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Abstract. In this study, a meshfree framework based on the reproducing kernel collocation method is proposed for incremental-
iterative analysis of double-diffusive natural convection in a porous enclosure, in which the forward difference method is adopted 
for temporal discretization, and the two-step version of Newton-Raphson method is used for iteration. As the double-diffusive 
convection problem is composed of multi phases and is influenced by both material and geometric parameters, the resulting system 
is highly nonlinear and complicated. From the numerical investigation, the partially heated boundary with different buoyancy ratios 
can yield monocellular flow problems with opposite phenomena depending on the contribution of thermal/solute buoyancy force. 
For the domains with burrowing inside, the key feature is the contour of stream function, which is separated into two vortexes by 
the hole in the simply connected domain while the two vortexes are not separated completely in the multiply connected domain 
due to the geometric compression of two holes. It is further shown that the framework is capable of solving various double-diffusive 
convection problems with satisfactory accuracy and efficiency by uniform discretization as well as few source points in the 
approximation. 

Keywords: Reproducing kernel collocation; double-diffusive; natural convection; phase coupling; unsteady state. 

1. Introduction 

The investigation of double-diffusive natural convection in porous media has begun mainly in 1970s [1]. Since then, more 
attention has been drawn in virtue of its wide applications in the process of chemical vapor transport and in the development of 
methods for crystal growth of alloys or semi-conductors [2]. As there exist numerous factors affecting the behavior of double-
diffusive natural convection, the research direction of double-diffusive convection has moved from heat transfer to heat and mass 
transfer as caused by both temperature and concentration gradients. More complicated environment with special fluid was further 
considered, for instance, the double-diffusive convection in a nanofluid layer [3] and the effect of the magnetic field inclination on 
double-diffusive convection [4]. Furthermore, it is found that the governing equations of various systems can be established by 
using a similar concept (e.g., balance laws) while the terms included in the governing equations may be quite different due to the 
assumptions made in the derivation, indicating the complexity of double-diffusive convection. 

With the prosperous development of computational methods, the double-diffusive natural convection in a fluid-saturated 
porous medium is numerically studied to particularly investigate the influences of certain parameters and their effects. Based on 
Darcy’s law, for a rectangular enclosure in the downward gravitational field [2, 5], the two-dimensional analysis was conducted, to 
name but a few in the following. The finite element method was adopted for spatial discretization while the finite difference method, 
Crank-Nicolson scheme, was used for temporal discretization, in which the effect of buoyancy ratio between temperature and 
concentration was of major concern [2]. The finite difference method was introduced for spatial discretization and the central 
difference method was used for temporal discretization, in which the effects of heat generation or absorption were of interests [5]. 
Recently, an upwind compact difference scheme for spatial discretization with the fourth-order Runge-Kutta method for temporal 
discretization was proposed for double-diffusive convection, with focus on the aspect ratio of the rectangular cavity [6]. A Darcy-
Brinkman formulation is proposed to solve the double-diffusive natural convection problem by using the finite volume approach 
[7]. A three-dimensional numerical analysis was conducted to simulate the double-diffusive process in a rectangular cavity by using 
the stabilized finite element method to overcome the predominantly advection problem considering a series of buoyancy ratios 
and fluid parameters [8]. In another work, the double-diffusive natural convection in an inclined enclosure is studied by the hybrid 
lattice Boltzmann-finite difference method, where the Navier-Stokes equations were adopted as the heat and mass transfer model 
to include the heat generation and Soret effect [9]. From these studies, advanced numerical methods are urgent for unveiling the 
phenomena of double-diffusive convection. 

Unlike the above weak form-based methods as commonly adopted in conjunction with the models of computational fluid 
dynamics for analyzing complicated problems or phenomena by commercial software [10], to avoid background mesh for 
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computational efficiency, the present study focuses on the development of an effective numerical framework using the meshfree 
strong-form methods [11-14]. In the literature, for a fluid-saturated porous enclosure, the steady-state equations have been 
investigated by the local RBF collocation method [15], generalized finite difference method (GFDM) [16], and reproducing kernel 
collocation method (RKCM) [17,18]. The local nature of approximation in the aforementioned meshfree methods was shown to be 
effective and efficient in solving the above steady-state problems involving two-phase variables (stream function and temperature) 
or three-phase variables (stream function, temperature, and concentration). Recently, the unsteady-state double-diffusive 
convection problems were further untangled by the strong-form meshfree methods. The space-time generalized finite difference 
method [19] was proposed to deal with the three-phase coupling problem. By considering the continuity equation in addition to the 
above three governing equations, a four-phase coupling problem involving vorticity is further established. RKCM with a time 
integration scheme [20] was recently proposed to solve this unsteady-state double-diffusive convection problem. Since the space-
time GFDM treats time as the spatial coordinate, the collocation points discretized along the time axis might require more points 
to ensure accuracy in solving the unsteady-state equations. In view of the expansive dimension adopted in the solution process, 
based on the previous work [20], the Newton-Raphson collocation method in conjunction with the reproducing kernel 
approximation is adopted in this study, which will turn out to be more efficient than the space-time method when the forward 
difference method is adopted for temporal discretization. 

For the double-diffusive natural convection in a parallelogram, two different boundary conditions are classified, the combined 
global heat and mass flows as well as the opposite global heat and mass flows, which were discussed using the steady-state 
equations in the literature [18]. In this study, both boundary conditions will be further investigated by considering the unsteady-
state responses. Additionally, more complicated boundary and domain geometry are to be investigated. The structure of this study 
is described as follows: The mathematical formulation of the three-phase coupling nonlinear system is presented in Section 2. The 
collocation framework including the forward difference method and Newton-Raphson method is introduced in Section 3. The 
numerical investigation is given in Section 4. Section 5 concludes this study. 

2. Mathematical Formulation 

2.1. Unsteady-state double-diffusive natural convection 

As depicted in Fig. 1, a two-dimensional rectangular domain has sides of length L and H with an inclined angle θ  in the field of 
gravitation .g  In this unsteady-state physical problem, a fluid-saturated porous medium is assumed [21], in which the enclosure is 
regarded as the perfectly isotropic mixture with incompressible and laminar Newtonian-fluid inside [22]. It should be noted that 
Soret effect or the thermal-diffusion effect is a coupled process of mass flow due to a temperature gradient, while Dufour effect or 
the diffusion-thermal effect is a coupled process of heat flow caused by a concentration gradient. Since these effects are of quite 
small magnitudes in the two-component fluid mixture, they are mostly neglected in heat and mass transfer problems [21, 23]. 

The double-diffusive natural convection is described in a porous enclosure based on the continuity, balance laws of momentum, 
thermal energy, and concentration in the dimensional form as follows: 

0
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∂ ∂
+ =

∂ ∂
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 ∂ ∂ ∂ ∂ ∂  + + = +  ∂ ∂ ∂ ∂ ∂ 
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where u and v are the components of velocity in the X and Y directions, respectively; ,φ ,ϑ  and c are the field variables in the time 
domain ,τ  including the stream function, temperature, and concentration. The rest parameters are described below [8]: Tβ  and 

Cβ  are the coefficients of thermal and compositional expansion, respectively; ρ  and ν  are the density and kinematic viscosity 
of the fluid; eα  is the effective thermal diffusivity of the porous medium; D is the species diffusivity. The boundary conditions will 
be detailed after normalization as given in Section 2.3. 

L

H

X

Y

g

 

Fig. 1. Physical model of the porous enclosure. 
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2.2. Mathematical model in dimensionless form 

To compare with the numerical results existing in the literature and reduce the numbers of field variables and material 
parameters, the aforementioned equations are normalized. The following dimensionless coordinates and variables are defined: 

2
,  ,  eX Y

x y t
L L L

α τ
= = =  (5) 

,  ,  ,  ,  l l

e e eh l h l

c c uL vL
T C U V

c c

ϑ ϑφ
ψ
ρα ϑ ϑ α α

− −
= = = = =

− −
 (6) 

where hϑ  and hc  denote the higher values of ϑ  and c; lϑ  and lc  denote the lower values of ϑ  and c. By adopting the scale-
based analysis and introducing Eqs. (5)-(6) to Eqs. (1)-(4), the following equations can be derived: 
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From the normalized continuity equation given in Eq. (7), the normalized stream function ψ  can be introduced through Darcy’s 

law: 

,  U V
y x

ψ ψ∂ ∂
= =−

∂ ∂
 (11) 

After substituting Eq. (11) into Eqs. (9)-(10), the following governing equations involving three variables are reached: 

2 0
T C

Ra N
x x

ψ
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 (12) 

2T
0

T T
T

t y x x y

ψ ψ∂ ∂ ∂ ∂ ∂
+ − −∇ =

∂ ∂ ∂ ∂ ∂
 (13) 

21
0

C C C
C

t y x x y Le

ψ ψ∂ ∂ ∂ ∂ ∂
+ − − ∇ =

∂ ∂ ∂ ∂ ∂
 (14) 

where ,ψ  T, and C  are the dimensionless stream function, temperature, and concentration. The above equations correspond to 
the normalized momentum, normalized energy, and normalized concentration (or solute). The rest dimensionless parameters are 
defined as [18]: 

( ) ( )
( )

3

 ,   = ,  T Ch l h le
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D
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− −
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in which Ra   and Le   are the dimensionless Rayleigh number and Lewis number related to the fluid motion accounting for 
convection effect and diffusion effect, respectively. N is the buoyancy ratio accounting for the driven effect of the solute and thermal 
buoyancy forces. 

2.3. Boundary conditions 

In this porous enclosure, the circumference is assumed to be impermeable, i.e., 0.ψ =   For demonstration purpose, a unit 
square domain is considered. By imposing the Dirichlet boundary conditions of T  and C  on 0x =  and 1,x =  the following 
two types of boundary conditions can be classified: 

(1) Combined global heat and mass flows [19]: 

( ) ( ) ( )
( ) ( ) ( )
0, 0,  0, 1,  0, 1,

, 0,  , 0,  , 01 1 1

y T y C y

y T y C y

ψ

ψ
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= = =
 (16) 

(2) Opposite global heat and mass flows [18]: 

( ) ( ) ( )
( ) ( ) ( )
0, 0,  0, 1,  0, 0,

, 0,  , 0,  , 11 1 1

y T y C y

y T y C y

ψ

ψ

= = =

= = =
 (17) 

The rest boundary conditions along 0y =  and 1y =  are listed below [19]: 
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which are insulated (for temperature) and non-diffusive of solute transfer (for concentration). For wider applications, Eq. (18) can 
be written in the following form for inclined boundary or curved boundary as will be investigated in Section 4: 

0,  0,  0T Cψ = ∇ ⋅ = ∇ ⋅ =n n  (19) 

where n denotes the unit outward normal on the boundary. 

2.4. Parameters of heat and mass transfer 

Referring to Fig. 1, the average parameters, Nusselt and Sherwood numbers, for the rectangle are defined as follows [24]: 

0
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which are adopted to evaluate the heat and mass flows on the left vertical wall. For the problems in consideration, the average 
values of Nusselt and Sherwood numbers are computed to compare with the results in the literature in Section 4. 

3. Incremental-Iterative Collocation Method 

3.1. Forward difference method 

For simplicity, the forward difference method is introduced for temporal integration. Then, Eqs. (12)-(14) can be expressed in an 
incremental form as: 

( ) ( ) ( )2 0
t t

t
T C

Ra N
x x

ψ
 ∂ ∂ ∇ + + = ∂ ∂  

 (22) 

( ) ( ) ( ) ( ) ( )1 2
Tt t t t

t t t
T

T T t T
y x x y

ψ ψ
+

 ∂ ∂ ∂ ∂ = +∆ − + +∇ ∂ ∂ ∂ ∂  
 (23) 

( ) ( ) ( ) ( ) ( )1 21
t t t t

t t t
C C

C C t C
y x x y Le

ψ ψ
+

 ∂ ∂ ∂ ∂ = +∆ − + + ∇ ∂ ∂ ∂ ∂  
 (24) 

where the superscript t represents an incremental time step. To satisfy the Courant-Friedrichs-Lewy condition, the time increment 
is set as 510t −∆ =  in this study [20]. To begin the incremental analysis (i.e., 0),t = the initial conditions of the temperature and 
concentration should be given while that of the stream function is obtained from Eq. (22). 

3.2. Reproducing kernel approximation 

The three variables ,ψ  T, and C  in the coupled system are approximated by the reproducing kernel shape function ( )IΨ x  with 
the following expression: 

( ) ( )

( ) ( )

( ) ( )

1

1

1

 

 

 

s

s

s

N

I I
I

N
T

I I
I

N
C

I I
I

a

T a

C a

ψψ
=

=

=

= Ψ

= Ψ

= Ψ

∑

∑

∑

x x

x x

x x

 (25) 

where the approximation is established on the sN   source points. In the above equation, ,Iaψ ,T
Ia   and C

Ia   are the generalized 
coefficients for each variable. For constructing the reproducing kernel shape function, the selection of monomial basis vector 

( )I−H x x  of order p  and kernel function ( )Iaϕ −x x  are required, depending on the problems to be solved [20]: 

( ) ( ) ( ) ( )T
I aI Iϕ−Ψ = −H x x b xx x x  (26) 

in which the vector of coefficients ( )b x  is determined by the reproducing conditions: 

( )
1

,    0
sN

I I
I

pα α α
=

Ψ = ≤ ≤∑ x x x  (27) 

For two-dimensional problems, the multi-index α  is defined as 1 2.α α α= +  The general expression of reproducing kernel 
shape function is: 

( ) ( ) ( ) ( ) ( )T 1
I I a Iϕ−Ψ = − −x H 0 M x H x x x x  (28) 
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with the moment matrix ( )M x  given by: 

( ) ( ) ( ) ( )T

1

sN

I I a I
I

ϕ
=

= − − −∑M x H x x H x x x x  (29) 

Referring to Section 2, the partial differential equations of second-order are to be analyzed. Therefore, the monomial basis vector 
of 2p =  and the quintic B-spline kernel function are adopted. For readability, the kernel function is referred to Ref. [20]. It is noted 
that a circular support of the reproducing kernel shape function is used as described by the support size .a   Without loss of 
generality, ( )a p hδ= +  with 0δ >  and nodal distance of source points .h  
3.3. Reproducing kernel collocation method 

In the collocation method, the following three sets of collocation points are defined for the problem: 

1 2
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where xp denotes the set of collocation points (Np) in the domain ;Ω  xq denotes the set of collocation points (Nq) on the Neumann 
boundary ;NeumannΓ  xr denotes the set of collocation points (Nr) on the Dirichlet boundary .DirichletΓ  

The unsteady-state responses are solved incrementally in time, in which the nonlinear iteration is performed at each time step 
through solving the steady-state parts of the governing equations as given in Eqs. (22)-(24). In the meshfree collocation formulation 
[25, 26], the reproducing kernel approximation in Eq. (25) is introduced for spatial discretization. Then, the incremental forms of the 
governing equations are obtained as follows: 
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As an example, by introducing Eq. (25) to the boundary equations given in Eqs. (16) and (18), the incremental collocation 
equations on NeumannΓ  and DirichletΓ  can be derived as follows: 
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where the boundary conditions of combined global heat and mass flows are explicitly given for illustration. Referring to Section 3.1, 
the initial conditions of the temperature and concentration are given in terms of 0 T

Ia  and 0 C
Ia  (for 1,2,..., )sI N=  in RKCM. 

As there are factors such as interfacial velocities affecting the boundary conditions and yielding a complicated system, Eqs. (16)-
(18) are adopted for simplicity by assuming the negligible interfacial velocities [2, 21]. For practical applications, the shape of a 
parallelogram is considered [2, 21], while the generalization of the formulation (i.e., Eqs. (34)-(36)) can be made if needed. 
3.4. Newton-Raphson collocation method 

To establish the nonlinear framework, the matrix expression will be adopted in the following for clarity. The governing 
collocation equations given in Eqs. (31)-(33) are collected as Ap; the Neumann and Dirichlet collocation equations in Eqs. (34)-(36) 
are collected as Aq and Ar, respectively. Then, the nonlinear system can be written as: 
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where ( ),t t≡A A a   which is a function of the vector ta   containing the generalized coefficients, i.e. 
T
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For computational efficiency, a two-step version of Newton-Raphson method is adopted [16] to solve the nonlinear system in 

Eq. (37). At time step t, the following equation is solved for the kth iterative step: 
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where t
k J  represents the Jacobian matrix of .t

kA  By using RKCM, t
k J  is a sparse matrix. ( )t

k∆ a  represents the increment of the 
vector of generalized coefficients. For the (k+1)th iterative step at time t, the vector of generalized coefficients cab be obtained by: 
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from which the three variables can be calculated as: 
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where 

( )T
Ψ =x ( ) ( ) ( )1 2 sN

 Ψ Ψ Ψ  x x x⋯  (45) 

In this study, the iteration at each time step t is implemented until 9max | ( ) | 10t
k

−∆ <a  is satisfied. 

4. Numerical Examples 

In this section, all examples are analyzed using Matlab R2020a in a computer equipped with Intel i7-12700 and 32GB RAM. 
Without loss of generality, the following setup is adopted, unless otherwise stated: The support size 3a h=   for all RK shape 
functions, and the same discretization for source points sN   and collocation points .cN   To ensure a determined system of 
collocation equations, the corner points of a parallelogram are imposed by only one boundary condition for each variable. For 
presentation purpose, the evaluation points for contour plots are set as ( ) ( )2 1 2 1 ,e sx syN N N= − × −  with sxN  and syN  denoting 
the numbers of source points in the x and y directions of the problem domain (i.e., ).s sx syN N N= ×  The following initial conditions 
are assumed: 0T

Ia =  and 0C
Ia =  (for 1,2,..., ).sI N=  
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Table 1. The iteration errors and condition numbers for various Ns (combined BCs). 

Ns 4141 6161 8181 

Condition number 2.5110105 6.6485105 1.3454106 

CPU time (sec.) 29.1019 218.2969 1053.2289 

No. of iteration 7 7 7 

Table 2. Comparison of Nu and Sh with reference results (combined BCs). 

Method Present Yang and Chang [18] Li et al. [19] Trevisan and Bejan [27] 

Ra Le Nu Sh Nu Sh Nu Sh Nu Sh 

100 

1 3.15 3.15 3.15 3.15 3.13 3.13 - - 

10 3.15 14.68 3.15 14.68 3.13 14.67 3.27 15.61 

20 3.15 21.35 3.15 21.35 3.13 22.14 - - 

200 

1 5.13 5.13 5.13 5.13 5.09 5.09 - - 

10 5.13 22.09 5.13 22.09 5.09 23.48 5.61 23.23 

20 5.13 30.41 5.13 30.41 5.09 35.09 - - 

Table 3. Comparison of Nu and Sh obtained by different Nc (combined BCs). 

Nc 8181  161161 242242 

Ra Le Nu Sh Nu Sh Nu Sh 

100 

1 3.1477 3.1477 3.1477 3.1477 3.1477 3.1477 

10 3.1477 14.6831 3.1477 14.6828 3.1477 14.6827 

20 3.1477 21.3462 3.1477 21.3461 3.1477 21.3460 

200 

1 5.1311 5.1311 5.1310 5.1310 5.1309 5.1309 

10 5.1311 22.0901 5.1310 22.0900 5.1309 22.0899 

20 5.1310 30.4066 5.1310 30.4070 5.1309 30.4071 

500 

1 9.5819 9.5819 9.5815 9.5815 9.5814 9.5814 

10 9.5819 33.9138 9.5815 33.9144 9.5814 33.9144 

20 9.5819 43.0983 9.5815 43.0995 9.5814 43.0997 

1000 

1 14.6284 14.6284 14.6278 14.6278 14.6276 14.6276 

10 14.6284 43.5245 14.6278 43.5255 14.6276 43.5257 

20 14.6284 51.8105 14.6278 51.8119 14.6276 51.8122 

4.1. Combined global heat and mass flows in a square 

The boundary conditions (BCs) given in Eq. (16) and Eq. (18) for combined global heat and mass flows are considered in this 
example. The following parameters are adopted: 1,L H= = 100,Ra = 20,Le = and 0.N =   

For various source points 41 41, 61 61, 81 81,sN = × × ×  the convergence paths expressed in terms of the numbers of iteration 
are depicted in Fig. 2; the corresponding condition numbers and CPU time are summarized in Table 1. A stable and well-conditioned 
system is formed for each discretization, and the CPU time increases with respect to the number of source points. The steady-state 
results of ,ψ T, and C obtained by 81 81sN = ×  are shown in Fig. 3, from which highly nonlinear behavior of C  is exhibited. To 
further verify the results, the values of Nu  and Sh  obtained by different methods for various Ra  and Le  are compared in Table 
2, where the present unsteady-state framework uses 81 81,sN = ×  the steady-state framework of RKCM [18] uses 81 81,sN = ×  
and the space-time generalized finite difference method (ST-GFDM) [19] uses 101 101sN = ×   and 5 ;c sN N=   another reference 
results are provided as well [27]. By observation, the desired accuracy is achieved by using RKCM for both unsteady-state and steady-
state frameworks while less source points are adopted; in other words, higher computational efficiency is observed by the present 
method. Lastly, 81 81sN = ×  with different cN  is considered, and the results are listed in Table 3. With the increase in the number 
of ,cN  both values of Nu  and Sh  get closer to the references; the variation in the values of these two parameters agrees well 
with literature [19], and the correctness of the results is ensured. 

 

Fig. 2. Paths of convergence by various Ns for combined BCs. 
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4.2. Opposite global heat and mass flows in a square 

The boundary conditions given in Eq. (17) and Eq. (18) for opposite global heat and mass flows are considered. The following 
parameters are adopted: 1L H= = , 100Ra = , 20Le = , and 0N = . 

For 41 41,61 61,81 81sN = × × ×  , the condition numbers, CPU time, and numbers of iteration are summarized in Table 4. In 
comparison with Table 1, it is observed that the two systems are numerically similar, including the condition numbers and 
computational time to solve the problems. The corresponding convergent process of solutions by different discretization are 
exhibited in Fig. 4; it is observed that both ψ  and T  can be approximated nicely by various sN  while C  can be approximated 
well by 81 81sN = ×  only. In comparison with Fig. 3, it is observed that Fig. 4 (a) and Fig. 4 (b) are almost the same as Fig. 3 (a) and 
Fig. 3 (b) while Fig. 4 (c) is different from Fig. 3 (c) due to the opposite boundary conditions of the concentration. As a careful 
examination, Fig. 5 shows the results obtained by 500Ra = , 20Le = , and 81 81sN = ×  for both boundary conditions; for larger 
Ra , the contour lines in the center regions of ψ , T , and C  becomes flatter in comparison with Fig. 3 and Fig. 4; moreover, the 
distribution of C  reverses in terms of the magnitude for these two different boundary conditions, indicating that the concentration 
is arranged in the reverse direction while the recirculation is kept clockwise-rotating. The values of Nu  and Sh  computed by 
using both unsteady-state framework and steady-state framework [18] with 81 81sN = ×   are listed in Table 5, from which the 
numerical results are further confirmed. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Contour plots obtained by 81 81
s

N = × for combined BCs ( 100Ra = and 20)Le = (a) ;ψ  (b) ;T ; (c) .C  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. 4. Contour plots obtained by various
s

N for opposite BCs ( 100Ra = and 20) :Le = (a)-(c) are ,ψ ,T and C by 41 41;
s

N = × (d)-(f) are ,ψ ,T and C by

61 61;
s

N = × (g)-(i) are ,ψ ,T and C by 81 81.
s

N = ×  
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Table 4. The iteration errors and condition numbers for various Ns (opposite BCs). 

Ns 4141 6161 8181 

Condition number 2.5110105  6.6485105  1.3454106  

CPU time (sec.) 28.9656 223.0143 1097.5630 

No. of iteration 7 7 7 

Table 5. Comparison of Nu and Sh with reference results (opposite BCs). 

Method Present Yang and Chang [18] 

Ra Le Nu Sh Nu Sh 

100 

1 3.15 3.15 3.15 3.15 

10 3.15 14.68 3.15 14.68 

20 3.15 21.35 3.15 21.35 

200 

1 5.13 5.13 5.13 5.13 

10 5.13 22.09 5.13 22.09 

20 5.13 30.41 5.13 30.41 

 

(a) (b) (c) 

(d) (e) (f) 

Fig. 5. Contour plots obtained by 81 81
s

N = × ( 500Ra = and 20) :Le = (a)-(c) present ,ψ ,T and C for combined BCs; (d)-(f) present ,ψ ,T and C for 

opposite BCs. 

4.3. Solute transferring problem in a parallelogram 

For nonzero buoyancy ratio N, the nonlinear coupling of the system is enhanced, leading to a fully solute transferring problem. 
In this example, the full solute transferring problem in a parallelogram, as schematically shown in Fig. 6, is investigated. The 
boundary conditions of combined global heat and mass flows presented in Section 4.1 are adopted again; particularly, the boundary 
conditions of two inclined sides are given in Eq. (19). The formulae for computing the average parameters Nu   and Sh   in a 
parallelogram are modified as follows [21]: 

( ) 0
0

1

cos

H

x

T
Nu dy

H L xθ =

∂
=

∂∫  (46) 

( ) 0
0

1

cos

H

x

C
Sh dy

H L xθ =

∂
=

∂∫  (47) 

where the inclined angle θ  is defined as the angle measured from the horizontal x axis to the inclined side of parallelogram in 
the counterclockwise direction. The above equation applies to θ  between 90− �  and 90� . 

The following parameters are considered first: 1,L H= = 100,Ra = 0.8,Le = 2,N =  and 60 60 .θ− ≤ ≤� �  The results of Nu   and 
Sh   versus θ   are respectively plotted in Fig. 7 (a) and (b), in which 81 81sN = ×   and 81 81eN = ×   are adopted herein. By 
comparison, both Nu  and Sh  agree well with the reference solutions [21], although there is some small discrepancy; this can be 
attributed to different numerical methods and discretization adopted in the analysis, i.e., FEM with non-uniform mesh in Ref. [21]. 
Besides, it is noticed that for Le  and N  close to unity in this example, the behaviors of T  and C  become similar as implied by 
Eqs. (12)-(14) and Eqs. (46)-(47), which further verify the results obtained by the present method. The viability of the proposed 
framework in solving the solute transferring problems is assured in concern of various geometric inclinations. 
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Fig. 6. The schematic layout of collocation points in a parallelogram. 

 
(a) 

 
(b) 

Fig. 7. The average parameters vs. the inclined angle :θ (a) Nu; (b) Sh. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Contour plots obtained by 31 91
s

N = × for combined BCs ( 100,Ra = 8,Le = and 2) :N = (a) ;ψ (b) ;T (c) .C  

Next, a parallelogram with 45θ = �  is considered, with the following parameters adopted: 2,L H = 100,Ra = 8,Le = and 2.N =  
For this geometry, 31 91sN = ×  and 2.8 .a h=  The results of ,ψ ,T and C are shown in Fig. 8. With the aid of more source points 
discretized on the longer side of the parallelogram, the contour plot of C near the corners still exhibits smooth approximation, even 
for such a large value of .Le  

4.4. Monocellular natural/anti-natural flow in a square 

A square domain 1L H= =   is considered herein. For the monocellular natural/anti-natural flow (MNF/MAF) problem, the 
imposition of heat source on the boundary is schematically illustrated in Fig. 9, with the following boundary conditions [24]: 

For 0,x =  

( ) ( ) ( )0, 0,  0,  0,  0, 0
T

y y C y
x

ψ
∂

= = =
∂

 (48) 

For 1,x =  

( ) ( ) ( )1, 0,  1,  0,  1, 1
T

y y C y
x

ψ
∂

= = =
∂

 (49) 

N
u
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For 0y = and 0.5 1,x≤ ≤  

( ) ( ) ( )   , 0 0 , 0 1 , 0 0,  ,  
C

x T x x
y

ψ
∂

= = =
∂

 (50) 

For 0y = and 0 0.5,x< <  

( ) ( ) ( )   , 0 0 , 0 0 , 0 0,  ,  
T C

x x x
y y

ψ
∂ ∂

= = =
∂ ∂

 (51) 

For 1,y =  

( ) ( ) ( )   , 1 0 , 1 0 , 1 0,  ,  
C

x T x x
y

ψ
∂

= = =
∂

 (52) 

When the boundary is heated partially, the behavior of fluid changes according to the value of buoyancy ratio N. For N > 0, it 
leads to a monocellular natural flow; for N < 0, it is monocellular anti-natural flow. In this example, 100,Ra = 1,Le =  and 

81 81.sN = ×  By using 10,N =  the results of ,ψ ,T and C  are shown in Fig. 10; the cell rotation is counter-clockwise as shown in 
the stream function, while the regular pattern (e.g. in the previous examples) is no longer available for the temperature field due to 
the asymmetric nature of heat source. For 10,N =− the results of ,ψ ,T and C  are shown in Fig. 11, in which the cell rotation is 
in the reverse direciton for the stream function. By comparing Fig. 10 with Fig. 11, both the contours of ψ  and C  exhibit opposite 
behaviors; for MNF, the fluid is governed by the buoyancy force due to the temperature, thereby making the contour of T  distribute 
vertically from the heat source over the right part of the domain; for MAF, the fluid is under the control of the buoyancy force due 
to the concentration, thereby making the contour of T  diffuse vertically over the left part of the domain. Furthermore, as the 
thermal buoyancy force generated by the heat source tends to resist the solute buoyancy force (the governor in this case) when 

0,N <  the monocellular anti-natural flow requires more iteration. 

 
Fig. 9. The schematic layout of collocation points in a square. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Contour plots for monocellular natural flow: (a) ;ψ (b) ;T (c) .C  

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Contour plots for monocellular anti-natural flow: (a) ;ψ (b) ;T (c) .C  
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(a) (b) 

Fig. 12. The schematic layout of collocation points in simply connected domains: (a) uniform; (b) non-uniform. 

   

(a) (b) (c) 

Fig. 13. Contour plots for simply connected domains (uniform discretization): (a) ;ψ (b) ;T (c) .C  

   

(a) (b) (c) 

Fig. 14. Contour plots for simply connected domains (non-uniform discretization): (a) ;ψ (b) ;T (c) .C  

4.5. Simply connected and multiply connected domains 

To explore the meshfree nature of the numerical framework, both uniform discretization and non-uniform discretization are 
considered; additionally, both simply and multiply connected domains are included as motivated by the previous studies [28, 29]. 
The following equations are adopted for generating the coordinates ( ),x y  in the non-uniform discretization: 

( )

( )

1 2
10

1 2
10

s
x x rand h

s
y y rand h

= + − +

= + − +
 (53) 

where s denotes the disturbance of coordinate, and (1)rand rand=  denotes a random numebr between 0 and 1 in Matlab. In this 
example, 2s =  is adopted, which indicates that the disturbance could cause the deviation of a point within 20% of the original 
coordinate.  

The following parameters are assumed: 1,L H= = 100,Ra = 8,Le = 2,N = an inner radius of 0.25r =  for the hole in the simply 
connected domain, and an inner radius of 0.15r =  for the two holes in the multiply connected domain. The boundary conditions 
given in Eq. (16) and Eq. (18) are assumed for the outer boundary; the inner boundary is assumed to be impermeable ( 0ψ = ) without 
diffusion of heat and mass [19], as described by Eq. (19). To reach smooth streamline, 3.5a h=  is adopted for both simply and 
multiply connected domains. 

As shown in Fig. 12 (a) and (b), the uniform discretization and non-uniform discretization of simply connected domains are 
based on 81 81×  points discretized in the background square, and 5432sN =  after the removal of points in the hole. For uniform 
and non-uniform discretization, Fig. 13 and Fig. 14, respectively exhibit the corresponding contour plots, from which the patterns 
of anti-symmetry are observed for the streamline of ,ψ ,T and ,C and both discretization yield similar results with desired accuracy. 
Table 6 summarizes the information of the two systems during nonlinear analysis; it is found that the non-uniform discretization 
requires more time to converge while the rest results are similar to those of uniform discretization. For the simply connected 
domain, the contours of ψ  and T  along the hole exhibit similar distribution (in terms of values) to those on the top and bottom 
boundary; the flow of ψ  separates into two vortexes while the flow of C  rotates along the hole. 
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Table 6. Information of simply connected problems. 

Discretization Uniform Non-uniform 

Condition number 6.9262106  2.9194106 

CPU time (sec.) 558.8040 566.3812 

No. of iteration 8 8 

Table 7. Information of multiply connected problems. 

Discretization Uniform Non-uniform 

Condition number 1.1941106 1.8978106 

CPU time (sec.) 767.0183 773.3465 

No. of iteration 9 9 

The multiply connected domains with uniform and non-uniform discretization are shown in Fig. 15 (a) and (b), where 5829sN =  
on the basis of 81 81×  points discretized in the background square. As shown in Fig. 16 and Fig. 17, the anti-symmetric patterns 
of streamline for ,ψ ,T and C are observed again for both discretization, regardless of the number of holes in the domain; in Fig. 17(c), 
some tiny oscillations are observed in the top right and bottom left corners. Table 7 displays the convergence information of the 
two systems, from which it is observed that the non-uniform discretization leads to a less stable system for the current subject in 
consideration. For the multiply connected domain, the contour of T  along the two holes exhibits similar distribution (in terms of 
values) to those on the top and bottom boundary again; the flow of C  rotates along the two holes; the flow of ψ  is compressed 
by the geometry of two holes such that the two vortexes are not fully separated. 

 

  
(a) (b) 

Fig. 15. The schematic layout of collocation points in multiply connected domains: (a) uniform; (b) non-uniform. 

   

(a) (b) (c) 

Fig. 16. Contour plots for multiply connected domains (uniform discretization): (a) ;ψ (b) ;T (c) .C  

   

(a) (b) (c) 

Fig. 17. Contour plots for multiply connected domains (non-uniform discretization): (a) ;ψ (b) ;T (c) .C  
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5. Conclusion 

In this study, the unsteady meshfree framework based on RKCM for nonlinear analysis of porous enclosures is established to 
solve three-phase coupling problems. To ensure the computational efficiency, the corner points on the domain boundary are 
imposed by one boundary condition for each variable such that a determined and well-conditioned system can be reached. The 
flexibility of meshfree nature is validated through complex geometry of connected domains and non-uniform discretization. The 
numerical results show that the buoyancy force governs the behaviors of the field variables under the partially heated boundary, 
especially for the distribution pattern of temperature. Concerning the geometric effects of the hole(s) in the domains, various 
vortexes might be formed and separated depending on the inner geometry. The numerical framework has been demonstrated to 
be stable and effective in retrieving the smooth contours for multi variables in concern of high nonlinearity by uniform 
discretization with few points in the approximation. 
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