF, n-link PGM has a graph with (� −  � ) geared edges. 
The number of vertices, edges, and independent loops in a planar-connected graph are all governed by Euler's equation, 

which may be expressed as: 

7 =  � − � + 1 (14) 

Substituting Eq. (7) into Eq. (10), we obtain: 

�! = � − � + 1 (15) 

Substituting Equations (7) and (15) into Eq. (10) yields: 

12� = � − �! (16) 

The correspondence between the constituents of a PGM and those of a rooted graph is summarized in Table 1. The PGM and 
its rooted graph representation have a one-to-one correspondence. 

3. Basic Introductory Concepts 

3.1. Characteristics of planetary gear mechanisms 

A PGM is defined as a geared kinematic chain containing only revolute and geared joints [5]. A PGM is a (f+1)-DOF fractionated 
mechanism. It is made up of an f-DOF PGT, with the mechanism's housing supporting its center axis. Since the complete PGT can 
be rotated around its central axis, this provides an additional degree of freedom. A PGM must confirm to the following rules: 

1. The casing is connected to the PGT through revolute joints. 
2. The PGM shall obey the general degrees of freedom equation (Eq. (2)). 
3. On the axis of each gear, there must be a revolute joint. 
4. A carrier is located between each gear pair to maintain a constant distance between the two gears. 
5. There cannot be any partial mobility; each link must be capable of unlimited rotation. 

Table 1. The numerical correspondence relationship between PGMs and their rooted graphs. 

Rooted Graphs Symbol PGMs Symbol 

Vertices v Links n 

Edges e Joints J 

Revolute edges er Revolute joints Jr 
Geared edges eg Geared joints Jg 

Vertices of degree i vi Links having i joints ni 
Degree of vertex i di Joints on link i di 
Independent loops L Independent loops L 
Total loops (7 +  1) L̃ Total loops (L +  1) L̃ 
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3.2. Fundamental characteristics of the graphs of PGMs 

The graph of a PGM of (3) links possess the following characteristics [5, 26]:  
C1. The graph has (�) vertices and (� − 1) revolute edges. 
C2. The number of geared edges equals the difference between the number of revolute edges and the DOF of the PGM. 
C3. A spanning tree is obtained by removing all of the gear edges from the graph. 
C4. Any geared edge added to the spanning tree creates a fundamental circuit with one geared edge and multiple revolute 

edges. 
C5. The total number of fundamental circuits is equal to the total number of geared edges. 
C6. The revolute edges are labeled based on where their axes are in space. 
C7. A tree must be formed by all revolute edges with the same label. 
C8. There is one vertex in each fundamental circuit called the transfer vertex; all edges on one side of the transfer vertex have 

the same label, while edges on the opposite side of the transfer vertex have a different label. 

3.3. Isomorphic identification methodology 

3.3.1. Vertex degree string for spanning trees 

Using the rooted graph, it is possible to differentiate explicitly the similarities and differences between numerous PGMs. 
Specifically, the vertices may be subdivided into many levels. The root is located at the ground level. First-level vertex refers to a 
vertex that has a direct connection to the root by a single revolute edge. If a vertex has two revolute edges connecting it to its root, 
it is considered to be of the second level. This may be repeated on subsequent levels, if applicable. Vertex levels are shown in Fig. 
4: vertex 0 is on the ground level, vertices 1, 2, and 3 are on the first level, vertices 4, and 5 are on the second level, and vertex 6 is 
on the third level. 

Graphs may be classified into families based on their spanning trees. Graphs from distinct families cannot be isomorphic. Two 
graphs with different spanning trees are not isomorphic. The degree of a vertex ., denoted by B,, is the number of edges that are 
incident with it. The vertex degree string is used to classify spanning trees. It is defined as an ascending sequence of numbers 
denoting the degree of vertices beginning from ground level. In particular, the first number in the vertex degree string denotes the 
degree of the ground vertex, the second denotes the degree of the vertex with the highest vertex degree in the first level, and so 
on. For example, the spanning tree shown in Fig. 4 (b) has a vertex degree string of 3:311:21:1. 

The first step in identifying isomorphism is to classify graphs depending on their VDSs. Isomorphism is not possible in graphs 
with different VDSs. The required condition for testing graph isomorphism is provided by the VDSs of spanning trees. When there 
is no one-to-one correspondence between the vertices of two graphs, we say that they are not isomorphic, and we test this by 
comparing their correspondence. 

Figure 5 depicts two rooted graphs with seven links and nine edges. Figure 5(a) shows the vertices extending to the third level, 
while Fig. 5(b) shows the vertices reaching the second level. Hence, their spanning trees have VDSs of 3:311:21:1 and 3:321:111, 
respectively. Therefore, they are not isomorphic. 

3.3.2. Isomorphic identification number 

The number of edges that are incident with a vertex . is referred to as its degree, and it is represented by the notation B,. In the 
graph depicted in Fig. 5(a), the degree of the vertices numbered 0, 1, 4, and 5 is three, whereas the degree of the vertices numbered 
2, 3, and 6 is two. In mathematical expression, B0 = 3, B1 = 3, B2 = 2, B3 = 2, B4 = 3, B5 = 3,  and B6 = 2. 

The vertex degrees of the vertices of a graph can be used to classify the vertices of the graph. The vertex degree array (VDA) is 
a set of numbers that collectively indicate the degrees of the vertices. These numbers are denoted by the following notation: [B0, B1, B2,… , BF−1]. 

1 = [B0, B1, B2,… , BF−1] (17) 

The VDA for Fig. 4(a) can be written down as [3 3 2 2 3 3 2]. 

  

(a) Rooted graph. (b) Spanning tree. 

Fig. 4. Vertex levels. 

 

  

(a) VDSs = 3:311:21:1 (b) VDSs = 3:321:111 

Fig. 5. VDSs of Two rooted graphs with seven links and nine edges. 

Ground level 

First-level 

Second-level 

Third-level 
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(a) VDSs = 3:4 1 1:2 1 1:1 (b) VDSs = 3:4 1 1:2 1 1:1 

Fig. 6. Graphs of two 3-DOF PGMs with 8 links and the same VDS. 

The weighted vertex degree array is formed by giving the value of two to edges that are geared and the value of one to edges 
that are revolute. Edges �14, �24, and �46, for example, are incident with vertex 4 in Fig. 4(a). Because the weights of the edges are 1, 
2, and 1, respectively, the weighted vertex degree of vertex 4 is 1 + 2 + 1 = 4. In symbolic representation, the weighted vertex 
degree array is as follows: 

1H = [B0H, B1H, B2H,… , B(F−1)H] (18) 

The vertex-circuit matrix, denoted by the symbol IF, is defined as follows: 

IF =
⎣⎢
⎢⎢
⎡   J.KJL.M N    J1,1 J1,2 ⋯ J1,P��KM�Q � J2,1 J2,2 ⋯ J2,P ⋮ ⋮ ⋮ ⋮ JF,1 JF,2 ⋯ JF,P⎦

⎥⎥
⎥⎤
 (19) 

where 

IF(�, N) = {1    .+ ��KM�Q � .S T ��KM�Q 2+ J.KJL.M N, 0    2Mℎ�KV.S�.   

Since there are eg fundamental circuits, each of which is created by a single geared edge, IF is a � × �! matrix. 
The two graphs in Fig. 6 feature the same spanning tree VDS [3:4 1 1:2 1 1:1] and four identical fundamental circuits. 
The graphs make it easy to find the four fundamental circuits. For Fig. 6 (a), J1 = {�0, �1, �2, �4}, J2 = {�0, �2, �3, �6}, J3 ={�2, �4, �5}, and J4 = {�2, �5, �6, �7}, For Fig. 6(b), J1 = {�0, �1, �2, �4}, J2 = {�0, �2, �3, �6}, J3 = {�2, �5, �6}, and J4 = {�2, �4, �5, �7}. By 

giving revolute edges a weight of one and geared edges a weight of two, the WVDAs of the two graphs are (Dw)a = [3 3 4 3 5 4 5 3], 
and (Dw)b = [3 3 4 3 4 5 5 3]. 

The visual and mathematical detection of structural isomorphism is made possible by graph adjacency characteristics. The 
embedded spanning tree and the positions of the fundamental circuits in the graph determine the graph's adjacency 
characteristics. This is accomplished by multiplying the weighted vertex degree array 1H by the weighted vertex-circuit matrix [IF]H. This results in a solution known as the fundamental circuit assortment array (FCAA): 

�I__ = 1H [IF]H (20) 

To obtain the circuit degree string, the elements of FCAA are arranged in a descending order of circuit degrees. It can be 
written in sequence with the vertex degree string of the spanning tree to obtain the isomorphic identification number (IIN). 

The following is a description of the isomorphic identification algorithm: 
1. Check if two graphs are isomorphic by comparing their spanning tree VDSs. If identical, continue to step 2. 
2. Find the weighted vertex degree array (WVDA) and the fundamental circuit assortment array (FCAA). 
3. Obtain the isomorphic identification number 
4. In order for two graphs to be isomorphic, their isomorphic identification numbers must match.  
The vertex-circuit matrix for Fig. 6(a) is:  

[IF]H` =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

 J1 J2 J3 J4�0 3 3 0 0�1 3 0 0 0�2 4 4 4 4�3 0 3 0 0�4 5 0 5 0�5 0 0 4 4�6 0 5 0 5�7 0 0 0 3 ⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (21) 

Therefore, From Eq. (20), the fundamental circuit assortment array (FCAA) is: 

(�I__)` = [3 3 4 3 5 4 5 3]

⎣⎢
⎢⎢
⎢⎢
⎢⎡
3 3 0 03 0 0 04 4 4 40 3 0 05 0 5 00 0 4 40 5 0 50 0 0 3⎦⎥

⎥⎥
⎥⎥
⎥⎤

=
⎣⎢
⎡57595966⎦⎥

⎤
 (22) 
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The circuit degree string is, I1b = 66595957. 
The isomorphic identification number is: 

(ccd)` = 3411211166595957 (23) 

Similarly, 

(�I__)e = [3 3 4 3 4 5 5 3]

⎣⎢
⎢⎢
⎢⎢
⎢⎡

3 3 0 03 0 0 04 4 4 40 3 0 04 0 0 40 0 5 50 5 5 00 0 0 3⎦⎥
⎥⎥
⎥⎥
⎥⎤

=
⎣⎢
⎡50596666⎦⎥

⎤
 (24) 

Therefore, (ccd)e = 3411211166665950 ≠ (ccd)`. Since (ccd)` ≠ (ccd)e, the two graphs shown in Fig. 6 are non-isomorphic. 

4. Fractionated Graph Detection 

4.1. Reachability Matrix  

The reachability matrix (RM) can be used to determine whether a path exists in a graph between any two vertices. The (., g)/ℎ 
entry in the RM of a v-vertex graph has the value 1 if there is a path from �, to �- and 0 otherwise. Therefore, the reachability 

matrix can be written as a � × � zero-one matrix as following: 

K&(., g) = { 1     .+ Mℎ�K� .S T iTMℎ +K2& ��KM�Q �, M2 ��KM�Q �- 0     2Mℎ�KV.S�                                                                        (25) 

Each entry K&(., .) is one since every �, has a path to itself. 
The number of different paths of length � from �, to �-, equals the (., g)/ℎ entry [T(., g)]F of (_)F where _ is the adjacency matrix 

of the graph. The reachability matrix is the logical matrix of (Ã + c)F−1
 where Ã  is the reduced adjacency matrix and c is the 

identity matrix. The new technique is not concerned with the actual number of paths of length (� − 1) in the graph; rather, it is 
concerned with whether or not a path exists. 

4.2. The fractionated detection algorithm 

To determine whether a PGT is non-fractionated, we first remove the revolute joints with the same labeling and separate the 
upper-level vertices connected to them individually. A PGT is said to be fractionated if at least one of its resulting sub-graphs is 
also fractionated. This acts as the foundation for the subsequent detection algorithm. 

Step 1: Create a graph for the given PGT. 
Step 2: Generate a sub-graph by deleting the root vertex. When a vertex is removed, all the edges that are incident to it are 
also removed.  
Step 3: Among the vertices that are incident by the deleted edges, check for the presence of a vertex having a degree of at least 
two. It is obvious that a separation link has to be at least a binary link or the cut vertex must have a degree of at least two. If 
the graph has no such vertex, then it cannot be fractionated. If there is at least one such vertex, you can move on to the next 
step. 
Step 4: Remove one of the vertices with a degree of two or higher. 
Step 5: Check if there are two sub-graphs or more, then, the graph is fractionated and there is no need for additional 
verification. If not proceed to the next step. 
Step 6: Repeat step 3 by choosing a different vertex as many times as needed. If no cut vertex is detected, proceed to the next 
step. 
Step 7: Delete another group of revolute joints with the same labeling from the original graph. Then, repeat step 3 until all 
groups are examined. 
The fractionated detection algorithm can be visualized graphically as shown in Fig. 7.  
By eliminating the root vertex, we obtain the graph depicted in Fig. 7(b). The three vertices that are incident by the removed 

edges in Fig. 7(b) are v1, v2, and v3, with vertex 1 having a degree of 3. Figure 7(c) is the result of removing vertex 1. Because Fig. 7(c) 
has two sub-graphs, the graph is fractionated, and vertex 1 is the cut vertex. 

4.3. Computer implementation 

The adjacency matrix for the graph represented in Fig. 7(a) is as follows: 
 

   

(a) The graph of 7-link 3-DOF PGM. (b) After deleting the root vertex. (c) After deleting vertex 1. 

Fig. 7. The fractionation process of 7-link 3-DOF PGM. 



The Structural Synthesis of Non-fractionated, Three-degree-of-freedom Planetary Gear Mechanisms 213 
 

Journal of Applied and Computational Mechanics, Vol. 10, No. 1, (2024), 205-223 

_ =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

 �0 �1 �2 �3 ⋮ �4 �5 �6�0 0 1 1 1 ⋮ 0 0 0�1 1 0 0 0 ⋮ 1 1 1�2 1 0 0 0 ⋮ 0 0 1�3 1 0 0 0 ⋮ 0 1 0⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯�4 0 1 0 0 ⋮ 0 1 0�5 0 1 0 1 ⋮ 1 0 0�6 0 1 1 0 ⋮ 0 0 0 ⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (26) 

The reduced adjacency matrix is obtained by deleting row 1 and column 1: 

_̃ =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡  �1 �2 �3 ⋮ �4 �5 �6�1 0 0 0 ⋮ 1 1 1�2 0 0 0 ⋮ 0 0 1�3 0 0 0 ⋮ 0 1 0⋯ ⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯�4 1 0 0 ⋮ 0 1 0�5 1 0 1 ⋮ 1 0 0�6 1 1 0 ⋮ 0 0 0 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤
 (27) 

The three vertices that are incident by the removed edges are v1, v2, v3, and vertex 1 has a degree more than 2. By removing 

vertex 1, we get the matrix  Ã−v1. The (Ã−v1 + I) matrix is then obtained, where I is the identity matrix. The identity matrix is 

added since every vertex has a path to itself: 

_−̃F1 + c =
⎣⎢
⎢⎢
⎢⎢
⎢⎡

 �2 �3 ⋮ �4 �5 �6�2 1 0 ⋮ 0 0 1�3 0 1 ⋮ 0 1 0⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯�4 0 0 ⋮ 1 1 0�5 0 1 ⋮ 1 1 0�6 1 0 ⋮ 0 0 1 ⎦⎥
⎥⎥
⎥⎥
⎥⎤
 (28) 

and, 

(_−̃F1 + c)F−1 =
⎣⎢
⎢⎢
⎢⎢
⎢⎡

 �2 �3 ⋮ �4 �5 �6�2 16 0 ⋮ 0 0 16�3 0 21 ⋮ 20 29 0⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯�4 0 20 ⋮ 21 29 0�5 0 29 ⋮ 29 41 0�6 16 0 ⋮ 0 0 16⎦⎥
⎥⎥
⎥⎥
⎥⎤
 (29) 

The reachability matrix is the logical matrix of (_−̃F1 + c)F−1
 and can be calculated by using a MATLAB program as: 

op =
⎣⎢
⎢⎢
⎡1 0 0 0 10 1 1 1 00 1 1 1 00 1 1 1 01 0 0 0 1⎦⎥

⎥⎥
⎤
 (30) 

The presence of zeroes in RM after removing vertex 1 shows the existence of a cut vertex, which disconnects the graph. 

5. Systematic Synthesis Methodology 

To construct all n-link 3-DOF PGM graphs, simply add � − 4 geared edge to each 3-vertex spanning tree, as specified by the 
fundamental rules. The following is a brief summary of a systematic approach to the structural synthesis of n-link 3-DOF PGMs: 

1. List all 3-vertex spanning trees. 
2. Enumerate the different 3-vertex geared graphs that can be created from each spanning tree via the addition of 3 − 4 

geared edges. 
3. Nevertheless, there is a possibility that some of the synthesized graphs will not meet the required fundamental 

characteristics C1-C8. Graphs with gears that don't adhere to the fundamental characteristics should be eliminated. 
4. If two geared graphs share the same spanning tree, but have distinct isomorphic identification numbers, then the graphs 

are not isomorphic. It is correct that geared graphs synthesized from distinct sets of spanning trees do not share any 
common properties. 

5. All 3-vertex spanning trees must be employed, therefore repeat Steps 2–4 until that happens. 
6. Determine the fractionated PGTs and eliminate them to complete the catalog of 3-link three-DOF PGM graphs. 
Synthesis of non-fractionated 3-DOF PGMs with non-isomorphic structures is performed based on an atlas of spanning trees. 

The main objective of PGM synthesizing is to produce all possible geared graphs. Each geared graph correlates to a certain 
topology and function of a PGM. Figure 8 depicts the flowchart of the synthesis process. 

5.1. Synthesis of spanning trees  

The revolute edges can be represented by a spanning tree.  The spanning tree for the graph displayed in Fig. 4 is shown in Fig. 
9. The axes' positions in space are denoted a, b, and c. However, same-level revolute edges are generally known to be identical to 
multiple-joint [5, 15, 25, 44]. 

In the new graph representation, the edges of identical labels that are incident to the same vertex are denoted by a dotted 
polyline. Figure 9(b) shows a dotted polyline spanning tree. The number of distinct labels is equal to the number of single edges 
and/or dotted polylines, which is a major benefit of using a dotted polyline spanning tree. 
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Fig. 8. Flowchart for the synthesis process. 

  
(a) Edge labeled spanning tree. (b) Multiple joint spanning tree. 

Fig. 9. The spanning tree for the graph displayed in Fig. 4(a). 

The link assortment array of a spanning tree is written as [q1, q2, q3,… , q'], where q1, q2, q3  …… q' are the numbers of vertices 
of degree one, two, there, ..., &, respectively. The parameter & is the maximal vertex degree in a graph and is calculated by the 
following equation. & =  7 +  1 =  3 –  � . All possible link assortments of spanning trees satisfy the following two equations: 

q1 + q2 + q3 + ⋯+ q' = � (31) 

q1 + 2 q2 +  3q3 + ⋯+ &q' = 2(� − 1) (32) 

Consider the spanning trees of seven-link three-DOF PGMs, with � =  7, � =  3, and & =  7 –  3 = 4. We obtain from Eqs. (31) 
and (32): 

q1 + q2 + q3 + q4 = 7 (33) 

q1 + 2 q2 +  3q3,+4q4 = 12 (34) 

A nested-If statements MATLAB software can be used to derive the solutions to Equations (33) and (34). Five link assortments 
can be obtained, namely [2, 5, 0, 0], [3, 3, 1, 0], [4, 1, 2, 0], [4, 2, 0, 1], and [5, 0, 1, 1]. An array of integers [B1, B2, B3,… , B'] representing 
the number of vertices with the same degree in ascending order is called a VDA. As an illustration, the array of vertex degrees for 
the link assortment [4, 2, 0, 1] is [4, 2, 2, 1, 1, 1, 1]. Families are used to classify VDAs. 

Family 1: [4, 3, 1, 1, 1, 1, 1], [4, 2, 2, 1, 1, 1, 1] 
Family 2: [3, 3, 2, 1, 1, 1, 1], [3, 2, 2, 2, 1, 1, 1] 
Family 3: [2, 2, 2, 2, 2, 1, 1] 

Input N and DOF 

Solve spanning tree equations q1 + q2 + q3 + ⋯+ q' = � q1 + 2q2 + 3q3 + ⋯+ &q' = 2(� − 1) 
Solve geared graph equations q2 + q3 + q4 + ⋯+ q' = � 2q2 + 3q3 + 4q4 + ⋯+ &q' = 2� 

Obtain the VDAs  

Geared graph synthesis 

Obtain the spanning tree graphs.  

Spanning tree synthesis 

Obtain the VDAs  

Determine the transfer vertices 

Remove the graphs that contradict the VDAs of the geared graphs. 

Determine the 
edge level 

Acquire all the potential PGM graphs  

Isomorphism detection 

Acquire all the potential PGMs 

Add geared edges 

Fractionation detection 
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[4, 3, 1, 1, 1, 1, 1]   

 

   

(a) Spanning trees resulting from the VDA [4, 3, 1, 1, 1, 1, 1]. 

[4, 2, 2, 1, 1, 1, 1] 

  

 

   

   

[3, 3, 2, 1, 1, 1, 1] 

  

 

  

 

   

   

[3, 2, 2, 2, 1, 1, 1] 

   

 

  

  

 

  

 

[2, 2, 2, 2, 2, 1, 1] 

   

(b) Spanning trees resulting from the VDAs [4, 2, 2, 1, 1, 1, 1], [3, 3, 2, 1, 1, 1, 1], [3, 2, 2, 2, 1, 1, 1], and [2, 2, 2, 2, 2, 1, 1]. 

Fig. 10. Spanning trees resulting from the five VDAs. 



216 Sajad H. Abdali and Essam L. Esmail, Vol. 10, No. 1, 2024 

 

Journal of Applied and Computational Mechanics, Vol. 10, No. 1, (2024), 205-223 

Table 2. VDAs of the parent graphs. 

VDAs of the parent graphs 

[3, 3, 3, 3, 2, 2, 2] 

[4, 3, 3, 2, 2, 2, 2] 

[4, 4, 2, 2, 2, 2, 2] 

Figure 10(a) illustrates the spanning trees produced from the VDA [4, 3, 1, 1, 1, 1, 1]. Using the five VDAs, we counted thirty-six 
spanning trees, as shown in Figs. 10 (a) and (b). These spanning trees can be used to generate 3-DOF PGMs with non-fractionated 
2-DOF PGTs. 

Problems with determining the TV for each FC arise when trying to automate the parent graph technique [29]. The newly 
proposed approach, on the other hand, can quickly identify TVs from a spanning tree. Since all labeled spanning trees correspond 
to non-isomorphic tree topologies, it appears that geared graphs must be created from all spanning trees, followed by an 
isomorphic check that yields an exhaustive list of candidates 

5.2. Synthesis of geared graphs 

The primary process in generating geared graphs is to add geared edges to spanning trees. A geared edge can only be incident 
with a pair of vertices if the path connecting them contains exactly two revolute edges. There are 3 − 4 geared edges in an n-link 
3-DOF PGM graph. The number of independent loops is 7 = �!  =  3 −  1 −  � . Using the following equations, every potential link 
combination for 3-DOF PGMs with seven links can be calculated. 

q2 + q3 + q4 + ⋯+ q' = � (35) 

  2q2 + 3q3 + 4q4 + ⋯+ &q' = 2� (36) 

With � =  7, � =  3, � = 9, and & =  7 –  3 = 4, we obtain from Eqs. (35) and (36) 

q2 + q3 + q4 = 7 (37) 

2q2 + 3q3 + 4q4 = 18 (38) 

Equations (37) and (38) can be solved using a MATLAB program with nested If statements. Three link assortments can be 
obtained, namely [3, 4, 0], [4, 2, 1], and [5, 0, 2]. The corresponding VDAs are shown in Table 2. 

For the addition of geared edges, the following guidelines are applied: 
G1: It is not possible to join two vertices on the same dotted polyline using gear edges. 
G2: A geared edge can only be incident with a pair of vertices if the path linking them has exactly two revolute edges, two 

polylines, or a revolute edge and a polyline. 
G3: The geared graphs are guaranteed to be closed-loop graphs by imposing a minimum vertex degree of 2, i.e., by checking 

that the array of vertex degrees is consistent with the list of permitted vertex degrees. 
G3: Check for probable graph isomorphism for each geared graph created. 
G4: It is essential to ensure that no sub-chains are locked; in Fig. 11(f), for example, the presence of the loop created by geared 

edges forces the gear train to depend on particular link length dimensions to accomplish mobility or prevents obtaining valid 
transfer vertices. 

 

 

(a) 

  

(b) Case (1) (c) Case (2)  

  

(d) VDA=[4, 4, 3, 2, 2, 2, 1]. Violate the VDAs of the geared graph. (e) VDA=[4, 4, 3, 2, 2, 2, 1]. Violate the VDAs of the geared graph. 

Fig. 11. Adding geared edges to a spanning tree and the resulting VDA. 
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(f) VDA=[4, 3, 3, 3, 3, 1, 1]. 

Violate the VDAs of the geared graph. 

(g) isomorphic to Fig. 11(i) 

VDA=[4, 3, 3, 2, 2, 2, 2] 

  

(h) VDA=[4, 3, 3, 3, 2, 2, 1]. 

Violate the VDAs of the geared graph. 

(i) isomorphic to Fig. 11(g) 

VDA=[4, 3, 3, 2, 2, 2, 2] 

  
(j) VDA=[4, 4, 3, 2, 2, 2, 1]. 

Violate the VDAs of the parent graph. 

(k) VDA=[4, 4, 3, 2, 2, 2, 1]. 

Violate the VDAs of the parent graph. 

Fig. 11. Continued. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

(i) (j) (k) (l) 

    

(m) (n) (i) (j) 

Fig. 12. The non-isomorphic geared graphs for 7-link 3-DOF PGMs. 

Figure 11(a) depicts a spanning tree that will be used to illustrate the concept of adding geared edges. There are three geared 
edges to be added. Because the two second level vertices in Fig. 11(a), vertices 5 and 6, are incident to a common vertex, vertex 2, 
two possibilities exist: 

Case (1): One geared edge joins the two second-level vertices, and the graph requires two additional geared edges to be 
finished. To prevent the formation of a redundant link, the first-level vertices (1, 3, and 4) should be incident by a minimum of one 
geared edge. Two geared edges added to three first-level vertices will result in one vertex lacking an incident-geared edge. 

Case (2): There is no geared edge connecting the two second level vertices. The two vertices on the second level will be 
connected to the three vertices on the first level, which are numbered 1, 3, and 4. This will require the utilization of all three 
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geared edges. To avoid the creation of redundant links, each of the three first-level vertices must be linked by a single geared edge. 
As a result, the three geared edges can be distributed between the two second-level vertices in four different ways. The following 
are the distributions: (3+0), (2+1), (1+2), and (0+3). As a result of the similarities between the vertices 1, 3, and 4, two isomorphic 
graphs emerge from the (1+2) and (2+1) distributions, as will be discussed in the following section. As a result, the three geared 
edges can only be distributed among the three first-level vertices in one distinct non-isomorphic method. All of images (d), (e), (f), 
(h), (j), and (k) in Fig. 11 violate the VDAs of the parent graph. At this point, it is essential to check the isomorphism for all 7-link 3-
DOF PGM graphs generated. 

5.3. Isomorphism detection 

Isomorphic geared graphs can be identified using the isomorphic detection approach described in section 3.3. Each graph has 
a unique isomorphic identification number. All the non-isomorphic graphs for 7-link 3-DOF PGMs are shown in Fig. 12. 
Isomorphic graphs (not shown) have the same value of isomorphic identification number. 

5.4. Fractionated graph detection 

The fractionated 2-DOF PGTs are eliminated using the fractionation identification technique. All the 7-link 3-DOF graphs with 
non-fractionated 2-DOF PGTs are shown in Fig. 13. 

6. Results and Discussion 

6.1. Results 

In this work, we propose an approach for synthesizing 3-DOF PGMs (or 2-DOF PGTs). First, 3-DOF PGM-spanning trees are 
synthesized. All feasible link assortments are formed for a given number of links n, according to Eqs. (31) and (32). Labeled 
spanning trees corresponding to non-isomorphic tree topologies are constructed based on the link assortments, transfer vertices, 
and vertex levels. The VDAs are obtained using a nested-If statements MATLAB program and the spanning trees are built based on 
the fundamental characteristics of the PGT graphs. Seven-link spanning trees for the vertex degree array [4, 3, 1, 1, 1, 1, 1] are 
shown in Fig. 10(a), and a complete list of all 36 such trees is provided in Fig. 10(b).  

Second, 3-DOF PGMs are synthesized using the labelled spanning tree atlas. From the labelled spanning trees, potential geared 
graphs are constructed by specifying transfer vertices and distributing geared edges. The guidelines for including geared edges 
and how to synthesize geared graphs from spanning trees are outlined in Section 5.2 (Synthesis of geared graphs). A nested 
MATLAB program was used to acquire the arrays of vertex degrees of the geared graphs. It uses if statements. Three vertex degree 
arrays, given in Table 2, are generated and utilized to validate the geared graphs. The geared graphs that violate the vertex degree 
arrays of the parent graph are deleted. Isomorphic geared graphs are identified by comparing the isomorphic identification 
numbers of geared graphs with the same spanning tree. It is true that geared graphs constructed from distinct spanning trees are 
non-isomorphic. All the non-isomorphic geared graphs for 7-link 3-DOF PGMs are shown in Fig. 12.  

It is important to identify and get rid of any fractionated PGTs. Here, we introduce a straightforward new technique for 
identifying fractionated PGT graphs. Previous techniques relied on the rotation graphs rather than displacement graphs to detect 
fractionation. When the graph of a fractionated PGT is transformed into a rotation graph, the cut vertex is the one whose removal 
results in a larger number of components. The new method relies on the successive deletion of revolute joints with the same 
labeling from the geared graphs. A graph is considered to be fractionated if at least one of its resulting sub-graphs is also 
fractionated with a larger number of components using a single application of upper-level vertices separation. Fractionated 
geared graphs are identified using the reachability matrix method. Previous fractionated detection approaches, which relied on 
independent loop combinations, differ significantly from the proposed method. The new method works for all possible graph 
representations and has a straightforward algorithm. All the 7-link 3-DOF graphs with non-fractionated 6-link 2-DOF PGTs are 
shown in Fig. 13.  

6.2. Causes of using rooted graph 

For the graph shown in Fig. 14(a), taken from the work of Yang et al. [29] (Fig. 21(a)), we have � =  8 and �  =  7, �!  =  3. 
Equation (2) gives � =  3(8  −  1) − 2 × 7 − 3 =  4. The graph in Fig. 14(a) can be reconfigured using the vertex selection technique 
to become one with two separating vertices, as seen in Fig. 14. Therefore, it is a fractionated 4-DOF PGM graph. This graph model 
has trouble accurately modeling a PGM containing multiple joints. 

Because of the above-mentioned trouble to accurately modeling a PGM containing multiple joints, the rooted graph (which 
corresponds to its mechanism) was used in this study. The following is an explanation of the advantages of utilizing a rooted 
graph representation. 

 

    

(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Fig. 13. The 7-link 3-DOF graphs with non-fractionated 2-DOF PGTs. 
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(a) 4-DOF PGM graph. (b) Applying vertex selection. (c) Two separating vertices. (d) 2-DOF PGT graph. 

Fig. 14. Fractionation process of the graph taken from the work of Yang and Ding [29] (Fig. 21 (a)). 

  

(a) Labelled rooted graph. (b) Invalid labelled rooted graph. 

  

(c) A PGM with three levels 

a, b, and c. 

(d) A PGM with two levels 

(b and d) on the same shaft. 

Fig. 15. Labelled graphs with distinct edge levels. 

  

(a) Labelled perimeter loop graph. (b) Labelled perimeter loop graph. 

  

(c) A PGM with three levels 

a, b, and c. 

(d) A PGM with two levels 

(b and d) on the same shaft. 

Fig. 16. Lack of correspondence between the functional diagram elements and the hollow vertex graph. 

1. Labeling the edge levels: All revolute edges within a specific polyline region have the same level, however all other revolute 
edges have different levels. Therefore, labeling the edge levels is unnecessary because the edge level details are already 
present in the rooted graph.  

In Fig. 15(a), the edges 0-1, 0-4, and 0-5 are all at the same level. Edges 1-2 and 1-3 are at the same level but differ from the 
preceding one, and edge 4-6 is at a different level. As a result, it is obvious that there are three distinct edge levels. 

Figure 15(a) and 15(b) illustrate two isomorphic rooted graphs with the same number of vertices and edges. Moreover, the 
degrees of the corresponding vertices are identical. They differ only in the labeling of the edge levels. The only difference between 
Figs. 15(c) and 15(d) is the labeling of the edge levels; otherwise, they are structurally identical. In such circumstances, the 
difference is not significant enough to warrant distinguishing whether it is on one or two levels, because the lack of a geared edge 
causes them to be considered on the same level even though if they are on two levels. The current rooted graph representation 
cannot contain a gear joint between two gears rotating in different axes on the same shaft (gears 2 and 3 in both cases). 
Therefore, they are considered to be rotating about the same axis while maintaining the necessary representational consistency. 
As a result, the graph in Fig. 15(a) represents the two mechanisms, whereas Fig. 15(b) is considered to be invalid. 
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(a) (b)  (c) 

 

 

 

(d)  (e) (f) 

Fig. 17. Viable functional diagrams relating to three graphs. 

2. One-to-one correspondence: There is a one-to-one correspondence between the elements of the PGM and those of the rooted 
graph. 
PGM can be graphically represented in a number of methods. Some methods do not always have a one-to-one 

correspondence. When there is a correspondence between the elements of a graph and the elements of its PGM, the numerical 
correspondence relationships given in Table 1 hold. However, the graph representation presented by Yang and Ding [29], 
necessitates the addition of a hollow vertex for any set of revolute edges with the same level. Each time a hollow vertex is added, 
the number of vertices and the number of revolute edges is increased by one. It is presumed that Fig. 16(c) differs from Fig. 16(d) 
only in the labeling of the edge levels, but it actually differs in regard to the number of revolute edges and vertices. As a result, 
there is no correspondence between the elements of the functional schematic diagram and the hollow vertex graph. Therefore, in 
the perimeter loop graph representation, the inserted hollow vertex cannot be handled in the same manner as the solid vertex. 

According to the details provided in the preceding paragraph, the graph in Fig. 16(b) represents the two mechanisms shown in 
(c) and (d). Figure 16(a), in our opinion, refers to a different mechanism, which will be discussed more below. 
3. Uniqueness: For every possible topology of a geared graph, there is a corresponding PGM. 

Each graph shown in Fig. 17 can be converted into a PGM. Using Figs. 17 (a), (b), and (c), for example, viable functional diagrams 
relating to these graphs are given in Figs. 17 (d), (e), and (f). Although the structure of the three PGTs is the same, their PGM 
structures are not. 

The following structural differences can be observed, for instance, between the two PGMs depicted in Figs. 17 (d) and (e): 
1. The first contains a floating carrier while the second does not. 
2. In the first set, the planet gears mesh with each other, but in the second set, they do not. 
3. In the first set, the revolute joints of links 1, 2, and 3 form a multiple-joint with the central shaft as its axis, but in the 

second set, the multiple-joint is formed by links 1, 4, and 5. 
4. In the second set, each planet gear is meshed with the links that have the central shaft as their axis, but in the first set, 

only two of the three planet gears are meshed with the links whose axis is the central shaft. 
The perimeter loop graph shown in Fig. 16 (b) corresponds to the seven-link PGM shown in Fig. 17(e). Figure 16(a) corresponds, 

in our reasoning, to the seven-link PGM depicted in Fig. 17(d), and will be discussed more below. PGMs like the one shown in Fig. 
17(e) cannot be represented in the perimeter loop graph representation. 

Although Yang and Ding [29] developed a method for synthesizing PGTs that utilized parent graphs, there is no one-to-one 
correspondence between the displacement graph and the PGT or PGM. Therefore, if the perimeter loop graph representation [29] 
is used to synthesize 3-DOF PGMs, the whole atlas of PGMs is unlikely to be achieved. 

6.3. Causes of differing results 

1. Kinematic Inversions: Various mechanisms are created by changing the fixed link in a kinematic chain. 
One of the distinctive features of the planetary gear mechanism is the coaxial revolute joints that connect some links to the 

housing. When different joint axes of a PGM are chosen to be connected to the casing, there is no impact on the relative motions 
between any of the links in the chain. On the other hand, the motions that they make in relation to the ground could be quite 
different. 

For example, the rooted graphs shown in Figs. 17 (a), (b), and (c) represent the three PGMs that share the same PGT in Figs. 17 
(d), (e), and (f), where the common joint axes about the fixed link (0) is labeled as "a". As a result, the new method predicts all non-
isomorphic inverted mechanisms. While the perimeter loop method predicts only a single graph (Fig. 16(b)). The perimeter loop 
representation is based on the maximal degree string loop [30], which utilizes the largest vertex degree string (VDS) and ignores 
the rest. As an illustration, in Fig. 16(a), the degrees of vertices 0, 1, 0, 5, 6, 4, 2, and 3 are 3, 2, 3, 3, 2, 3, 2, and 2, respectively. The 
degrees of vertices 0, 5, 6, 4, 2, 0, 1, and 3 in the sequenced maximal loop are 3, 3, 2, 3, 2, 3, 2, and 2, respectively. In each case, the 
loop began from a different hollow vertex. The maximal degree string loop is that with the largest vertex degree string, i.e., 
3323232. The perimeter loop-based technique ignores the PGM with the VDS 3232332. Figure 17(d) shows the PGM with VDS 
3232332; nevertheless, Yang and Ding [29] exclude this PGM since its VDS is not maximal resulting in many PGMs being ignored. 
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Table 3. The results of non-fractionated geared graph synthesis. 

No. of links of the 
PGT 

No. of links of 
the PGM 

No. of 
spanning trees 

No. of non-isomorphic geared 
graphs for 3-DOF PGMs 

No. of 3-DOF graphs with non-
fractionated 2-DOF PGTs 

6 7 24 16 7 

2. Graph Representation: Another possible explanation is that some PGMs cannot be generated using other methods. This can be 
explained as follows: 
The multiple-joint in PGMs represents the revolute joints of the coaxial links that rotate around an axis; it is evident that it 

can be formed from two or more revolute joints. The root vertex represents the fixed link (casing) around which the major axis of 
the coaxial links rotates. The root vertex distinguishes the PGT graph from the PGM graph. When a root is present, the PGT graph 
transforms into a PGM graph. Furthermore, the number of PGMs that can be generated from a PGT is sometimes equal to the 
number of the major axes in the PGT itself. The major axis in Fig. 17(d) is the axis around which the three links 1, 2, and 3 rotate, 
whereas the major axis in Fig. 17(f) is the axis around which the two links 4, and 6 rotate. 

Acyclic graphs and parent graph-based methods cannot produce multiple-joint with fewer than three co-axial links [15, 16, 
29]. This is due to the method used to represent PGT graphs, which states that "if a loop is entirely formed of revolute edges, the 
revolute edges in the loop are deleted, and the solid vertices in the loop are connected to a common hollow vertex by new 
revolute edges". When the number of revolute edges is less than three, it is impossible to form a loop, and thus a hollow vertex 
cannot exist. Therefore, acyclic graphs and parent graph-based methods cannot produce graphs with hollow vertices of degree 
two. Therefore, it cannot produce mechanisms like the one in Fig. 17(f). Figure 13 (d), (e), (f), and (g) show the four new PGMs with 
two coaxial links. 

6.4. Comparison of the results 

The synthesis results of 7-link 3-DOF PGMs (6-link 2-DOF PGTs) reveal the existence of seven non-fractionated mechanisms, 
which are four more than those reported by Tsai and Lin [24], Yang and Ding [29], and Hsu [47]. Table 3 summarizes the results of 
7-link 3-DOF PGMs synthesis. 

The synthesis results of Tsai and Lin [24] for non-fractionated 2-DOF PGTs with 6 links are listed in the first row of Fig. 18. The 
corresponding rooted graphs are shown in the second row. 

The only difference between Fig. 18(b) and 18(c) is the labeling of edge 46 (e46); otherwise, they are graphically identical. Tsai 
and Lin [24] stated that "For six link chains, there are two blocks which have been labeled into three canonical displacement 
graphs." Because no geared edge connects vertices 5 and 6, it is reasonable to consider e45 and e46 to be the same labeled edges. 
Therefore, the graphs in Figs. 18(b) and 18(c) are equivalent to the graph in Fig. 18 (e). 

Some PGM cannot be generated using the generic approach [24]. Figure 19(a), for example, is rejected by the generic approach 
due to the limited capabilities of its graph representation. But in fact, it is equivalent to the non-isomorphic non-fractionated 
graph in Fig. 19(b). 

 

   

(a) (b) (c) 

  

(d)  (e) 

Fig. 18. (a), (b), and (c) Tsai and Lin synthesis results [24], (d) and (e) The corresponding rooted graphs. 

 

  

(a) (b) 

Fig. 19. (a) A rejected graph by the generic approach [24], (b) The equivalent non-isomorphic non-fractionated rooted graph.  
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7. Conclusion 

Because of the troubles to accurately modeling a PGM containing multiple joints, the rooted graph (which corresponds to its 
mechanism) has been used in this study. The advantages of the rooted graph representation over the perimeter loop-based graph 
representation are outlined. There is a one-to-one correspondence between the elements of the PGM and those of the rooted 
graph. All revolute edges within a specific polyline region have the same level, however all other revolute edges have different 
levels. There is one and only one PGM for each feasible topology of a geared graph. The proposed method efficiently detects TVs 
using spanning trees. The method is an improvement over previous methods that were both laborious and highly automated. The 
creation of geared graphs involves creating non-isomorphic tree topologies from all spanning trees and conducting an isomorphic 
check to generate a comprehensive list of candidates. The synthesis results of 7-link 3-DOF PGMs reveal the existence of seven 
non-fractionated mechanisms, which are four more than those reported in the literature. The new method also accurately 
predicts any inverted mechanisms that are not isomorphic to each other. Unlike other approaches, which cannot build graphs 
with hollow vertices of degree two, the rooted graph method can. An approach based on the weighted vertex degree array and the 
weighted vertex-circuit matrix has been developed to find isomorphic graphs. Isomorphic geared graphs are detected by 
comparing the isomorphic identification numbers of geared graphs with the same spanning tree. A simple new technique for 
detecting fractionated PGM graphs is presented. The reachability matrix method is used to locate fractionated geared graphs. 
Previous fractionated detection techniques, which relied on independent loop combinations, differ significantly from the 
proposed method. The novel technique, which has a simple algorithm, works for all possible graph representations. The reasons 
why the results of this study differ from earlier studies have been highlighted and explained. 
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