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Abstract. In this paper, the influence of the Coefficient of Thermal Expansion (CTE) on the thermal stress analysis of laminated 
composite plates is explored. By introducing the undetermined integral terms in the displacement field, a new simple and efficient 
higher-order shear deformation theory is formulated for the thermo-mechanical behavior of thick laminated composite plates. This 
formulation aims to reduce the number of generated unknowns. Typically, a reduced order of the governing partial differential 
equations is expressed using the principle of virtual displacements. By using Navier’s technique, closed-form solutions are derived 
for laminated composite plates under thermal and/or mechanical loading. Unfortunately, several traditional research investigations 
significantly depend on the rule of the mixture to determine reliable CTE for composites. This paper offers and examines a variety 
of analytical micromechanics-based models for estimating CTE in laminated composite materials, incorporating into consideration 
different considerations. The obtained results are compared to those given by other alternative plate theories, and the efficiency 
and accuracy of the present theory are demonstrated for the thermomechanical behavior of laminated composite plates. This study 
reviews and applies several micromechanics-based models, contrary to previous investigations. Laminated composite plates could 
delaminate or crack due to the matrix material's longitudinal CTE, affecting fiber volume fraction and stacking sequence. 
Micromechanics-based approaches are important when arbitrary thermo-mechanical characteristics can generate inaccuracies. 
Interestingly, micromechanics-based models can estimate effective CTE. Schapery, Chamberlain, and Chamis provide models with 
identical longitudinal CTE. For increasing fiber volume fractions, Chamberlain's model is more sensitive to increasing fiber volume 
fractions. Mechanical stress changes laminated plate behavior more than thermal loading. Although all presented 
micromechanical-based models have simplified representations, this research attempts to provide a standard for future 
investigations. The use of detailed micromechanical-based models stimulates further progress in understanding and utilizing 
complex composite plates. 

Keywords: Thermomechanical analysis; laminated plates; advanced plate theory; coefficients of thermal expansion, 
micromechanical analysis. 

1. Introduction 

In recent years, advanced composites have received more interest in various engineering applications. Due to technological 
advancements, these materials are rapidly replacing alternatives in aeronautics, aerospace, and building sectors, as well as in the 
automotive industries. This development can be attributed to the exceptional mechanical and thermal properties of these 
composites, especially their density, which provides an important advantage. Consequently, realistic simulation of composites has 
evolved into a significant field for exploration. In several service environments, the composites are exposed to various loading cases, 
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particularly temperature variations produced by industrial devices and equipment [1-7]. Accurate comprehension of the thermo-
mechanical behavior of laminated composites s is crucial to guarantee their reliability and optimal performance across different 
operating situations. Using random or arbitrary thermo-mechanical parameters to analyze these plates can result in potential 
oversights altering their actual behavior in practical problem settings. Hence, it is crucial to depend on known micromechanics-
based models. The determination of a reliable CTE at the microscopic level is of crucial significance in understanding the thermo-
mechanical stress behavior of laminates at the macroscopic scale. In this spirit, considerable research has been conducted, focusing 
specifically on the estimation of the effective CTE in composite laminates. Chan et al. [8] derived an explicit form of equivalent 
hygro-thermal expansion coefficients of the lumped layer in laminated composites. Fellah et al. [9] evaluated the effect of transverse 
cracks on the effective CTE in composite laminates using the Schapery micromechanics-based model. Karadeniz and Kumlutasc 
[10] proposed a micromechanical analysis of CTE in laminates using finite element simulation, the used model is compared with 
various analytical micromechanics-based models and existing experimental data. Özdemir et al. [11] presented a multi-scale 
analysis method for heat conduction in heterogeneous materials by employing a computational homogenization approach. Dong 
[12] proposed a new model for predicting transverse thermal coefficients, comparing the results with those from finite element 
simulations. Shabana and Noda [13] evaluated the effective thermo-mechanical properties of composites by using both 
homogenization and finite element methods. Sakata et al. [14] formulated a homogenized CTE for fiber-reinforced composites based 
on the equivalent inclusion method and the perturbation method. Igor [15] developed a new formulation of thermal expansion for 
composite materials by using the cross-property connection between thermal expansion and thermal conductivity. Nomura and 
Ball [16] developed a new micromechanical formulation to assess the thermal expansions of unidirectional laminate composites 
across varied temperature fields. Tsukrov et al. [17] predicted the overall thermo-elastic properties of unidirectional composites 
with cylindrical orthotropic constituents by introducing elastic solutions over various load cases. Nawab et al. [18] presented a 
numerical model for CTE in laminates, validating their approach through experimental analysis. Ran et al. [19] proposed a new 
micromechanics-based model for determining the CTE of unidirectional fiber-reinforced composites. Zamri et al. [20] conducted 
both experimental and numerical analyses to predict the CTE of unidirectional Pultruded composites, the authors compared the 
obtained results to those of other well- established micromechanics-based models. Dong et al. [21] investigated experimentally and 
numerically the thermal expansion behaviors of unidirectional composites based on periodic temperature and displacement 
boundary conditions. Cao et al. [22] reported an experimental study to derive the thermal properties of in situ-grown graphene-
reinforced copper matrix laminated composites. Liang et al. [23] discussed the influence of various parameters on the CTE of 
composite multilayered flaky gun propellants based on experimental analysis. Wang [24] introduced a novel homogenization 
technique for predicting the effective mechanical and hygrothermal properties of unidirectional composites. Vignoli et al. [25] 
conducted a comparative study to estimate the effective micromechanical elastic properties of composite materials using 
experimental tests. Graciani et al. [26] used new experimental technology to derive the longitudinal and transverse CTE in curved 
composite laminates. Recently, Rao et al. [27] proposed a micromechanics-based model to predict the hygro-thermo-elastic 
properties of fiber-reinforced composites with a functionally graded interphase. Using the Representative Volume Element approach, 
Sun et al. [28] introduced a multiscale model to evaluate the thermal expansion of 3D composites, accounting for porosity and fiber 
volume fraction. 

In addition, the prediction of the thermal stresses in laminates requires a comprehensive understanding of the CTE and thermal 
characteristics distribution between the constituents at the meso- or micro-scale. The benefits of mathematical modeling for 
laminated plates include a cost-effective and alternative approach to predicting their thermal responses, considering the 
underlying mechanics at the macro level across a variety of problems. Various theories exist in the literature regarding the thermo-
mechanical behaviors of composite laminated plates, based on the classical laminated plate theory and shear deformation 
laminated plate theories. The classical laminated plate theory omits shear deformations and often underestimates the mechanical 
response for thick laminated plates. Recently, attention has focused on developing an efficient shear deformation laminated plate 
theory to address the limitations of classical laminated plate theory. The first-order laminated plate theory includes transverse 
shear deformations with appropriate shear correction factors for composite materials. Higher-order laminated plate theories have 
been introduced to eliminate the need for shear correction factors and to emphasize the significance of transverse shear 
deformation effects on the mechanical responses of laminated composite plates. Zenkour [29] developed a unified higher-order 
shear deformation theory to investigate the static response of laminated plates subjected to thermo-mechanical loads. Khandelwal 
et al. [30] suggested an efficient two-dimensional (2D) higher-order zig-zag theory to study the thermo-mechanical behavior of both 
composites and sandwich laminates under thermo-mechanical loading. Sayyad et al. [31] reformulated a refined plate theory for 
thermo-elastic analysis of laminated composite plates. Using a sinusoidal higher-order laminated plate theory, Ghugal and Kulkarni 
[32] presented a closed-form solution for symmetric cross-ply laminated plates under both linear and nonlinear thermo-mechanical 
loads. Qilin and Zhen [33] formulated a new finite element model based on Reddy’s theory to investigate the thermal stresses in 
laminated composite plates. Naik and Sayyad [34] assessed a new computational model that includes both transverse shear and 
normal deformations to analyze the laminated and sandwich plates under linear thermal load. Zhen and Xiaohui [35] discussed 
the effect of transverse normal thermal strain on the thermo-mechanical behavior of multilayered plates using Reddy’s higher-
order shear deformation laminated plate model. Based on both higher-order zigzag plate theory and the inverse hyperbolic function, 
Garg et al. [36] developed seven unknown displacement field variables to analyze the hygro-thermomechanical response of 
laminated composite and sandwich plates. Joshan et al. [37] presented an analytical solution for studying the thermo-mechanical 
response of laminated composite plates using an inverse hyperbolic shear deformation theory. Joshan et al. [38] proposed a new 
non-polynomial shear deformation theory with only four variables to examine the effect of hygro-thermo-mechanical parameters 
on the static behavior of laminated composite plates. The formulated displacement field includes undetermined integral terms to 
reduce the number of generated unknowns and their related governing equations. Moradi and Mansouri [39] simulated laminated 
plates using the Differential Quadrature Method (DQM) to predict the critical temperature under uniform temperature distribution 
and arbitrary boundary conditions. Zenkour et al. [40] resolved the bending problem of laminated plates by considering various 
temperature distributions and elastic foundation parameters. Sing et al. [41] used a refined higher-order laminated plate theory in 
conjunction with the radial basis formulation to evaluate the critical buckling thermo-mechanical loads. Liu et al. [42] formulated 
a hexahedron hierarchical finite element based on 3D elastic theory and differential quadrature procedure to analyze the thermo-
elastic behavior of laminated plates and shells. Han et al. [43] developed a new generalized higher-order zigzag theory to predict 
the thermo-mechanical behavior of laminated composite plates. Zhen and Chen [44] proposed a refined global/local higher-order 
laminated plate theory with finite element formulation to simulate the effect of hygro-thermo-mechanical loading on laminated 
plate responses. Zuo et al. [45] proposed a wavelet finite element model based on higher-order plate theory to study the coupling 
thermo-mechanical response of laminated composites. Upadhyay et al. [46] studied the nonlinear bending response of laminated 
composites under hygro-thermo-mechanical loads by using a higher-order shear deformation plate theory. Mechab et al. [47] 
presented a detailed investigation of the thermo-mechanical problem of laminated composite plates using a refined higher-order 
plate theory. Belbachir et al. [48] developed a new higher-order plate theory including undetermined integral terms to describe both 
normal and shear strains of laminated composite plates subjected to nonlinear thermo-mechanical loads. Joshan et al. [49] assessed 



226 Noureddine Taibi et al., Vol. 10, No. 2, 2024 
 

Journal of Applied and Computational Mechanics, Vol. 10, No. 2, (2024), 224-244   

various higher-order shear deformation plate theories to investigate the thermo-mechanical behavior of laminated composites. 
Chattibi et al. [50] used a refined four-variable sinusoidal theory to estimate the bending response of laminated composites under 
various thermo-mechanical load cases. Ameri et al. [51] exploited the advantage of a new Quasi-3D shear deformation plate theory 
to demonstrate the effect of hygro-thermo-mechanical load parameters on the bending of laminated thick composites. Maji and 
Mahato [52] reviewed recent research in focus dealing with the development and applications of shear deformation plate theories 
for laminated composites. Overall, these studies illustrate a modest correlation between the micromechanical analysis and the 
global/local behavior of laminated plates in a thermal environment. Mahapatra et al. [53] gave practical importance to 
micromechanics-based models to predict the thermal response of laminated panels by applying Chamis’s approach to evaluate the 
hygro-thermo-elastic constants. Recently, Saidane et al. [54] presented a significant application of micromechanics-based models 
to evaluate the CTE of flax/green epoxy composites. In this study, both Schapery’s and Chamis’s models are explored to derive the 
transverse and longitudinal coefficients of linear thermal expansion for laminated composites with various fiber contents and 
temperature variations. 

The key objective of this research is to highlight the potential effects of CTE on the overall behavior of laminated plates. At the 
outset, an innovative Quasi-3D shear deformation theory is developed to investigate the thermomechanical response of laminated 
composite plates. By using undetermined integral terms to describe the displacement field, this novel theory offers fewer unknown 
variables than previous higher-order theories on laminated plates. This method serves to reduce the differential order of the 
generated governing equations while also allowing for the stretching effect. The following part of this research looks into the effect 
of CTE on the general effectiveness of laminated plates under thermo-mechanical loading. In conclusion, the difficulty of obtaining 
directly comparable experimental data prompted us to focus on a comprehensive theoretical investigation. This claims the current 
work provides a solid theoretical basis that will aid future empirical investigations. 

2. Theoretical Formulation  

2.1. Geometrical aspect 

Assume a laminated composite plate with a constant thickness h, included from rectangular Cartesian coordinates (x, y, z), as 
shown in Fig. 1. The top and bottom surfaces of the plate are each � = ±ℎ/2, respectively; the plate is composed of k-orthotropic 
layers with stacking sequences related to the angle of fiber arrangement for global coordinates [55]. 

2.2. Homogenization models for CTE of laminated composites 

Consider a unidirectional composite layer subjected to normal or shear stresses under mechanical and/or thermal loads. The 
effective material properties, including the longitudinal and transverse modulus, in-plane shear modulus, and coefficient of 
thermal expansion (CTE), are determined through the application of micromechanics-based approaches. These approaches 
establish the relationship between the properties of a unidirectional layer and the inherent attributes of its constituent fibers and 
matrix. The micromechanical-based models presented are well-acknowledged and commonly employed in this field of research. 
Although new models are being developed, most of them are based on complex numerical investigations and are verified by 
comparing them with known models, like the adopted ones. These models provide a systematic framework for investigating small-
scale interactions, enabling precise predictions on a large scale, particularly for the sophisticated characteristics of laminated 
composite materials. In thermo-mechanical cases, the assumed CTE is derived from both thermal strains dealing with material 
expansion and externally applied loads by resolving related systems of equilibrium, constitutive, and strain-displacement 
equations. To avoid these difficulties, the relative micromechanics-based models are considered to derive the CTE, such as Van Fo 
Fy, Schapery, Schneider Chamberlain, and Chamis micromechanics-based models. A typical laminated composite is formed by an 
arrangement of a set of orthotropic composite layers. The material properties of each layer are evaluated by using the volume 
fraction of the components (Fibers and Matrix). In this study, the volume fraction can be stated in the form [56]: 

�	 = 1 − �� (1)

2.2.1. Van Fo Fy model 

Based on the exact elasticity solution of the stress analysis where the fibers are embedded in an isotropic matrix, Van Fo Fy [57] 
formulated both the longitudinal and transverse CTE as:  


1 = 
� − (
� − 
	) (1 + ��)�	�	 − (1 + �	)(�1 − ����)(1 + ��)�	�	  (2a)


2 = 
� + (
� − 
1)�12 − (
� − 
	)(1 + �	) (�� − �12)(�� − �	)  (2b)

2.2.2. Schapery model 

According to Schapery's assumptions [58], effective CTE is derived from the extreme principles of thermo-elasticity in two-
phase composites. Both in-plan and transverse CTE can be stated in the form: 

  
Fig. 1. Laminated composite plate with uniform thickness in the rectangular Cartesian coordinates: geometry and stacking sequence. 
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1 = �	�	
	 + ����
��	�	 + ����  (3a)


2 = (1 + �	)
	�	 + (1 + ��)
��� − 
1(�	�	 + ����) (3b)

2.2.3. Schneider model  

By taking into account the geometrical arrangement of fibers embedded in an elastic matrix, Schneider [59] formulated the 
transverse CTE of cylindrical fibers surrounded by a cylindrical matrix coat as:  


1 = �	�	
	 + ����
��	�	 + ����  (4a)


2 = 
� − (
� − 
	)
⎣⎢
⎢⎡ 2(1 + ��)(��2 − 1)�1 + 1.1�	1.1�	 − 1 − �� + 2��2 � − �� ���	1� + ���	 ⎦⎥

⎥⎤ (4b)

� = 1.1�	1 − 1.1�	
 

(4c)

2.2.4. Chamberlain model 

Chamberlain proposed a novel micromechanics-based model based on the geometry of fiber packaging to predict the effective 
transverse CTE. This model is based on plane stress thick-walled cylinder equations for isotropic fibers embedded in an isotropic 
cylindrical matrix. The following sections explain the resultant effective transverse CTE derived from this model: 


1 = �	�	
	 + ����
��	�	 + ����  (5a)


2 = 
� + 2(
	 − 
�)�	
��(� − 1 + ��) + (� + �	) + ���	 (1 − �	)(� − 1 + ��) (5b)

2.2.5. Chamis model 

Chamis’s model is a widely used micromechanics-based model for the effective properties of laminated composite materials. It 
considers a basic force balance in a system of fiber loading that exhibits transverse isotropy. This approach is used to predict the 
homogenized properties of heterogeneous materials at the macroscopic scale, and the derived transverse thermal expansion 
expression is [60]: 


1 = �	�	
	 + ����
��	�	 + ����  (6a)


2 = 
	√�	 + (1 + √�	)(1 + �	�� ���	 )
� (6b)

2.3. Elastic constants of laminated composites 

Consider a unidirectional fiber-reinforced laminated composite; the effective mechanical properties are obtained using the 
micromechanics-based approach. Various simple micromechanics-based models are presented to derive the engineering elastic 
constants of laminated composites. In this study, three typical models are used: the Rule of Mixture (ROM), the Chamis model, and 
the Hill-Hashin-Christensen-Lo (HHCL) model [61, 62].  

2.3.1. Rule of mixture 

This model is widely used to generate the effective mechanical properties of composite materials. The fiber is considered 
embedded in a plate’s matrix with a rectangular cross-section, and the same thickness is chosen for both the fiber and matrix of 
this composite for computational simplicity. By employing the principles of elasticity, the plane elastic moduli of the composite are 
derived by applying the different uniaxial load cases separately. The overall obtained elastic constants are given by: 

�12 = �	�12	 + ����; 

 �1 = �	�11	 + ���� ; �2 = &'
1−()(1−*'*22) )  ;

 

,12 = ,�
1 − �	 (1 − ,�,12	 ) ; ,23 = ,�

1 − �	 (1 − ,�,23	 ) 

(7)

2.3.2. Chamis model 

Since the rule of mixture overestimates the transverse and shear modulus compared to experimental tests, Hopkins and Chamis 
[63] developed a modified rule of mixture based on the packing geometry of the fiber and dividing the representative volume 
element into several subregions. By applying the stress state in each subregion and considering the fiber is embedded in an annular 
volume of the matrix, the six independent elastic properties are given as follows: 

�12 = �	�12	 + ����; 
 

(8)
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�1 = �	�11	 + ����; �2 = �3 = &'
1−√()(1−*'*22) )  

 

,12 = ,13 = /'
1−√()(1−0'012) ) ; ,23 = /'

1−√()(1−0'023) ) 
  

2.3.3. Hill-Hashin-Christensen-Lo (HHCL) model 

Based on Hill and Hashin's assumptions, the composite is made up of cylindrical fibers that are embedded in a cylindrical 
matrix. The upper and lower bounds for two-phase isotropic materials are defined by the variational energy principle of both strain 
and stress fields. The effective elastic constants are given as a function of bulk and shear modulus related to the fiber and matrix; 
the longitudinal and transverse Young modulus and longitudinal shear modulus can be stated in the form:  

�12 = �	�12	 + ���� + (�12	 − ��)2�	(1 − �	)�	5� + 1 − �	5	 + 1,12
( 15� − 15	)

 

�1 = �	�11	 + ���� + 4(812) −8')2()(1−())
:);'+1−:);) + 1012

; �2 = 2
0.5?@+ 0.5023+2A122

*1  

,12 = ,�
(,12	 + ,�)+�	(,12	 − ,�)
(,12	 + ,�) − �	(,12	 − ,�)

 
5	 = &11)

3(1−2812) ) ; 5� = &'3(1−28')  

BC = 5� + /'3 + ()
1

;)−;'+012) −0'3
+ 1−:)

;'+40'3
  

(9)

Christensen and Lo [62] provided further research to estimate the transverse shear modulus. Their approach is based on the 
lower bound of composites, demonstrating the differences in material properties or phases between fibers and matrix according to 
transverse shear loading. The resulting transverse shear modulus is represented by this equation: 

,23 = ,� ⎝⎜
⎜⎛1 + ()

0'0)−0'+(;'+70'3 )
(;'+80'3 )(1−())⎠⎟

⎟⎞  (10)

2.4. New Quasi-3D shear deformation laminated theory 

The proposed shear deformation theory differs from other higher-order laminate theories in its ability to minimize the number 
of unknowns and governing equations, all without a requirement for shear correction factors. In addition, this theory incorporates 
the effect of stretching to overcome the limitations of 2D laminated plate theories. The importance of this stretching effect cannot 
be understated, especially in the context of thick laminated plates, and thus, it is crucial to consider this effect in our analyses. 

2.4.1. Kinematics 

According to [65-66], their suggested shear deformation plate theory relies on the following assumptions:  
- The in-plane displacements follow the pattern established by the classical laminated plate theory, with additional integral 

terms that have yet to be determined, 
- By applying a hyperbolic variation across the thickness coordinate to these undetermined integral terms, transverse shear 

strains and stresses are generated throughout the plate's thickness,  
- Stress-free boundary conditions on the top and bottom surfaces of the plate can be established without the necessity of shear 

correction factors,  
- The transverse displacement incorporates a stretching component in a manner that generates a hyperbolic variation across 

the thickness of the plate due to the normal stress to the plane.  
Based on these assumptions, the corresponding displacement field is formulated and presented as follows: 

M(N, P, �) = M0(N, P) − � RS0(N, P)RN + 51T(�)∫V (N, P)WN (11a)

X(N, P, �) = X0(N, P) − � RS0(N, P)RP + 52T(�)∫V (N, P)WP (11b)

S(N, P, �) = S0(N, P) + Y(�)V(N, P)  (11c)

where the in-plane displacements M  and X , and the transverse displacement S  of a material point located at (x, y, z) in the 
plate. M0, X0, and S0 represent the displacement unknowns at z = 0 (the mid-plane of a plate), the unknown∫V (N, P) presents the 
undetermined integral term. The coefficients 51 and 52  depend on the geometry of the plate. Furthermore, the warping 
function T(�) gives rise to the hyperbolic variation to vanish the shear stresses on the top and bottom surfaces of the laminated 
plate and is chosen as: 

T(�) = sinh (�
ℎ) _ 15ℎ cosh(�ℎ) + � [cosh(12) + 15ℎ sinh2(12)−ℎ ] _ 15ℎ cosh(12) (12)
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The related nonzero strains associated with the displacement field in Eqs. (11) are [53]: 

{ fgfghgi
} =

⎩{⎨
{⎧ fg0fi0hgi0 ⎭}⎬

}⎫ + �
⎩{⎨
{⎧ 5gs5is5gis ⎭}⎬

}⎫ + T(�)⎩{⎨
{⎧ 5gt5it5git ⎭}⎬

}⎫
 (13a)

{hivhgv} = Y(�){hiv0
hgv0 } (13b)

fv =  Y′(�)fv0 (13c)

By substituting Eqs. (11) into Eqs. (13) the following strain– displacement relationships are obtained for the present Quasi-3D 
shear deformation laminated plate theory: 

⎩{⎨
{⎧ fg0fi0hgi0 ⎭}⎬

}⎫ =
⎩{{⎨
{{⎧ {|0{g{}0{g{|0{i + {}0{g ⎭}}⎬

}}⎫
; 

⎩{⎨
{⎧ 5gs5is5gis ⎭}⎬

}⎫ = −
⎩{{
⎨{
{⎧{2~0{g2

{2~0{i2
{2~0{g{i⎭}}

⎬}
}⎫

 

(14a)

⎩{⎨
{⎧ 5gt5it5git ⎭}⎬

}⎫ =
⎩{{⎨
{{⎧ 51V52V

51 RRP ∫VWN + 52 RRN∫VWP⎭}}⎬
}}⎫

 

(14b)

fv0 = V
 

(14c)

where, 

Y(�) = �	(v)28�v  and Y′(�) = ��(v)�v  (15)

Based on Navier’s method, the integral terms used in this formulation can be explicitly given as: 

{{i ∫ VWN = �′ {2�{g{i ; {{g ∫VWP = �′ {2�{g{i, , 
∫ VWN = �′ {�{g ; ∫ VWP = �′ {�{i  

(16)

The coefficients �′ and �′ are relatively determined from Navier’s method: 

�′ = − 1�2  ; �′ = − 1�2 ; 51 = �2 ; 52 = �2  (17)

where, � = ��/� and � = ��/�. 

2.4.2. Constitutive relations 

The linear constitutive relations of a laminated plate can be written as follows: 

⎩{{
{⎨
{{{
⎧�g�i�v�iv�gv�gi⎭}}

}⎬
}}}
⎫(�)

=

⎣⎢
⎢⎢
⎢⎢
⎢⎡
�̅̅̅̅11 �̅̅̅̅12 �̅̅̅̅13�̅̅̅̅22 �̅̅̅̅23�̅̅̅̅33

0 0 00 0 00 0 0
�P� �̅̅̅̅55 0 0

�̅̅̅̅44 0
�̅̅̅̅66⎦

⎥⎥
⎥⎥
⎥⎥
⎤(�)

⎩{{
{⎨
{{{
⎧ fg − 
g∆�fi − 
i∆�fv − 
v∆�hivhgvhgi − 
gi∆�⎭}}

}⎬
}}}
⎫(�)

 (18)

where (�g, �i , �v, �iv, �gv, �gi)  and (fg, fi , fv, hiv, hgv, hgi)  are the stress and strain components of the kth layer, respectively, and 
(
g, 
i, 
v, 
gi) are CTE. The temperature field is given in the generalized form: 

�(N, P, �) = �0(N, P) + �ℎ�1(N, P) (19)

where T0 presents the constant temperature and T1 is the linear distribution of the temperature.   
The stiffness coefficients, �̅̅̅̅�� associated with each layer k of the laminated composite plate, can be expressed as: 

�̅̅̅̅11 = �11�4 + 2(�12 + 2�66)�2�2 + �22�4; 
�̅̅̅̅12 = (�11 + �22 − 4�66)�2�2 + �12(�4 + �4); 

�̅̅̅̅13 = �13�2 + �23�2; 
�̅̅̅̅22 = �11�4 + 2(�12 + 2�66)�2�2 + �22�4; 

�̅̅̅̅23 = �13�2 + �23�2; 
�̅̅̅̅33 = �33; 

�̅̅̅̅44 = �44�2 + �55�2; 
�̅̅̅̅55 = �55�2 + �44�2; 

�̅̅̅̅66 = (�11 + �22 − 2�12 − 2�66)�2�2 + �66(�4 + �4); 

(20)
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The elastic constants ��� are the three-dimensional elastic constants of orthotropic laminated, given by: 

�11 = 1 − �23�32∆�1�2  ; �12 = �21 − �31�23∆�2�3 = �12 − �32�13∆�1�2   
�13 = �31 + �21�32∆�2�3 = �13 + �12�23∆�1�2  ; �22 = 1 − �13�31∆�1�3  

�23 = �32 + �12�31∆�1�3 = �23 + �21�13∆�1�3  ; �33 = 1 − �12�21∆�1�2  

�44 = ,23 ; �55 = ,13 ; �66 = ,12  
∆ = 1 − �12�21 − �23�32 − �31�13 − 2�21�32�13�1�2�3  

(21)

2.4.3. Governing equations  

Applying the principle of virtual work, reliable variational governing differential equations are derived to define the problem. 
This principle can be elaborated and expressed in the ways that follow:  

0 = ∫
⎣⎢
⎡ ∫ (¡¢ − ¡� )W�

+ℎ/2

−ℎ/2 ⎦⎥
⎤

¤
W� (22)

where ¡¢  is the variation in strain energy; and ¡�  is the variation of potential energy. The variation of strain energy of the plate is 
given by: 

¡¢ = ∫
⎣⎢
⎡ ∫ (�g¡fg + �i¡fi + �v¡fv + �iv¡hiv + �gv¡hgv + �gi¡hgi)

+ℎ/2

−ℎ/2
W�

⎦⎥
⎤W�

¤
 

= ∫[¦g¡fg0 + ¦i¡fi0 + ¦gi¡hgi0 + ¦v¡fv0 + §gs¡5gs + §is¡5is + §gis ¡5gis + §gt¡5gt + §it¡5it + §git ¡5git + �ivt ¡hiv0 + �gvt ¡hgv0 ]W�
¤

 

(23)

where A is the top surface and the resultant forces and moments N, M, and S are defined as: 

⎩{⎨
{⎧¦g ¦i ¦gi§gs §is §gis

§gt §it §git ⎭}⎬
}⎫ = ∫ (�g; �i; �iv){ 1�T(�)}W� ; 

+ℎ/2

−ℎ/2
¦v = ∫ �vY(�)W� ; 

+ℎ/2

−ℎ/2
 

[�ivt �ivt
�gvt �gvt ] = ∫ {�iv�gv} 〈T′(�) Y(�)〉W� ; 

+ℎ/2

−ℎ/2
 

(24)

The variation in the potential energy of the external applied loads can be expressed as:  

¡� = − ∫­¡S0W�
¤

 (25)

where q is the distributed mechanical transverse load. 
Substituting Eqs. (23), and (25) into Eq. (22), taking the variations of ¡¢  and ¡� , integrating by parts, and setting each of the 

coefficients of ¡M0, ¡X0, ¡S0 and ¡V, the following partial differential governing equations of the laminated plate are written as: 

¡M0: R¦gRN + R¦giRP = 0 (26a)

¡X0: R¦giRN + R¦iRP = 0 (26b)

¡S0: R²§gsRN² + 2R²§gis
RNRP + R²§isRP² = ­ (26c)

¡V:  −51�′§gt−52�′§it − (51�′ + 52�′)R²§git
RNRP +51�′R�gvt

RN +52�′R�ivt
RP + R�gvt

RN + R�ivt
RP − ¦v = 0 (26d)

By substituting Eq. (24) into Eq. (18) and substituting the outcome results into Eq. (26), the resultant forces and moments are 
given as: 

{ ¦§ s
§t} = [ � � �t

� ¯ ¯t
�t ¯t °t]{ f5s

5t} + [ ±±²
³ ]fv0 ; � = �th 

¦v = ³²V + ±(fg0 + fi0) + ±²(5gs + 5is) + ³(5gt + 5it) 
(27)

where, 

¦ = {¦g ¦i ¦gi}; § s = {§gs §is §gis };§t = {§gt §it §git }, 

f = {fg0 fi0 hgi0 }; 5s = {5gs 5is 5gis }; 5t = {5gt 5it 5git }  
(28)
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and 

� = ⎣⎢
⎡�11 �12 0�12 �22 00 0 �66⎦⎥

⎤ ; � = ⎣⎢
⎡�11 �12 0�12 �22 00 0 �66⎦⎥

⎤ ; ¯ = ⎣⎢
⎡¯11 ¯12 0¯12 ¯22 00 0 ¯66⎦⎥

⎤ ; (29a)

�t = ⎣⎢
⎡�11t �12t 0�12t �22t 00 0 �66t ⎦⎥

⎤ ; ¯t = ⎣⎢
⎡¯11t ¯12t 0¯12t ¯22t 00 0 ¯66t ⎦⎥

⎤ ; °t = ⎣⎢
⎡°11t °12t 0°12t °22t 00 0 °66t ⎦⎥

⎤ (29b)

� = {�gvt �ivt }, h = {hgv hiv} 

�t = [�44t 00 �55t ] 

⎩{⎨
{⎧±�,�±�,�²

³�,�⎭}⎬
}⎫ = ∫ �̅̅̅̅�� ⎩{⎨

{⎧ [T′(�)]2[Y(�)]2T′(�)Y(�)⎭}⎬
}⎫W� (» = 1,2 ��W ¼ = 3)ℎ/2

−ℎ/2  ; ³33² = ∫ �̅̅̅̅33[Y′(�)]2W� ℎ/2
−ℎ/2

(29c)

Moreover, the stiffness components are given as: 

⎩{⎨
{⎧�11 �11 ¯11�12 �12 ¯12�66 �66 ¯66⎭}⎬

}⎫ = ∫ �̅̅̅̅��(1 � �²)W� ; 
ℎ/2

−ℎ/2 ⎩{⎨
{⎧�11t ¯11t °11t�12t ¯12t ¯12�66t �66 ¯66⎭}⎬

}⎫ = ∫ �̅̅̅̅��(T(�) �T(�) T²(�))W�  
ℎ/2

−ℎ/2
 (30)

and 

�44t = �55t = ∫ �̅̅̅̅��[Y(�)]2W� 
ℎ/2

−ℎ/2
 (31)

Introducing Eq. (27) into Eq. (26), the equations of motion can be written in terms of displacements (M0, X0, S0, V), the related 
equations take the form: 

�11W11M0 + �66W22M0 + (�12 + �66)W12X0 − �11W111S0 − (�12 + 2�66)W122S0 + 51�′�11t W111V+ �66t (51�′ + 52�′)W122V + 52�′�12t W122V + ±13W1V = W1¦gg¾ + W2¦gi¾ ; (32a)

�22W22X0 + �66W11X0 + (�12 + �66)W12M0 − �22W222S0 − (�12 + 2�66)W112S0 + 51�′�12t W112V+ �66t (51�′ + 52�′)W112V + 52�′�22t W222V + ±23W2V = W2¦ii¾ + W1¦gi¾ ; (32b)

�12W111M0 + (�12 + 2�66)(W122M0 + W112X0) + �22W222X0 − ¯11W1111S0 − 2(¯12 + 2¯66)W1122S0 − ¯22W2222S0 + 51�′¯11t W1111V+ 52�′¯22t W2222V + (¯12t + 2¯66t )(51�′ + 52�′)W1122V + ±13² W11V + ±23² W22V = ­ + W11§gg¾ + W22§ii¾ + W12§gi¾ ; (32c)

−(�11t 51 + �12t 52 − ±13)W1M0 − �66t (51�′ + 52�′)(W122M0 + W112X0) − (�12t 51 + �22t 52 − ±23)W2X0 + (¯11t 51 + ¯12t 52 + ±13² )W11S0+ 2¯66t (51�′ + 52�′)W1122S0 + (¯12t 51 + ¯22t 52 + ±23² )W22S0 − (³1351 + ³2352 + ³33² )V− (°11t �′512 + °12t �′5152 + ³13�′51 + (�′51)2 + �55t )W11V − °66t (51�′ + 52�′)2W1122V− (°22t �′522 + °12t �′5152 + ³23�′52 + (�′52)2 + �44t )W22V = −(51¿gg¾ + 52¿ii¾ ) − (51�′ + 52�′)W12¿gi¾ − ¦v¾  

(32d)

where  W� , W�� , W��À, W��À�  are the following differential operators: 

 W� = RRN� , W�� = R2
RN�RN� ,  W��À = R3

RN�RN�RNÀ ,  W��À� = R4
RN�RN�RNÀRN� 

(», ¼, Á, 5 = 1,2) and (N1 = N, N2 = P) 
(33)

The resultant forces and moments, due to thermal loading ¦¾ ,§¾  and ¿¾  are given as: 

¦¾ = {¦g¾ ¦i¾ ¦gi¾ }; §¾ = {§g¾ §i¾ §gi¾ };¿¾ = {¿g¾ ¿i¾ ¿gi¾ } (34)

and 

⎩{⎨
{⎧¦g¾ §g¾ ¿g¾¦i¾ §i¾ ¿i¾¦gi¾ §gi¾ ¿gi¾ ⎭}⎬

}⎫ = ∫ �̅̅̅̅66 {
g
i
v
}(1 � T(�) Y′(�))�W� ; 

+ℎ/2

−ℎ/2
 (35)

3. Mathematical Resolutions 

Examine a simply supported laminated composite plate with dimensions a and b. By applying Navier’s solution procedure for 
the static problem, the following terms of displacements (M0, X0, S0, V) are assumed: 

⎩{⎨
{⎧M0X0S0V ⎭}⎬

}⎫ = ∑ ∑
⎩{{
⎨{
{⎧¢�Ã cos(�N) sin(�P)��Ã sin(�N) cos(�P)Ä�Ã sin(�N) sin(�P)Θ�Ã sin(�N) sin(�P)⎭}}

⎬}
}⎫∞

Ã=1
∞

�=1
 (36)

where (¢�Ã, ��Ã,Ä�Ã,Θ�Ã) are the unknown maximum displacement coefficients. 
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Table 1. Fiber thermo-mechanical properties used in this study [10]. 

Fiber T300 HMS P100 

�1 (GPa) 233.13 379.35 796.63 

�2 (GPa) 23.11 6.21 7.24 

,1 (GPa) 8.97 7.59 6.9 

,2 (GPa) 8.28 2.21 2.62 

�1 0.2 0.2 0.2 

�2 0.4 0.4 0.4 


1(10−6/�°) -0.54 -0.99 -1.40 


2(10−6/�°) 10.08 6.84 6.84 

Table 2. Matrix thermo-mechanical properties used in this study [10]. 

Matrix � (GPa) , (GPa) �  
 (10−6/�°) 
 Epoxy 5208  4.35 1.59 0.37 43.92 

Epoxy CE339  4.35 1.59 0.37 63.36 

Aluminum 2024  73.11 27.58 0.33 23.22 

The same solution is used for the external applied loading: mechanical distribution load q, and thermal load T: 

{ ­�0�1
} = ∑ ∑⎩{⎨

{⎧­�Ã�0̅�1̅ ⎭}⎬
}⎫sin(�N) sin(�P)∞

Ã=1
∞

�=1
 (37)

Substituting Eq. (36) and (37) into Eqs. (32), the following analytical solutions are obtained:  

⎣⎢
⎡�11 �12 �13 �14�12 �22 �23 �24�13 �23 �33 �34�14 �24 �34 �44⎦

⎥⎤
⎩{⎨
{⎧¢�Ã��ÃÄ�ÃΘ�Ã ⎭}⎬

}⎫ =
⎩{{
⎨{
{⎧¿1¾¿2¾¿3¾¿4¾ ⎭}}

⎬}
}⎫

 (38)

where, 

�11 = (�11�2 + �66�2); �12 = ��(�12 + �66); �13 = −�(�11�2 + (�12 + 2�66)�2);  

�14 = �(51�′�11t �2 + 52�′�12t �2 − (51�′ + 52�′)�66t �2 − ±13); �22 = (�66�2 + �22�2); �23 = −�(�22�2 + (�12 + 2�66)�2);   
�24 = �(52�′�22t �2 + 51�′�12t �2 − (51�′ + 52�′)�66t �2 − ±23); �33 = (¯11�4 + 2(¯12 + 2¯66)�2�2 + ¯22�4); 

�34 = −(51�′)�2(¯11t �2+¯12t �2) − 2(51�′ + 52�′)¯66t �2�2 − (52�′)�2(¯12t �2+¯22t �2) + ±13² �2 + ±23² �2; 
�44 = −51(°11t 51�′�2+°12t 52�′�2) + (51�′ + 52�′)2°66t �2�2 − 52(°12t 51�′�2+°22t 52�′�2) + (51�′)2�55t �2 + (52�′)2�44t �2 −(51�′)�2É13 − (52�′)�2É23 + É33 + 51Ê13 + 52Ê23 + �2�±44t + �2�±55t + 2(51�′�2�±55 + 52�′�2�±44); 

¿1¾ = �(�1¾ �0̅ + �1¾ �1̅); ¿2¾ = �(�2¾ �0̅ + �2¾ �1̅); ¿3¾ = −­0 − �2(�1¾ �0̅ + ¯1¾ �1̅) − �2(�2¾ �0̅ + ¯2¾ �1̅);  

¿4¾ = −51(��1¾ �0̅ + ¯�1¾ �1̅) − 52(��2¾ �0̅ + ¯�2¾ �1̅) − ±33¾ �0̅ − ±33²¾ �1̅  

(39)

where, 

(��¾ ��¾ ¯�¾ ���¾ ¯��¾ ) = ∫ �̅̅̅̅�6 {
g
i
v
}(1 � �² T(�) �T(�))�W� 

ℎ/2

−ℎ/2
 (40a)

and 

(±33¾ ±33²¾ ) = ∫ �̅̅̅̅3g6 {
g
i
v
}(1 Y′(�))Y′(�)�W�  

ℎ/2

−ℎ/2
 (40b)

4. Numerical Results and Discussion 

The present subsection provides an assortment of numerical demonstrations that illustrate the critical role of micromechanics-
based models in estimating the thermo-mechanical characteristics of laminated composite plates. Detailed comparison and 
synthesis analyses are offered, and findings from other studies collected from the current literature are stated. The thermo-
mechanical properties of the used matrix and fibers are shown in Tables 1 and 2, respectively. 

The dimensionless parameters are given in the following normalized form to demonstrate the point: 

Ŝ = [Í0Î4
ℎ3Ï + ²1¾2̅Î2

10ℎ ]−1 S(Î2 , s2 , 0) with Ñ = Ò412 [4,12 + &1+(1+Ó12)&21−Ó12Ó21 ];  S̅̅̅̅ = 100ℎ3&2Î4Í0 S(Î2 , s2 , 0); S̅̅̅̅¾ℎ = 10ℎ
1Î2¾1 S(Î2 , s2 , 0); 
(�̅̅̅̅g, �̅̅̅̅i, �̅̅̅̅v, �g̅i) = ℎ2

�2­0 (�g, �i, �v, �gi); (�g̅v, �i̅v) = ℎ�­0 (�gv, �iv); 
(�̅̅̅̅g, �̅̅̅̅i, �̅̅̅̅v, �g̅i)¾ℎ = 10ℎ


1�2�2�1 (�g, �i, �v, �gi)¾ℎ; (�g̅v, �i̅v)¾ℎ = 1

1�2�1 (�gv, �iv)¾ℎ 

(41)
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4.1. Validation and evaluation  

This section aims to compare and validate the obtained results from the developed Quasi-3D theory with those from other 
theories and models. The goal is to evaluate the accuracy and reliability of the present theory. The material characteristics of each 
layer of the laminated plate in this specific subsection are as follows [29, 36-38]: 

 &1&2 = 25 ; �3 = �2 ; /12&2 = 0.5 ; /13&2 = 0.5 ; /23&2 = 0.2 ; �12 = 0.25 ;  �23 = �13 = �12, ²1²2 = 13  ;  ²1²3 = 13  (42)

The dimensionless transversal displacement of simply supported antisymmetric [0°/90°] laminated composite plates under a 
combined sinusoidal thermo-mechanical load is illustrated in Table 3. It is seen that the obtained results present a good agreement 
with those given by using other shear deformation laminated plate theories concerning various length-to-thickness ratios. It should 
be noted that the first-order laminated plate theory requires an appropriate shear correction factor for shear stress. This factor 
depends on various parameters, such as geometry, material properties, and imposed boundary conditions. More operations are 
then required to predict the mechanical behaviors of this class of structures. The computations provided by Zuo et al. [45], and 
Reddy and Hsu [67] are founded on the first shear deformation laminated plate, which overestimates the deflection of thick 
laminated plates. In Zenkour [29], various higher-order shear deformation laminated plate theories are formulated based on both 
sinusoidal and parabolic shape functions. These ensure traction-free boundary conditions at the top and bottom surfaces of the 
laminated plate. The theory used in this study generates five independent unknowns. Zuo et al. [43] also proposed a wavelet finite 
element formulation based on Reddy’s laminated theory. The accuracy of this simulation is determined by the number of 
normalized coordinates relative to the B-spline functions and the use of scaling functions that are complex in computer 
implementation. The results given by Garg et al. [36] are derived using the trigonometric zigzag theory, which is cumbersome and 
computationally expensive. Chattibi et al. [50] utilized refined four-variable shear deformation laminated plate theory with 
sinusoidal distribution for both strains and stress across thickness coordinate. Joshan et al. [37] expressed an inverse hyperbolic 
shear deformation theory to predict the deflection of laminated plates using five unknowns. Similarly, Joshan et al. [38] reduced the 
number of unknowns by introducing undetermined integral variables to calculate the deflection of laminated plates. The 
aforementioned theories overlook the thickness stretching effect, a significant factor, particularly in thick laminated plates. This 
effect enhances the stiffness and strength of the laminated plates, it should be considered when the thickness of laminated plates 
is important and can help in optimizing design and preventing failure if addressed properly. In this context, Ameri et al. [51] 
introduced efficient shear deformation laminated plate theories that account for the thickness stretching effect. The present theory 
demonstrates the same efficiency and precision. It can be also observed that the deflection decreases when the slenderness ratio 
increases. The second example focuses on simply supported laminated plates subjected to sinusoidal thermal loading across a 
range of slenderness ratios. Table 4 offers a comparative study of the obtained results with those reported by other shear 
deformation laminated plate theories. A closer inspection of Table 4 confirms the validity and precision of the obtained 
dimensionless deflections. Importantly, other higher-order shear deformation theories generate a host of unknowns without 
introducing thickness stretching. Moreover, the deflection of laminated composite plates under thermal loading depends on various 
factors, such as the CTE, the stacking sequence of the composite, and the robustness of the used theory to investigate the thermal 
behavior of laminated composite plates. For this load case, the CTE can vary across the different layers using arbitrary coefficients. 
The occurrence of those variations might result in differential thermal expansion, leading to the possibility of generating internal 
deflection within the laminated plate. Consequently, the determined magnitudes of stress and strain could be overestimated since 
the plate is subjected to thermal loading. A comprehensive analysis is often necessary and is typically required to predict accurately 
the behavior of laminated composite plates under thermal loading. As observed, the deflection of laminated plates under thermal 
loading is expected to decrease gradually with increasing slenderness ratio.  

The subsequent example examines laminated composite plates subjected to mechanical loading across different slenderness 
ratios. Table 5 compares the obtained dimensionless deflections with those from other laminated plate theories. After inspection 
of the obtained results, the present formulation demonstrates that the same efficiency is viewed, including the thickness stretching, 
which contributes to enhancing the accuracy and precision of the developed shear deformation theory with only four unknowns 
and integrating the undetermined integral terms. Recall that both first and higher-order shear deformation laminated theories omit 
the stretching effect, often leading to overestimation of deflection in thick laminated composite plates compared to 3D solutions 
by Pagano [68]. To avoid this limitation, the present theory retains a hyperbolic variation for out-of-plan normal strain, in which this 
assumption makes a bridge between 2D higher-order shear deformation theory and 3D elasticity considerations. As can be observed, 
the dimensionless deflection decreases as the slenderness ratio increases and a high magnitude of deflection is observed for a very 
high thickness case. Additionally, the dimensionless stresses of simply supported laminated plates under sinusoidal mechanical 
loading with two slenderness ratios (a/h=10 and a/h=4) are assessed in comparison with results from other theories. The numerical 
results are presented in Table 6. The obtained results are in good agreement with those given by Reddy [69] and Joshan et al. [37], 
based on higher-order shear deformation theory, and Ameri et al. [51] by using Quasi-3D higher-order shear deformation theory, 
and exact elastic solutions given by Pagano [68]. As previously noted, the compared results are founded on the new integral shear 
deformation laminated plate theory that has only four unknowns and retains the thickness stretching. Once again, this example 
demonstrates the efficiently and accuracy of the formulated theory in stress analysis of thicker laminated composite plates. As 
highlighted in this example, the chosen stacking sequence [0°/90°] results in a symmetrical distribution of transverse stresses and 
an asymmetrical distribution of normal stresses. This observation can be considered a critical parameter in estimating the 
mechanical behavior of laminated composite plates. It can be optimized to improve strength, stiffness, delamination resistance, 
and fatigue resistance. 

4.2. Parametric analysis  

The accurateness of thermo-mechanical characteristics relies on the utilization of these micromechanical models, as 
mentioned earlier. It is essential to acknowledge that in a thermo-mechanical analysis, the mechanical and thermal parameters 
are coupled. Any variation to these models based on micromechanics has a direct impact on the performance of laminated 
composite plates. These models analyze the material properties of each layer, enabling a detailed examination of the behavior of 
the composite. Through systematic optimization of these parameters, researchers may expose the complexities of the thermo-
mechanical characteristics, facilitating the development of laminated composite plates that satisfy the most favorable thermal and 
mechanical performance requirements. The aforementioned accuracy, in return, promotes the development of composite materials 
that are more efficient, durable, and reliable. The significance of micromechanical analysis in comprehending the thermo-
mechanical characteristics of laminated composite plates cannot be underestimated, rendering it a crucial study domain for diverse 
sectors. 
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Table 3. Comparisons of dimensionless deflection parameters Ŝ of simply supported laminated [0°/90°] composite plates under combined 
sinusoidal thermal and mechanical loading with other theories and various slenderness ratios (­0 = 100 ; �1̅̅̅ ̅̅̅ = 100 ;  
1 = 10−6). 

Theories 
a/h 

5 6.5 10 12.5 20 25 50 100 

Zuo et al. [45] First-order plate theory 4.0420 3.4671 2.8443 2.7005 2.5448 2.5089 2.4609 2.4488 

Reddy and Hsu [67] 4.0415 3.4666 2.8438 2.7001 2.5443 2.5083 2.4597 2.4541 

Joshan et al. [37] 3.6797 3.2433 2.7602 2.6471 2.5240 2.4955 2.4574 2.4478 

Zenkour [29] Sinusoidal plate theory 3.7821 3.3090 2.7859 2.6636 2.6636 2.4996 2.4584 2.4481 

Zenkour [29] Higher order plate theory 3.8120 3.3273 2.7927 2.6679 2.5321 2.5006 2.4586 2.4481 

Joshan et al. [38] 3.8302 3.3362 2.7950 2.6692 2.5325 2.5009 2.4587 2.4482 

Ameri et al. [51] 3.7384 3.2768 2.7714 2.6540 2.5264 2.4969 2.4576 2.4477 

Zuo et al. [45] Higher-order plate theory 3.8320 3.3375 2.7956 2.6697 2.5329 2.5013 2.4590 2.4484 

Garg et al. [36] 3.8732 3.3608 2.8033 2.6742 2.5343 2.5019 2.4588 2.4481 

Chattibi et al. [50] 3.8013 3.3186 2.7885 2.6650 2.5309 2.4999 2.4585 2.4481 

Present 3.7581 3.2887 2.7757 2.6566 2.5273 2.4974 2.4575 2.4476 

Table 4. Comparisons of dimensionless deflection parameters S̅̅̅̅¾ℎ of simply supported laminated [0°/90°] composite plates under sinusoidal 
thermal loading with other theories and various slenderness ratios (�1̅̅̅ ̅̅̅ = 100). 

Theories 
a/h 

5 6.5 10 12.5 20 25 50 100 

Joshan et al. [37] 1.6955 1.6888 1.6814 1.6796 1.6777 1.6773 1.6767 1.6766 

Joshan et al. [38] 1.6894 1.6848 1.6798 1.6786 1.6773 1.677 1.6767 1.6766 

Reddy and Hsu [67] 1.6765 1.6765 1.6765 1.6765 1.6765 1.6765 1.6765 1.6765 

Zenkour [29] Sinusoidal plate theory 1.6894 1.6848 1.6798 1.6786 1.6773 1.677 1.6767 1.6766 

Zenkour [29] Higher order plate theory 1.691 1.6858 1.6802 1.6789 1.6774 1.6771 1.6767 1.6766 

Mechab et al. [47] 1.6896 1.6849 1.6798 1.6786 1.6773 1.677 1.6767 1.6766 

Ameri et al. [51] 1.6877 1.6843 1.6806 1.6796 1.6783 1.6778 1.6789 1.6766 

Garg et al. [36] 1.6845 1.6818 1.6786 1.6778 1.677 1.6768 1.6765 1.6764 

Chattibi et al. [50] 1.6910 1.6858 1.6802 1.6789 1.6774 1.6771 1.6767 1.6766 

Present 1.6843 1.6810 1.6783 1.6777 1.6772 1.6771 1.6773 1.6775 

Table 5. Comparisons of dimensionless deflection parameters S̅̅̅̅ of simply supported laminated [0°/90°] composite plates under sinusoidal 
mechanical loading with other theories and various slenderness ratios (­0 = 100). 

Theories 
a/h 

2 5 10 20 100 

Joshan et al. [38] 4.5629 1.6671 1.2161 1.1018 1.0651 

Pagano [68] 4.9362 1.7287 1.2318 1.1060 1.0742 

Mindlin [70] 5.4103 1.7627 1.2416 1.1113 1.0653 

Reddy [69] 4.5619 1.6670 1.2161 1.1018 1.0651 

Kim et al. [71] 4.5619 1.6670 1.2161 1.1018 1.0651 

Ameri et al. [51] 4.3401 1.6264 1.2057 1.0991 1.0649 

Present 4.4270 1.6351 1.2076 1.0996 1.0649 

4.2.1. The impact of micromechanics-based models on the mechanical behavior of laminated plates 

To assess the impact of micromechanics-based models on the dimensionless deflection of laminated composite plates, various 
homogenization schemes are considered, namely: Rule of the mixture, Chamis, and Hill-Hashin-Christensen-Lo micromechanics-
based models. In addition, to perform a reliable analysis, various fiber-reinforced material systems are utilized, for carbon fibers: 
T300, High Modulus Strength (HMS), and P100, for embedded matrix, the same Epoxy matrix is used for convenience. Table 7 
presents benchmark results on the dimensionless deflection of fiber-reinforced composite plates subjected to sinusoidal load, 
considering different fiber volume fractions and slenderness ratios. As the fractions increase, the deflections decrease, highlighting 
the enhanced strength and stiffness of the composite due to higher fiber concentration. The P100/Epoxy system has exceptional 
rigidity with minimal deflection, while the T300/Epoxy system tends to exhibit greater deflection. From a modeling perspective, 
both the Rule of Mixture Model and the Chamis Model yield almost identical effective elastic properties for composites.  

The Rule of Mixture Model assumes consistent thicknesses for the fibers and matrix, embedding the fibers within a rectangular 
plate matrix. On the other hand, the Chamis Model takes a more detailed approach by dividing the composite into multiple 
subregions. This leads to comparable deflections that vary slightly when the fiber volume fraction is changed. The HHCL Model 
presents a different approach, where the composite is represented as a cylindrical matrix filled with cylindrical fibers. This model 
places a significant emphasis on the transverse shear modulus and predicts significantly higher deflections, which increase as the 
fiber fractions increase. The slenderness ratio of the plate is an important factor. Thicker plates tend to have higher deflection 
compared to thin plates because the transversal stresses are reduced in the slender plates. This reduction in transversal stresses 
renders the shear properties less significant in models based on micromechanics. Significantly, composites that have a higher 
amount of fiber are at a higher possibility of producing imperfections such as cracks and delamination, which might potentially 
influence the assessment of deflection. This highlights the significance of comprehending the basic limitations of these models 
and promoting the moderate deployment or investigation of more advanced techniques when considered relevant. 

4.2.2. The impact of micromechanics-based models on the thermal behavior of laminated plates  

The following example investigates how various micromechanics-based models, including Van Fo Fy, Schapery, Chamberlain, 
Schneider, and Chamis, influence the dimensionless deflection of laminated composite plates under thermal loading. The analysis 
considers two fiber-reinforced material systems: T300/Epoxy and P100/Epoxy. Table 8 presents the variation of the dimensionless 
deflection as a function of fiber volume fraction for various slenderness ratios. For convenience, the rule of the mixture is employed 
to derive the effective elastic constants. It is important to note that deflections tend to decrease as the volume fraction of fibers 
increases. This occurrence can be related to the fact that the matrix material has a higher CTE in comparison with the fibers. Here, 
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the matrix is more thermally sensitive, and this sensitivity rate to thermal bending is governed by the homogenized CTE of the 
laminated plates. In this case, each micromechanics-based model has its assumptions, and the selection of a model is dependent 
on the complexity of the composite material and the required level of analysis precision. Schneider, Chamberlain, and Chamis 
models assume identical longitudinal CTE, aligning with the Schapery model. For the transverse CTE, thermal deflections show 
marginal differences at high fiber volume fractions. This is because both Schapery's and Chamis's models predict the transverse 
CTE to be directly proportional to the fiber volume fraction. Thus, the deflections change with a slight increment when the 
slenderness ratio increases. The Chamberlain model appears more sensitive to deflection and presents contradictory magnitude 
when the fiber volume fraction increases to 100%. It is remarkable that all micromechanics-based models consistently exhibit even 
magnitude across various preferred and average fiber volume fractions ([40% to 60%] for T300/Epoxy and [20% to 60%] for P100/Epoxy 
laminates). However, fiber reinforcement can also influence the composite material's CTE, specifically, if the fibers have a negative 
CTE (P100 and T300). For instance, in situations where fibers such as P100 and T300 exhibit a negative coefficient of thermal 
expansion (CTE), it can balance the positive CTE of the matrix material. As a result, this leads to a reduction in the overall CTE of 
the composites. 

In another situation, when a temperature change is applied through the laminated plate thickness, the differential expansion 
and contraction of its constituent materials can cause thermal stresses within the laminated plate. These stresses can deform, 
buckle, or even fracture the laminated plate. Factors like the orientation of fibers, their volume fraction, and used homogenization 
model can affect the magnitude and direction of thermal stresses, as well as the overall response of the laminated plate to thermal 
loading. Specifically, if the fibers have a low CTE and are in their optimal orientation with the direction of the thermal stresses, they 
can aid in mitigating the thermal stresses and reducing the laminated plate's sensitivity to laminated problems (delamination, fiber 
buckling...). This scenario might be detrimental in applications where temperature sensitivity is vital during mechanical loading. 

Table 6. Comparisons of dimensionless stresses for simply supported laminated composite plates [0°/90°] under sinusoidal mechanical loading with 
other theories. 

a/h Theories �̅̅̅̅g (�2 , �2 , ℎ2) �̅̅̅̅i (�2 , �2 , ℎ2) �̅̅̅̅v (�2 , �2 , ℎ2) �g̅i (0,0, ℎ2) �g̅v (0, �2 , 0) �i̅v (�2 , 0,0) 

4 

Mindlin [70] 0.7157 0.0843 / 0.0525 / / 

Joshan et al. [38] 0.9060 0.0891 / 0.0577 0.3128 0.3128 

Reddy [69] 0.9060 0.0891 / 0.0577 0.3128 0.3128 

Pagano [68] 0.8410 0.1090 / 0.0591 0.3210 0.3130 

Ameri et al. [51] 0.8949 0.0899 0.0048 0.0573 0.3022 0.3022 

Present 0.8866 0.0888 0.0047 0.0573 0.2971 0.2971 

10 

Mindlin [70] 0.7157 0.0843 / 0.0525 / / 

Joshan et al. [38] 0.7468 0.0851 / 0.0533 0.3190 0.3190 

Reddy [69] 0.7468 0.0851 / 0.0533 0.3190 0.3190 

Pagano [68] 0.7302 0.0886 / 0.0535 0.3310 0.3310 

Ameri et al. [51] 0.7450 0.0854 0.0017 0.0532 0.3083 0.3083 

Present 0.7425 0.0843 0.0016 0.0533 0.3014 0.3014 

Table 7. Micromechanical analysis of dimensionless deflections S̅̅̅̅ for simply supported laminated composite plates [0°/90°] under sinusoidal 
mechanical loading with various slenderness ratios and fiber volume fractions. (­0 = 100). 

a/h composite Micromechanics-based model 
Vf 

10 25 50 75 90 

5 

T300/Epoxy 

ROM 2.4568 2.1226 1.9021 1.9083 2.0117 

Chamis 2.5345 2.2751 2.0926 2.0622 2.0942 

Hill-Hashin-Christensen-Lo 2.6321 2.3427 2.1957 2.3008 2.5071 

HMS/Epoxy 

ROM 2.1985 1.6881 1.2679 1.0111 0.8698 

Chamis 2.1437 1.6410 1.2162 0.9618 0.8396 

Hill-Hashin-Christensen-Lo 1.9016 1.7373 1.7395 1.9864 2.2991 

P100/Epoxy 

ROM 1.8127 1.2881 0.9597 0.7894 0.7010 

Chamis 1.8178 1.2996 0.9529 0.7704 0.6867 

Hill-Hashin-Christensen-Lo 1.7310 1.4202 1.3354 1.4918 1.7214 

10 

T300/Epoxy 

ROM 2.0223 1.6976 1.4859 1.4934 1.5952 

Chamis 2.0995 1.8461 1.6707 1.6433 1.6761 

Hill-Hashin-Christensen-Lo 2.1467 1.8650 1.7160 1.7920 1.9534 

HMS/Epoxy 

ROM 1.7800 1.3039 0.9351 0.7385 0.6452 

Chamis 1.7518 1.2933 0.9252 0.7228 0.6331 

Hill-Hashin-Christensen-Lo 1.5847 1.3953 1.3349 1.4772 1.6841 

P100/Epoxy 

ROM 1.4057 0.9161 0.6300 0.5069 0.4571 

Chamis 1.4293 0.9532 0.6540 0.5142 0.4575 

Hill-Hashin-Christensen-Lo 1.3875 1.0634 0.9301 0.9997 1.1398 

100 

T300/Epoxy 

ROM 1.9627 1.5970 1.3721 1.3832 1.4964 

Chamis 2.0585 1.7625 1.5722 1.5468 1.5866 

Hill-Hashin-Christensen-Lo 2.0823 1.7584 1.5939 1.6651 1.8234 

HMS/Epoxy 

ROM 1.6909 1.1907 0.8277 0.6495 0.5726 

Chamis 1.6756 1.1965 0.8345 0.6465 0.5672 

Hill-Hashin-Christensen-Lo 1.5356 1.3105 1.2164 1.3210 1.4938 

P100/Epoxy 

ROM 1.2874 0.7927 0.5187 0.4115 0.3747 

Chamis 1.3216 0.8404 0.5535 0.4277 0.3802 

Hill-Hashin-Christensen-Lo 1.2996 0.9505 0.7948 0.8340 0.9438 
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Table 8. Micromechanical analysis of dimensionless deflections S̅̅̅̅¾ℎ for simply supported laminated composite plates [0°/90°] under sinusoidal 
thermal loading with various slenderness ratios and fiber volume fractions (�1̅̅̅ ̅̅̅ = 100). 

a/h Composite Micromechanics-based model 
Vf 

0 0.20 0.40 0.60 0.80 1 

5 

T300/Epoxy 

Van Fo Fy 1.0120 0.5059 0.4873 0.4801 0.4750 0.4626 

Schapery 1.0120 0.5057 0.4871 0.4801 0.4755 0.4671 

Chamberlain 1.0120 0.5183 0.4941 0.4802 0.4385 0.5508 

Schneider 1.0120 0.5103 0.4913 0.4802 0.4690 0.4380 

Chamis 1.0120 0.5199 0.4923 0.4802 0.4723 0.4671 

P100/Epoxy 

Van Fo Fy 1.0120 0.4640 0.4529 0.4439 0.4279 0.3718 

Schapery 1.0120 0.4640 0.4528 0.4435 0.4266 0.3618 

Chamberlain 1.0120 0.4616 0.4407 0.4080 0.2023 0.5968 

Schneider 1.0120 0.4632 0.4460 0.4271 0.3983 0.2754 

Chamis 1.0120 0.4608 0.4417 0.4259 0.4041 0.3618 

10 

T300/Epoxy 

Van Fo Fy 0.9731 0.4966 0.4802 0.4736 0.4677 0.4527 

Schapery 0.9731 0.4964 0.4801 0.4735 0.4682 0.4572 

Chamberlain 0.9731 0.5089 0.4870 0.4737 0.4313 0.5405 

Schneider 0.9731 0.5010 0.4842 0.4736 0.4617 0.4282 

Chamis 0.9731 0.5105 0.4853 0.4736 0.4650 0.4572 

P100/Epoxy 

Van Fo Fy 0.9731 0.4614 0.4522 0.4434 0.4270 0.3703 

Schapery 0.9731 0.4614 0.4521 0.4431 0.4258 0.3603 

Chamberlain 0.9731 0.4590 0.4400 0.4078 0.2027 0.5937 

Schneider 0.9731 0.4606 0.4453 0.4267 0.3977 0.2745 

Chamis 0.9731 0.4583 0.4410 0.4255 0.4034 0.3603 

100 

T300/Epoxy 

Van Fo Fy 0.7153 0.4309 0.4312 0.4278 0.4160 0.3815 

Schapery 0.7153 0.4307 0.4311 0.4278 0.4166 0.3860 

Chamberlain 0.7153 0.4431 0.4380 0.4280 0.3800 0.4680 

Schneider 0.7153 0.4353 0.4352 0.4279 0.4101 0.3574 

Chamis 0.7153 0.4446 0.4362 0.4279 0.4134 0.3860 

P100/Epoxy 

Van Fo Fy 0.7153 0.4452 0.4514 0.4470 0.4301 0.3689 

Schapery 0.7153 0.4451 0.4513 0.4466 0.4289 0.3590 

Chamberlain 0.7153 0.4423 0.4348 0.3787 0.7788 0.5198 

Schneider 0.7153 0.4443 0.4445 0.4303 0.4008 0.2734 

Chamis 0.7153 0.4420 0.4403 0.4291 0.4065 0.3590 

To investigate the impact of thermal micromechanics-based models on the thermo-mechanical behavior of laminated plates, 
the next example is performed to laminate composite plates under thermo-mechanical loading. Table 9 illustrates the obtained 
dimensionless deflections as a function of fiber volume fraction for various slenderness ratios and under both thermal and 
mechanical loading. The effects of mechanical loading on the laminated plate are more pronounced than thermal loading. 
Significant dimensionless deflections occur around specific fiber volume fractions ([around 60%] for T300/Epoxy and [around 80%] 
for P100/Epoxy laminates) for all used slenderness ratios. These deflection values can be used to identify the fiber volume fraction 
at which the laminated composite plate exhibits maximum stiffness and strength and to provide an optimal balance between the 
resistance and stiffness of the composite material system. It is also shown that the Chamberlain model yields higher values with 
a slight difference compared to the other models, and the influence of mechanical loading is confirmed through a closer inspection 
of the obtained values. It is also confirmed that the preformed material system of laminated composite plates can influence their 
stiffness, strength, CTE, and response to thermal and mechanical loading. For specific applications, it is critical to consider the 
properties and behavior of the fibers, especially the fiber stacking sequences.  

4.2.3. The effect of stacking sequence on thermomechanical behavior of laminated plates  

Another study was conducted to explore the effect of stacking sequence on the thermo-mechanical response of simply 
supported laminated composite plates with various fiber volume fractions and a slenderness ratio a/h=10. Table 10 presents 
dimensionless deflections of simply supported laminated composite plates with various fiber stacking sequences as a function of 
fiber volume fractions. As observed, both fiber stacking sequences and the selected micromechanics-based model for predicting 
CTE influence the dimensionless deflections. The fiber volume fraction contributes to the increase in dimensionless deflections as 
the number of fibers increases until a high magnitude is marked by Vf =60%, and then the dimensionless deflections continue to 
decrease. It is also observed that an optimum cross-stacking of fibers provides a high resistance compared to the other used fiber 
stacking sequences. Dimensionless deflections predicted by thermal micromechanics-based models differ slightly. Each model's 
assumptions make this expected. It is vital to note that the behavior of these models, especially in reaction to fiber volume fraction 
changes, is consistent. The rule of mixture model for elastic constants confirms that mechanical impacts dominate thermal ones 
in laminate behavior. Table 11 displays the dimensionless deflections of simply supported composite laminated plates under 
thermal loading with various fiber volume fractions and fiber stacking sequences. Various micromechanics-based models are 
considered. In contrast to thermo-mechanical behavior, the cross-fiber stacking sequence contributes to an increase in the 
dimensionless deflections, because the stacking sequence can influence the CTE of the laminated composite plate, and thus the 
amount of thermal expansion. Different fiber orientations between adjacent plies in a laminated composite plate increase the risk 
of delamination. The process of delamination can significantly reduce both the strength and stiffness of the material. In situations 
with consistent fiber alignment, the composite material presents an increased level of rigidity and resistance in the same direction 
as the fibers. A uniform fiber direction in the material ensures more predictable CTE values compared to laminate in a cross-ply 
configuration. About the Chamberlain micromechanics-based model, observations indicate that an increase in the fiber volume 
fraction leads to a decrease in the dimensionless deflections. On the contrary, alternative micromechanical models suggest that 
dimensionless deflections decrease until a fiber volume fraction of 80% after these deflections begin to increase as the laminated 
plate mainly reveals the thermo-mechanical characteristics of the fibers. It is imperative to emphasize that the matrix material 
generally exhibits a more apparent positive longitudinal CTE compared to the fibers. In certain cases, fibers might show a 
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longitudinal CTE that is negative. As a result, the ultimate coefficient of CTE of the laminated composite plate may exhibit variability, 
potentially exceeding or decreasing under the basic CTE of the matrix material. The outcome of this is dependent upon the amount 
of the volume fraction and the arrangement of the fibers in the stacking sequence. This observation clarifies the varying values 
seen when laminated plates fully reflect fiber characteristics (Vf =100%) related to the micromechanics-based models that are 
dependent on more than just the fiber volume fraction alone. Besides longitudinal thermal expansion, the transverse CTE of a 
laminated composite can have a significant impact on its thermo-mechanical behavior.  

4.2.4. The impact of micromechanics-based models on thermomechanical stress of laminated plates  

The matrix and fibers of the laminate could exhibit a mismatch in their transverse thermal expansion. This can cause transverse 
thermal stresses within the laminated composite plates that can lead to delamination or cracking. The magnitude of transverse 
stresses is determined by the difference between the transverse CTE of the matrix and fibers, as well as the degree of interlaminar 
constraint. This discrepancy offers insights into the internal stresses within laminated composite plates. Figure 2 illustrates the 
distribution of dimensionless transverse stress �i̅v through the thickness coordinate for T300/Epoxy laminated composite plates 
[0°/90°] under mechanical loading with various fiber volume fractions, and micromechanics-based models (a/h=10). For low fiber 
volume fractions, it is observed that both the rule of the mixture and the Chamis models generate a relatively symmetric 
distribution of transverse stress to the mid-plane of the composite plate. The HHCL model produces an asymmetric stress 
distribution at the mid-plane of the laminated plate, the stress distribution changes from maximum tensile stress at the laminated 
plate's mid-plane to vanished stress in the top and bottom surface of the laminated plate. The same distribution is observed in the 
average fiber volume fraction. Considering the high fiber volume fraction, the Chamis model displays a uniform and symmetrical 
distribution, whereas the HHCL model exhibits an asymmetrical distribution caused by variations in fiber orientations and the 
resulting stress characteristics, unlike the rule of mixture. Figures 3 and 4 depict similar trends of dimensionless transverse stress 
for HMS/Epoxy and P100/Epoxy laminated composite plates, respectively. Visual inspection of the plotted figures reveals significant 
discontinuities in the transverse stress values at the ply interfaces, in the laminated composite plates' mid-planes. The Chamis 
model provides lower and higher variations of the transverse stress in the lower and upper plies, respectively. The rule of mixture 
presents an inverse distribution compared to Chamis’ model. As the fiber volume fraction increases, the HHCL model reduces the 
variation of the transverse stress at the laminate composite plate’s mid-plane. This is because P100 and HMS fibers are typically 
stronger and stiffer compared to T300 fiber, and the HHCL micromechanics-based model can predict the effective elastic properties 
of laminated composites accurately, especially for materials with anti-symmetric layups. To predict the overall properties of the 
laminate, the model includes a micromechanics-based approach that takes into account the properties and orientations of the 
individual plies. In one aspect, the orientation of the fibers is becoming increasingly important in determining composite 
mechanical behavior. Therefore, design considerations should account for this specific orientation to optimally utilize its desired 
mechanical characteristics and improve the performance of the composite material. The selection of a suitable micromechanical 
model is crucial for effectively achieve a strong connection between plies and maintain appropriate variation in interlaminar shear 
stresses. Additionally, adopting a structural design that minimizes stress concentrations and facilitates the even distribution of 
loads among the layers can greatly enhance the potential of a laminated composite plate to resist delamination. 

Table 9. Micromechanical analysis of dimensionless deflections S̅̅̅̅ for simply supported laminated composite plates [0°/90°] under sinusoidal 
thermo-mechanical loading with various slenderness ratios and fiber volume fractions (�1̅̅̅ ̅̅̅ = 100, ­0 = 100). 

a/h Composite Micromechanics-based model 
Vf 

0 0.20 0.40 0.60 0.80 1 

5 

T300/Epoxy 

Van Fo Fy 0.9180 2.2636 2.8324 3.0018 2.8414 2.2870 

Schapery 0.9180 2.2635 2.8321 3.0014 2.8406 2.2860 

Chamberlain 0.9180 2.2657 2.8373 3.0090 2.8493 2.2937 

Schneider 0.9180 2.2646 2.8360 3.0070 2.8456 2.2892 

Chamis 0.9180 2.2659 2.8366 3.0062 2.8439 2.2860 

P100/Epoxy 

Van Fo Fy 0.9180 4.2666 5.5506 6.2017 6.3555 5.9191 

Schapery 0.9180 4.2667 5.5510 6.2029 6.3577 5.9224 

Chamberlain 0.9180 4.2782 5.5803 6.2478 6.4096 5.9679 

Schneider 0.9180 4.2718 5.5720 6.2344 6.3842 5.9355 

Chamis 0.9180 4.2802 5.5790 6.2356 6.3809 5.9224 

10 

T300/Epoxy 

Van Fo Fy 0.7842 1.8252 2.2263 2.3397 2.2310 1.8397 

Schapery 0.7842 1.8251 2.2262 2.3393 2.2304 1.8390 

Chamberlain 0.7842 1.8269 2.2303 2.3453 2.2373 1.8452 

Schneider 0.7842 1.8260 2.2292 2.3437 2.2343 1.8416 

Chamis 0.7842 1.8270 2.2297 2.3431 2.2330 1.8390 

P100/Epoxy 

Van Fo Fy 0.7842 3.1106 3.7333 4.0091 4.0908 3.9641 

Schapery 0.7842 3.1107 3.7336 4.0099 4.0923 3.9663 

Chamberlain 0.7842 3.1191 3.7533 4.0390 4.1257 3.9968 

Schneider 0.7842 3.1144 3.7533 4.0303 4.1094 3.9751 

Chamis 0.7842 3.1206 3.7525 4.0311 4.1072 3.9663 

100 

T300/Epoxy 

Van Fo Fy 0.8932 1.7299 2.0650 2.1579 2.0730 1.7525 

Schapery 0.8932 1.7299 2.0649 2.1576 2.0725 1.7518 

Chamberlain 0.8932 1.7315 2.0687 2.1632 2.0789 1.7577 

Schneider 0.8932 1.7307 2.0677 2.1617 2.0761 1.7542 

Chamis 0.8932 1.7317 2.0681 2.1611 2.0748 1.7518 

P100/Epoxy 

Van Fo Fy 0.8932 2.7332 3.1210 3.2688 3.3257 3.3048 

Schapery 0.8932 2.7333 3.1213 3.2694 3.3268 3.3067 

Chamberlain 0.8932 2.7407 3.1378 3.2931 3.3540 3.3322 

Schneider 0.8932 2.7366 3.1331 3.2860 3.3407 3.3140 

Chamis 0.8932 2.7420 3.1371 3.2867 3.3390 3.3067 
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Table 10. Variation of dimensionless deflections S̅̅̅̅ for simply supported T300/Epoxy composite plates under sinusoidal combined loading with 
various fiber stacking sequences and fiber volume fractions (�1̅̅̅ ̅̅̅ = 100, ­0 = 100 and a/h= 10). 

Fiber stacking sequence Micromechanics-based model 
Vf 

0 0.20 0.40 0.60 0.80 1 

[5°/-5°] 

Van Fo Fy 0.7844 1.1009 1.1763 1.1996 1.1780 1.1027 

Schapery 0.7844 1.1009 1.1762 1.1994 1.1777 1.1022 

Chamberlain 0.7844 1.1020 1.1784 1.2025 1.1813 1.1060 

Schneider 0.7844 1.1014 1.1778 1.2017 1.1798 1.1038 

Chamis 0.7844 1.1020 1.1781 1.2014 1.1791 1.1022 

[30°/-30°] 

Van Fo Fy 0.7844 0.8058 0.8421 0.8574 0.8450 0.8110 

Schapery 0.7844 0.8058 0.8421 0.8572 0.8447 0.8107 

Chamberlain 0.7844 0.8065 0.8436 0.8594 0.8473 0.8134 

Schneider 0.7844 0.8061 0.8432 0.8588 0.8462 0.8119 

Chamis 0.7844 0.8066 0.8434 0.8586 0.8457 0.8107 

[45°/-45°] 

Van Fo Fy 0.7845 0.7413 0.7732 0.7876 0.7761 0.7470 

Schapery 0.7845 0.7413 0.7732 0.7875 0.7759 0.7466 

Chamberlain 0.7845 0.7420 0.7746 0.7895 0.7783 0.7492 

Schneider 0.7845 0.7416 0.7742 0.7890 0.7773 0.7477 

Chamis 0.7845 0.7420 0.7744 0.7888 0.7768 0.7466 

Table 11. Variation of dimensionless deflections S̅̅̅̅¾ℎ for simply supported T300/Epoxy composite plates under sinusoidal thermal loading with 
various fiber stacking sequences and fiber volume fractions (�1̅̅̅ ̅̅̅ = 100 and a/h= 10). 

Fiber stacking sequence Micromechanics-based model 
Vf 

0 0.20 0.40 0.60 0.80 1 

[5°/-5°] 

Van Fo Fy 0.9731 0.1806 0.1006 0.0753 0.0730 0.0930 

Schapery 0.9731 0.1802 0.1004 0.0753 0.0741 0.1015 

Chamberlain 0.9731 0.2035 0.1139 0.0756 0.0019 0.2578 

Schneider 0.9731 0.1888 0.1085 0.0754 0.0613 0.0471 

Chamis 0.9731 0.2065 0.1105 0.0754 0.0678 0.1015 

[30°/-30°] 

Van Fo Fy 0.9734 0.2102 0.1640 0.1506 0.1502 0.1640 

Schapery 0.9734 0.2100 0.1639 0.1506 0.1508 0.1686 

Chamberlain 0.9734 0.2227 0.1707 0.1508 0.1142 0.2535 

Schneider 0.9734 0.2147 0.1680 0.1507 0.1443 0.1390 

Chamis 0.9734 0.2243 0.1690 0.1507 0.1476 0.1686 

[45°/-45°] 

Van Fo Fy 0.9735 0.2813 0.2497 0.2411 0.2415 0.2526 

Schapery 0.9735 0.2811 0.2496 0.2411 0.2418 0.2556 

Chamberlain 0.9735 0.2894 0.2539 0.2412 0.2190 0.3108 

Schneider 0.9735 0.2842 0.2521 0.2411 0.2378 0.2364 

Chamis 0.9735 0.2904 0.2528 0.2411 0.2399 0.2556 

Next, the impact of various parameters on the variation of normal thermal stress �̅̅̅̅i through the thickness is illustrated in Fig. 
5 for T300/Epoxy laminated composite plates subjected to thermal sinusoidal loading. The variation of normal stress �̅̅̅̅i is given for 
various fiber volume fractions and thermal micromechanics-based models to derive the effective CTE that was previously presented 
and both [0°/90°] and [45°/-45°] stacking sequences are considered. It is noted that all the applied micromechanics-based models 
yield a similar variation in normal stress. The stacking sequence plays a crucial role in avoiding the interlaminar stress 
concentration that is highlighted in the [0°/90°] case. In contrast to the previous orientation system, laminate composite plates with 
a [45°/-45°] stacking sequence provide a continuous variation in normal stress through the thicknesses coordinate. The conclusion 
drawn is that interlaminar stress concentration can also arise from thermal loading, which generates the thermal stress, and can 
be avoided by an appropriate stacking sequence. The thermal micromechanics-based models have no major effect on the variation 
of normal stress through the thickness. Fig. 6 emphasizes the impact of thickness stretching in laminated composite plates exposed 
to thermal loading by displaying the variation of the normal out-of-plane stress �̅̅̅̅v for both [0°/90°] and [45°/-45°] laminated plates. 
By using the above-mentioned micromechanics-based models to predict the effective CTE, the interlaminar normal out-of-plane 
stress continuity is not guaranteed for the [0°/90°] stacking sequence. The presence of thermal stress �̅̅̅̅v  evolves introduces 
discontinuities in the distribution of stress. These discontinuities have the potential to cause significant stress concentrations at 
the interface between the two layers. Although our model only accounts for a two-layer design, it is important to highlight that in 
laminates with more layers, these concentrated regions of stress at the interfaces could potentially lead to the development of 
delamination. Furthermore, the variation of dimensionless normal out-of-plane stress obtained by using micromechanics-based 
models is very close, except for the Chamberlain model, which generates a lower variation as the fiber volume fraction is increased, 
because it precisely uses fiber packaging geometry to determine effective transverse CTE. In contrast, the [45°/-45°] stacking 
sequence for laminated composite plates shows a trend opposite to the [0°/90°] sequence. The dimensionless thermal stresses �̅̅̅̅v 
change smoothly through the thickness, from positive out-of-plane tensile at the bottom ply to negative tensile at the top ply. Thick 
laminated plates require special consideration due to the significant role performed by the thermal stretching effect. The effect of 
fiber volume fraction and the use of the micromechanics-based model to derive the CTE on the dimensionless transverse thermal 
stress �g̅v  across the thickness are illustrated in Fig. 7. The overall thermal behavior of laminated composite plates can be 
significantly influenced by the transverse shear stress variation across the thickness. It is also clear that the effect of stacking 
sequence has an important impact on the thermal behavior of laminates. As fiber volume fraction increases, laminated plate 
behavior depends on the balance between fiber and matrix properties. Since the matrix has a positive CTE and the fibers have a 
negative CTE, as the fiber volume fraction increases, the composite's overall expansion perpendicular to the fibers may decrease. 
According to the particular fiber volume fraction and the embedded characteristics of the materials, it is potential that this issue 
might lead the composite to shrink. The observed phenomenon can be attributed to the matrix having a positive CTE, whereas the 
fibers demonstrate a negative CTE. As a result, this gives rise to tensile stresses in the fibers and compressive stresses in the matrix. 
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Fig. 2. Variation of dimensionless mechanical transverse stress �i̅v trough the thickness coordinate for T300/Epoxy laminated composite plates 

[0°/90°] with various fiber volume fractions, and micromechanics-based models (a/h=10). 

   
Fig. 3. Variation of dimensionless mechanical transverse stress �i̅v through the thickness coordinate for HMS/Epoxy laminated composite plates 

[0°/90°] with various fiber volume fractions, and micromechanics-based models (a/h=10). 

   
Fig. 4. Variation of dimensionless mechanical transverse stress �i̅v through the thickness coordinate for P100/Epoxy laminated composite plates 

[0°/90°] with various fiber volume fractions and micromechanics-based models (a/h=10). 

  

  
Fig. 5. Variation of dimensionless in-plane thermal stress �̅̅̅̅i through the thickness coordinate for T300/Epoxy laminated composite plates with 

various fiber volume fractions, fiber stacking sequences, and micromechanics-based models (a/h=10). 
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Fig. 5. Continued. 

 

  

  

  
 

Fig. 6. Variation of dimensionless out-of-plane thermal stress �̅̅̅̅v trough the thickness coordinate for T300/Epoxy laminated composite plates with 
various fiber volume fractions, fiber stacking sequences, and micromechanics-based models (a/h=10). 

When the fiber volume fraction is reduced, it tends to expand in the direction perpendicular to the fibers, causing compressive 
stresses in the fibers and tensile stresses in the matrix. This explains the positive and negative magnitudes of the dimensionless 
transverse thermal stress �g̅v  for high and low fiber volume fractions, respectively. However, it is observed that the Schapery 
micromechanics-based model generates a high magnitude, and the minimum magnitude is generated by the Chamberlain model, 
except for the reduced volume fraction, the minimum of the dimensionless transverse thermal stress is also observed in the Chamis 
model. As expected, the [45°/-45°] laminated plates present a smooth and continuous transition of transverse thermal stress at the 
interfaces of plies. According to the [0°/90°] stacking sequence, the clear difference in thermal transverse stress between the lower 
and upper plies can cause the occurrence of interlaminar shear stresses, which can contribute to delamination. The sensitivity of 
interlaminar shear stress is associated with both the stacking sequence and fiber volume fraction, as well as differences in CTE of 
the used composite.  

In addition, it becomes evident that composite laminated plates exhibit various levels of expansion or shrinking because of the 
distinctive CTE exhibited by their layers. The variation in behavior between distinct layers can result in the development of stresses 
and strains between the layers, which could eventually contribute to the delamination and the occurrence of associated problems. 
This statement emphasizes the significance of employing a complete micromechanics-based model in the determination of CTE 
for laminated plates at the macro scale, particularly in situations involving combined mechanical and thermal loadings. 
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Fig. 7. Variation of dimensionless transverse thermal stress �g̅v through the thickness coordinate for T300/Epoxy laminated composite plates with 
various fiber volume fractions, fiber stacking sequences, and micromechanics-based models (a/h=10). 

5. Conclusions 

This paper introduced a novel and efficient Quasi-3D higher-order shear and normal deformation theory for assessing the 
thermo-mechanical stress of laminated composite plates. The theory minimized the number of variables while investigating the 
thermo-mechanical responses of thick laminated composite plates. The significance of combining theory with practical discoveries 
was acknowledged. However, there was a lack of comprehensive research providing the specific geometric and material information 
necessary for direct comparison in this context. Although the inclusion of empirical data would enhance the current research, 
difficulties in acquiring such data have prompted us to concentrate on a comprehensive theoretical approach. This study 
established a strong basis for forthcoming empirical investigations and is receptive to future partnerships involving practical data. 
The study also investigates the assessment of alternative micromechanics-based models in predicting CTE of laminated composites, 
providing insights into the impact of different coefficients of thermal expansion on the obtained deflection and stresses. 

The present results have revealed the emergence of several useful conclusions: 
 The present theory is more accurate than other shear deformation laminated plate theories due to its thickness stretching 

effect. 
 The longitudinal CTE of the matrix material can affect the volume fraction and stacking sequence of the fibers, leading to 

transverse CTE, which can cause delamination or cracks in laminated composite plates. 
 Using random and arbitrary thermo-mechanical properties can lead to inaccurate results. 
 Micromechanics-based schemes are essential for accurate thermo-mechanical properties. 
 Micromechanics-based models can predict effective CTE, but interlaminar normal out-of-plane stress continuity is not 

guaranteed. Thick laminate plates require special consideration due to the thermal stretching effect. 
 Schapery, Chamberlain, and Chamis models assume the same longitudinal CTE, but the Chamberlain model exhibits a 

higher rate of resistance to deflection and presents a range of magnitudes as the fiber volume fraction is highly increased. 
 Low CTE and favorable orientation can reduce thermal stresses and sensitivity to delamination and fiber buckling, but can 

be unfavorable in mechanical loading applications. 
 Micromechanics-based models can be used to derive the CTE, and their selection can affect the magnitude of transverse 

thermal stress. 
 The fiber reinforcement can affect the thermal expansion of a composite material due to the differential expansion and 

contraction of its constituent materials. 
 The mechanical loading of the laminated plate has a greater influence than the thermal loading. The Schapery model 

generates a higher thermal transverse stress magnitude than the other models. 
 The uniform orientation of fibers provides higher stiffness and strength, resulting in a more consistent longitudinal CTE 

that can vary depending on the volume fraction and stacking sequence of the fibers. 
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 The transverse thermal stress variation across the thickness of laminated composite plates can significantly influence their 
thermal behavior, and this effect is affected by the fiber volume fraction and stacking sequence. 

In light of the present research, it is essential to use a suitable micromechanics-based model in designing composite laminated 
plates, as this plays an important impact on the reliability of thermal behavior estimations. The essential roles in the current 
scenario are attributed to the fiber volume fraction, stacking sequence, and the overriding impact of mechanical loading over 
thermal loading. To enhance comprehension and application in this field, it is recommended to do further investigation into 
Functionally Graded Materials (FGMs), perform comprehensive experimental testing, and apply advanced numerical models within 
the framework of the theory's four-variable approach. 
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Nomenclature 

�, �, ℎ 
�	 , ��   

1, 
2 
	 , 
� �1, �2 
 

,12,,13,,23 �	 , �� �  

Laminated plate dimensions 

The volume fraction of fibers & matrix, respectively 

Longitudinal and transverse CTE, respectively 

CTE of fibers and matrix, respectively 

Longitudinal and transverse Young modulus of 

composite 

Transverse shear modulus of the composite 

Longitudinal Young modulus of fiber and matrix 

Packing factor for fiber (Chamberlain model) 

5 
5s, 5t 
�, � 
 

�, �  
 

�23, �13, �12 �	 , �� 

Number of orthotropic layers 

The curvature of the bending and shear parts, respectively 

Number of truncated series in the two directions of Navier 

solution 

Sinus and Cosinus of the fiber orientation angle of the kth 

layer 

Transverse Poisson’s ratio of composite 

Longitudinal–transverse Poisson’s ratio of fiber and matrix 
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