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Abstract. This study focuses on improving the thermal characteristics of a plate-finned heat sink (PFHS) by incorporating a vapor 
chamber (VC) through experimental investigation. The research examines the influence of various parameters, including Reynolds 
number (Re), heat input, filling ratio (FR), and operating vacuum pressure, on the thermal performance of the VC. The results 
demonstrate that the utilization of a VC leads to a significantly more uniform temperature distribution along the base of the PFHS 
and low overall temperatures. Conversely, in the absence of a VC, the PFHS exhibits a non-uniform temperature distribution, with 
a bell-shaped profile and concentrated high temperatures at the center at the same operating conditions. The results indicate that 
an operating vacuum pressure of 1kPa produces the most favorable performance. Additionally, a filling ratio of 50% proves to be 
optimal across the range of heat inputs from 10 to 90 W. 

Keywords: Heat sink, Vapor chamber, Thermal resistance, electronic devices cooling. 

1. Introduction 

The increasing advancement of electronic devices has led to a growing need for effective thermal control to prevent 
malfunctions caused by concentrated heat flux, commonly referred to as hotspots [1-3]. Efficient heat dissipation and thermal 
spreading within electronic devices have become significant challenges [4, 5]. Therefore, numerous methods have been introduced 
to enhance conventional heat transfer techniques. These methods include the utilization of vapor chambers [6, 7], microchannels 
[8], nanofluids [9], porous media [10], and modifications in geometries [11].  

Vapor chambers, in particular, have gained significant attention as highly effective and efficient heat spreaders in various 
electronic devices [12-14] such as hard disk drivers [15], smartphones [16], LEDs [17-19], photovoltaic [20], solar collectors [21], and 
fuel cells [22-24]. A vapor chamber (VC) is a flat vacuum vessel made of copper or other materials. The VC contains a small quantity 
of liquid such as water or other liquid coolants. The vessel sides may be lined with wick structures or without wick structures [25]. 
The heat is generated by an electronic component such as a CPU in a laptop. The heat is transferred to the VC by conduction through 
thermal grease (commonly used as an interface material between heat sinks and the CPU) [26]. This heat causes the liquid inside 
the evaporator section to vaporize, creating a vapor that flows to the cooler condenser section. The vapor loses the heat at the 
condenser section and condenses back into liquid form. The condensed liquid then returns to the evaporator section by either 
capillary effect or gravity, creating a continuous cycle that effectively cools the electronic device.  

There are many working studies to improve VC thermal performance and its fabrication. Wang and Vafai [27] experimentally 
investigated the thermal performance of copper flat heat pipe. The study found that the temperature distribution along the 
condenser wall surface was quite even. The highest thermal resistance in the VC was produced in the evaporator section, which 
influences the overall performance of the Go [28] evaluated the thermal performance of an aluminum VC heat sink, which used 
acetone as a working fluid and used micro stainless steel wick structures fabricated by the metal etch. The study found that a filling 
ratio of 30% yielded the best thermal performance. This performance improved as the heat load was increased. Hsieh et al. [29] 
experimentally investigate the heat spread of a copper VC without a wick. The distilled water is used as a working fluid. The results 
show that VCs are a better way to spread heat than traditional solid metal heat sinks under the same conditions. They also noted 
that the experimental study on VC heat sinks is very limited. Koito et al. [30] numerically investigated the thermal performance of 
the VC and validated the numerical analysis by experimental investigation. Ming et al. [31] experimentally studied the use of 
magnetic working fluid in a copper disk-shaped VC without a wick structure and compared the findings with those obtained using 
water. They found that the optimum charge ratio for the magnetic fluid was 53.5%. They suggest that magnetic fluid may be a 
promising alternative to traditional working fluids for VC. Also, Ming et al. [32] investigated the thermal behavior of a grooved VC 
using numerical and experimental methods. The results demonstrate that the grooved structure is capable of producing a capillary 
loop between the evaporation and condensation surfaces, thereby enhancing the heat transfer in the VC. Wang et al. [33] evaluated 
the thermal performance of a vapor chamber by a novel formula function in vapor chamber materials, working fluid, vapor chamber 
size, vacuum pressure, and height of working fluid inside the chamber. The results demonstrate that the thermal performance of 
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the vapor chamber increased with the size of the vapor chamber increased. Attia and El-Assal [34] experimentally investigated the 
thermal performance of a copper annular-shaped VC without a wick structure using different working fluids. The study found that 
the thermal performance of using water as a working fluid was much better than using methyl alcohol. The study also indicated 
that the optimum charge was 30% for most tested working fluids. Peng et al. [35] investigate the heat transfer of an aluminum VC 
without a wick structure experimentally. The study found that increasing the operating vacuum pressure improved thermal 
performance. Additionally, using acetone as the working fluid resulted in a thermal performance better compared to water. Naphon 
et al. [36] investigated the thermal performance of a copper VC. The effect of heat sink configurations, coolant flow direction types, 
filling ratios, and different working fluids on cooling efficiency are studied. Liu et al. [37] experimentally investigated the heat 
transfer characteristics of a wickless VC during condensation and evaporation. The study found that the thermal behavior increased 
as the power input increased, and the 33% filling ratio is the optimum for overall heat transfer performance. Thought the work of 
Ladekar et al. [38], the heat transfer characteristics of a heat sink with VC were investigated numerically. In a VC utilizing acetone 
as the working fluid, the study shows that the thermal resistance of the integrated heat sink vapor chamber (IHSVC) decreased by 
49.6% as the heater area increased by a factor of 1.25.  

This review shows that the vapor chamber (VC) is one of the most effective methods for heat dissipation in electronic devices 
and the challenge to dissipate the generated heat from electronic devices properly and uniformly and overcome hotspots (local 
overheating) is an open topic despite valuable research efforts.  This work investigates experimentally the thermal performance 
enhancement of a PFHS integrated with a new design of a wickless vapor chamber across a range of operating conditions. The 
effects of parameters including Reynolds number, heat input, vacuum pressure, and fill ratio are analyzed. This research contributes 
to the enhancement of heat dissipation in electronic devices, addressing the growing demand for efficient thermal control. 

2. Experimental Setup 

Figure 1 presents a schematic of the experimental setup that was used to study the thermal performance of the PFHS with and 
without VC. The setup consists of the following: 

 
Fig. 1. A schematic configuration of the experimental setup. 

  

Fig. 2. PFHS configuration and thermocouple’s location. 
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2.1. Test Section 

A test section consists of a main duct fabricated from a 6-mm thick Plexiglas plate and assembled correctly to prevent air 
leakage. The test section has dimensions of 1000 mm in length and a cross-section (125 mm x 125 mm). The air is drawn by a 
centrifugal fan coupled with a 1 hp electric motor. The air is drawn by a centrifugal fan coupled with a 1 hp electric motor. The air 
enters the test section through a bell mouth. The purpose of the bell mouth inlet is to ensure a smooth and uniform flow of air into 
the test section. The plate-finned heat sink was installed after 10 hydraulic diameters (Dh) of the test section from the bell mouth 
inlet, where the hydrodynamic entry length in turbulent flow is equal to 10 Dh [39]. 

2.2. Plate Finned- Heat Sink (PFHS) 

The PFHS is fabricated from aluminum alloy 2017. The PFHS has a base area of 100 mm x100 mm, and base thickness (tb) =             
5 mm. Its fins have a height of (H) = 35 mm, and a thickness of (t) = 1.5 mm. Three PFHS with different numbers of fins (N = 8, N = 
12, and N = 16) are studied. The heat sink base has five T-Type (copper-constantan) thermocouples installed to measure the 
temperatures as shown in Fig. 2. 

2.3. Vapor Chamber (VC) 

A wickless VC was constructed and designed as illustrated in Fig. 3. The tested VC comprises two main parts: the chamber, and 
the top plate. The chamber and top plate were held together by circumferential bolts. To prevent leakage, a suitable O-ring was used. 
The five columns built in the chamber have the same chamber height (3.5mm height) to prevent deflection in the top plate during 
the vacuum. The VC is made from copper and has outer dimensions of 100 mm x 100 mm x 6 mm and inner dimensions of 80 mm 
x 80 mm x 3.5 mm. The charging valve was used to charge working fluid easily. To ensure the (VC) is sealed properly, a leakage test 
is performed. An air compressor pressurizes the VC to approximately 1.5 bar gauge pressure. The VC is then submerged in a water 
bath to check for any escaping air bubbles that would indicate a leak. Once no leaks are detected, the VC is prepared to charge with 
working fluid (distilled water). 

  

Fig. 3. Photos of the VC Configuration. 

 
Fig. 4. The PFHS with VC and heating source assembly. 
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Table 1. The range of parameters in the study. 

Parameter Value Unit 

heat input range(Q) 10 - 90 W 

Number of Fins (N) 8 - 16  

Flow Re 15,580 - 62,310  

VC. filling ratio (FR) 10 - 70 % 

VC. working fluid Distilled water  

VC. operating pressure 1 - 10 kPa 

2.4. Heat Source 

The Heating source comprises a heater block and two electric pencil heaters with a power output of 60 W each. The heater 
block is made from copper with dimensions of 30mm x 30mm x 5mm at the top and 50mm x 50mm x 10mm at the base of the 
heater. To maintain a constant heat flux, a variable AC power supply (Varaic) is utilized to control the electrical voltage, current, and 
power input to the heater elements. The digital wattmeter is used to measure power input (Pinput) to the heater elements. The heating 
source is placed inside a wooden frame and insulated by glass wool, which has a thermal conductivity of (k = 0.023 W/m.K) to 
minimize heat losses. The assembly of the heater block and heater elements with the FPHS with VC is illustrated in Fig. 4. 

2.5. Charging Process 

The charging unit consists of several components: a vacuum pump, valves, an injector (syringe), and a pressure gauge, as shown 
in Fig. 5. To begin the suction process, follow these steps: close all valves initially, start the vacuum pump, then sequentially open 
valves numbered (1), (2), and (4) to create a vacuum within the VC until reaching the desired operating vacuum pressure. Afterward, 
close valves (4), (2), and (1) in the same order, and turn off the vacuum pump. Disconnect the VC from the suction unit to weigh the 
empty VC using a digital weighing scale with a readability of 0.01 g (Chyo-petit balance). Reconnect the VC to the charging unit to 
fill it with distilled water, adhering to the specified filling ratio. Open valves numbered (3) and (4) to allow the entry of distilled 
water into the VC, naturally by the pressure difference between the VC and the syringe. Re-weigh the VC to verify that the correct 
amount of distilled water has been charged. The preparation of the required quantity of distilled water involves the following steps: 
Begin by weighing the empty injector (syringe), then proceed to fill the syringe with the corresponding volume of distilled water 
according to the filling ratio. Subsequently, weigh the syringe containing the distilled water to determine its weight. Finally, charge 
the VC with the appropriate filling ratio and position it on the evaporator side of the heating source, while placing the heat sink on 
the condenser side. To further enhance heat transfer, apply a thin layer of thermal paste with a thermal conductivity of K = 1.9 
W/m.K between the VC and the heat sink, as well as between the VC and the heater. 

3. Experimental Procedure 

Initially, the thermal performance of the PFHS was investigated without VC. The PFHS which has the best thermal performance 
was mounted on a VC to investigate the thermal criteria of VC. A sequence of tests was then conducted under different conditions 
as shown in Table 1. 

3.1. Data Reduction 

The air velocities in the wind tunnel were measured by a digital differential pressure manometer (Model: HD755, with range 
±350 mm H2O, and accuracy ±0.01% mm H2O) using a pitot tube at the entrance of the test section. The air velocity was controlled 
by an air volume damper located at the wind tunnel outlet. The temperatures were measured at a steady state condition by a digital 
thermometer (Model: OMEGA: HH21A, with range 0:400℃ of type T, and accuracy ±0.1%+0.6 oC) using several thermocouple type T 
located at the wind tunnel inlet, PFHS base, top and bottom of the heater and bottom of the insulation to measure the air 
temperature Ta, the temperature distribution on PFHS base (T1, T2, T3, T4, and T5), upper and lower temperature of the heater          
(Th-up and Tins-up) and insulation temperature (Tins-down) respectively. The input electric power to the heater (Pinput) was measured by a 
wattmeter device (Model: UT230B-EU, with range 0-3680 W, and accuracy ±1%) and adjusted via a variac. As shown in Fig. 6, the heat 
loss from the heating source to the surrounding (QLoss) through the insulation can be estimated by Eq. (1): 

in up ins down

Loss ins ins

ins

T T
Q K A

H
− −−

=  (1) 

where insK  is the insulation's thermal conductivity and insA  cross-section area of the insulation and insH the height of the 
insulation. Therefore, the heat input ( Q ) can be obtained by Eq. (2): 

lossinputQ P Q= −  (2) 

where inputP is the power measured by a digital wattmeter.  

 

Fig. 5. Schematic of the charging unit components. 
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Fig. 6. A cross-section in wind tunnel. 

The thermal resistance of PFHS 
 HSth( )R  is determined by Eq. (3): 

 Sth H
v aa gb T

R
T

Q
− −

=  (3) 

where 
5

1
( ) / 5.

i

iiavgbT T
=

=− = ∑  Also, the thermal resistance of VC 
 VCth( )R  is determined by Eq. (4): 

 

 VCth

avgh up bT
R

Q

T −− −
=  (4) 

Reynolds number (Re) calculated by Eq. (5): 

Re
a

a a hU Dρ

µ
=  (5) 

where, aρ is the air density, aU  is the airflow velocity ( aU = 2 m/s : 8 m/s), hD  is the hydraulic diameter of the wind tunnel estimated 
by 4 / ,hD A P=  and aµ  is the dynamic viscosity of air. The Nusselt number ( )DhNu  of the heat sink is estimated by Eq. (6): 

 

f

h
Dh

h
N

D
u

K
=  (6) 

where fK is the thermal conductive of the air and estimated at ( ) / 2amean avgbT TT − +=  and h  is the heat transfer coefficient estimated 
by Eq. (7): 

. th.

1

)(Conv avg a Convb

Q
h

T AA RT −

=
−

=  (7) 

where .ConvA is the convective area of the heat sink. The convective area depends on the design and geometry of the heat sink. The 

filling ratio FR is obtained by Eq. (8): 

* 100%wf

VC

V
FR

V
=  (8) 

where wfV  is the volume of the measured working fluid, and VCV  is the inner volume of the vapor chamber. 

3.2. Uncertainty Analysis 

In the current study, uncertainty analysis was performed, and the total uncertainty in derived parameter F was calculated using 
the following Eq. (9) [40]: 
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 (9) 

where Fω  is the uncertainty of the variable F, 1ω  is the uncertainty of parameter x1, and ∂F/∂x1 is the partial derivative of F 
concerning x1. The measurement uncertainty and accuracy are calculated using the uncertainty of primary measurements. The 
convective heat transfer coefficient of a heat sink is determined by heat load and temperature measurements. The reading 
uncertainty of T-type thermocouples is ±0.6 oC and the wattmeter has an accuracy of ±1 %. Substituted in the uncertainty formula 
Eq. (9), the uncertainty of the convective heat transfer coefficient accounted for ±1.03%. Similarly, the thermal resistance and Nusselt 
number accounted for ±1.03 % uncertainty in the uncertainty analysis. 

4. Results and Discussion 

4.1. Plat Finned-Heat Sink without Vapor Chamber 

4.1.1. Thermal resistance of PFHS (Rth HS) 

Figure 7 shows the effect of the Reynolds number on the thermal resistance of PFHS at various fins numbers (N = 8, N = 12, and 
N =16) and heat input  Q = 30W. It is clear that as the Re increases, the thermal resistance of PFHS decreases, but the rate of decrease 
is greater at low Re than at high Re, this is because as Re increases the convective heat transfer coefficient increases therefore 
thermal resistance decreases. Additionally, the thermal resistance of PFHS also decreases as the fin number increases. This is 
because the PFHS surface area increases as the fins number (N) increases, therefore reducing the thermal resistance. 

Based on the three well-known fluid mechanics governing equations, a numerical exercise was applied to the test section at 
different locations (Locations A and B as shown in Fig. 8). The numerical results at two locations are compared as shown in Fig. 9. 
The percentage deviation @ @ @( ( ) / ( ) 100)t th A th B h AD R R R= − ×  between the numerical results at the two locations is less than 4.5%. 
That difference is attributed to the boundary layer effect. 

4.1.2. Temperature distribution  

Temperature distribution of the PFHS base at a different fins number,  Q= 30 W and Re =31,160 is shown in Fig. 10, where X is the 
position of the thermocouple on the PFHS base and (L) is the length of PFHS, due to the smaller area of the heater compared to the 
base of the heat sink, as well as the relatively low value of the thermal conductivity of the heat sink. This leads to, the temperature 
distribution on the heat sink taking on a bell-shaped form. The temperature is a maximum at the middle of the base and decreases 
towards the edges. The maximum temperature value of the heat sink base decreases as the fins number increases. 

 

 

Fig. 7. Effect of Re on the thermal resistance of plate finned heat sink, Rth HS at various fins numbers. 

 

Fig. 8. The different locations of the test section. 
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Fig. 9. CFD findings for the effect of test section location in the wind tunnel [41]. 

 

Fig. 10. Temperature distributions of the plat finned heat sink base. 

4.2. Plat Finned Heat Sink with Vapor Chamber 

Based on the previous results, the PFHS which has a fins number N = 16 has better thermal performance than the others, thus 
it was used with the VC. 

4.2.1. Vapor chamber transient behavior  

Figure 11 shows, the transient behavior of the experimental heater temperature (i.e., the temperature of the VC base) at different 
heat inputs and constant Re = 31,160. It is indicated that the time consumed to reach steady state conditions (i.e., the transient 
region) varied with heat inputs. As heat input is low, reaches a steady state faster than high heat input. The transient time for 
almost all heat inputs was approximately 1000 seconds. 

4.2.2. Effect of heat input (Q) 

Figure 12 depicts the effect of heat input on the thermal behavior of VC at various filling ratios and constant Re = 31,160. For all 
ranges of filling ratio, the thermal resistance of VC (Rth VC) decreases as heat input increases and vice versa. This is maybe because, 
at low heat inputs, the heat is enough to boil or evaporate the distilled water, therefore the heat is transferred from the heater to 
the heat sink by conduction mode. With increasing heat input, the temperature of the heater increases as shown in Fig. 13, and the 
evaporation or the boiling of working fluid starts, and thermal resistance reduces. 



Thermal Performance Study of Plate-finned Vapor Chamber Heat Sink 311 
 

Journal of Applied and Computational Mechanics, Vol. 10, No. 2, (2024), 304-316 

 

Fig. 11. Transient response of heater temperature. 

 

Fig. 12. The heat input effect on the thermal resistance of VC at various filling ratios (F.R.). 

 

Fig. 13. The heat input affects heater temperature at various filling ratios (F.R.). 
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4.2.3. Effect of filling ratio (FR)  

The effect of the filling ratio (FR) on the thermal performance of VC at Re = 31,160 and different heat inputs is shown in Fig. 14. 
The thermal resistance of VC decreases sharply as the filling ratio increases up to FR = 50%. For the FR greater than 50%, the 

 Cth VR  
increases as filling ratio increase as shown in Fig. 14(a). The effect of FR on the temperature of the heater ( )h upT −  has the same trend. 
As shown in Fig. 14(b) the h upT −  increases as the filling ratio increases up to FR = 50%. For FR greater than 50%, the h upT − increases 
as the filling ratio increases. Figure 15 shows the effect of the filling ratio on temperature in the y-direction of the test section at 
constant heat input Q = 90 W and constant Re = 31,160. The Filling ratio = 50% has a minimum temperature. According to this result, 
for this VC, the optimal filling ratio over the range of heat input is FR = 50%. At the filling ratio is less than 50%, the amount of 
working fluid in the VC may be not enough to transfer the heat from the evaporator section to the condenser section and this may 
lead to dry out. While at a filling ratio greater than 50%, the amount of working fluid in the VC may be excess, and the thickness of 
working fluid at the evaporator section increase and increase the thermal resistance

 Cth V .R   

4.2.4. The effect of the operating vacuum pressure 

The impact of the operating vacuum pressures on the temperature of the heater at FR = 50%, Re = 31,160 and different heat 
inputs are shown in Fig. 16. The results indicate that the heater temperature with operating vacuum pressure = 1 kPa is lower than 
the heater temperature at other operating vacuum pressure, this may be due to the amount of residual air (no condensable gas) in 
the chamber is decreased with high the vacuum, therefore, decreasing the condensation and the boiling resistance and improving 
the heat transfer rate. 

4.2.5. Effect of Reynolds number Re 

By analyzing the VC's thermal performance, it was discovered that its optimal operating conditions are a 50% filling ratio and a 
90 W heat input. Thus, it was essential to investigate the Reynolds number (Re) effect on the thermal performance of VC under 
optimum operating conditions. This is depicted in Fig. 17. The temperature of the heater decreases with an increase in the Reynolds 
number, and therefore the heat transfer rate via the VC will be faster, which will reduce the temperature of the heater, which is the 
desired goal of the study.  

 

  

(a) (b) 

Fig. 14. Effect of the filling ratio on the thermal performance of VC: (a) Thermal resistance of VC (Rth VC) (b) Heater temperature (Th-up). 

  

Fig. 15. Effect of the filling ratio on the temperature in the Y-Direction of the test section. 
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Fig. 16. The operating pressure affects the heater temperature. 

 

Fig. 17. The Effect of Re on the heater temperature. 

4.2.6. Temperature distribution  

Figure 18(a) shows a comparison of the temperature distribution along the center line of the PFHS base centerline with and 
without VC at fins number N = 16, heat input Q = 30 W, and Re = 31,160. With the use of VC, uniform temperature distribution and 
reduced overall temperatures are obtained along the PFHS base. This is because thermal spreading resistance decreases due to a 
phase change occurring in the VC, heat can be removed rapidly, and a local high temperature is avoided. Without VC, non-uniform 
temperature distribution and the bell-shaped with local high temperature at the center are obtained along the PFHS base. Electronic 
devices can be damaged by local high temperatures. Figure 18(b) shows the temperature distribution of the PFHS base with various 
heat inputs. The temperature line maintains its form and the temperature difference between the center and edges remains below 
3 oC even with an increase in heat input up to 90 W. This means that the VC is more reliable for cooling electronic devices with high 
heat flux. 

4.2.7. Nusselt number (NuDh) 

Figure 19 shows a comparison DhNu  of PFHS with and without VC at constant heat input Q = 30 W, FR = 50%, fins number                 
N = 16, and different Re. It was clear that DhNu  is increasing as Re increases. Because as Re increase the heat transfer coefficient 
increase therefore Nusselt number increase. 
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(a) (b) 

Fig. 18. The temperature distribution of PFHS base: (a) With and without VC at heat input, Q = 30 W, (b) With VC at different heat inputs. 

 

 

Fig. 19. Effect of Re on Nusselt number with using vapor chamber and without. 

5. Conclusion 

In this study, the thermal performance of PFHS with and without VC was investigated experimentally. The effects of different 
factors such as fins number, heat input (Q), filling ratio (FR), Reynolds number (Re), and operating pressure were presented and 
discussed. The main results of this study are as follows: 

The thermal resistance of PFHS decreases as the fins number of PFHS, and Re increase. The thermal performance of PFHS 
increases as Re increases for both PFHS with and without VC. The thermal resistance of PFHS with VC decreases as the heat input 
increases, thus the VC is more effective in high heat input. The temperature of the PFHS base with a VC is more uniform compared 
with the temperature of the PFHS base without a VC. Therefore, a VC is more effective for spreading the concentrated heat flux. For 
this VC, the optimum filling ratio is 50%. The lowest heater temperature and the lowest thermal resistance at all heat inputs. Where 
the heater temperature = 68.6 oC and thermal resistance = 0.19 oC/ W at the filling ratio = 50%. The heater temperature and thermal 
resistance decrease as the operating vacuum pressure increases in the test pressure range. For this VC, 1 kPa seems to be the 
optimum working pressure. 
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Nomenclature 

A 

FR 
H 
K 
Nu 
P 
Pinput 
Q 
Re 
Rth 

The cross-sectional area[m2] 
Filling Ratio [%] 
Height [m] 
Thermal conductivity [W/m.K] 
Nusselt number 
Perimeter [m] 
Power input [W] 
Heat load [W] 
Reynolds number 
Thermal resistance [oC/W] 

T 
U 

Subscript 
a 
avg. 
HS 
Ins-up 
Ins-down 
VC 

Temperature [oC] 
Velocity [m/s] 
 

air 
average 
heat sink 
insulation up 
insulation down 
vapor chamber 
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