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Abstract. This research considers the Kraenkel-Manna-Merle system with an M-truncated derivative (K-M-M-S-M-T-D) that defines 
the magnetic field propagation (M-F-P) in ferromagnetic materials with zero conductivity (F-M-Z-C) and uses the Sardar sub-
equation method (S-S-E-M). Our goal is to acquire soliton solutions (SSs) of K-M-M-S-M-T-D via the S-S-E-M. To our knowledge, no 
one has considered the SSs to the K-M-M-S-MTD with or without a damping effect (DE) via the S-S-E-M. The SSs are achieved as 
the M-shape, periodic wave shape, W-shape, kink, anti-parabolic, and singular kink solitons in terms of free parameters. We utilize 
Maple to expose pictures in three-dimensional (3-D), contour and two-dimensional (2-D) for different values of fractional order (FO) 
of the got SSs, and we discuss the effect of the FO of the K-M-M-S-MTD via the S-S-E-M, which has not been discussed in the 
previous literature. All wave phenomena are applied to optical fiber communication, signal transmission, porous mediums, 
magneto-acoustic waves in plasma, electromagnetism, fluid dynamics, chaotic systems, coastal engineering, and so on. The 
achieved SSs prove that the S-S-E-M is very simple and effective for nonlinear science and engineering for examining nonlinear 
fractional differential equations (N-L-F-D-Es). 

Keywords: The fractional Kraenkel-Manna-Merle system, M-Truncated derivative, Sardar sub-equation method, soliton solutions, 
nonlinear fractional differential equations. 

1. Introduction 

FMs have turned out to be a growing problem among investigators because of their numerous services in more than a few 
domains of NLSE including experimentation, magnetic motions, speed, nano-scale materials, network connectivity, massive data 
storage in numerous formats, power, and many more. The NLFDEs are operated in countless domains inclusive of optical fiber 
communication, mathematical biology, signal transmission, physics, porous mediums, quantum field theory, magneto-acoustic 
waves in plasma, neural physics, electromagnetism, solid state physics, fluid dynamics, chaotic systems, coastal engineering and 
many more [1-4]. Additionally, the concept of the M-T-D has been employed to illustrate a wide-ranging diversity of occurrences in 
numerous topics, for example, optical fiber communication, signal transmission, porous mediums, magneto-acoustic waves in 
plasma, electromagnetism, fluid dynamics, chaotic systems, coastal engineering, and so on. Because of the marvelous 
improvements in digital science to come face to face with the necessity for immense data and maximized storage, there has been 
a wealth of fascinating investigations on FMs. Consequently, tiny FM particles might currently be fabricated. FM is significant to get 
a higher quality sympathetic of the aspects of super- and micro-microstructures in nano-scale ferrous metals [5-7]. In the case of 
such tiny nano-particles, magnetization can be supposed of as homogeneous over these FPs and could be denoted by a magnetic 
moment. The magnetic moments in the dipolar motions permit FPs to exchange. Solitons are without interruption created as an 
outcome of these collaborations. Accordingly, a wide-ranging diversity of SS waves broadcasting occurrences has been scrutinized. 
The SS to the NLFDEs necessary to be attained with the intention of define whether the soliton is demolished after the collision. 
Though, determining NLFDEs has extended been a tough but essential endeavor. Thus, countless talented experts in the domains 
of NLSE have established a number of robust schemes for getting SSs, for example, the generalized projective Riccati equations 
technique [8], Sardar sub-equation scheme [9, 10], the fractional evolution process [11], the general algebraic scheme [12], the unified 
method [13, 14], the improved Kudryashov technique [15, 16], adapted (G’/G)-development scheme [17-23] and so many. 
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where x   and t  are spatial and temporal variables, ( , )U U x t=  is the external magnetic fields, ( , )V V x t=  is the magnetization and 
k  indicates the DE constraint that assistances to illuminate the concert of the magnetic materials, respectively. The fractional 
Kraenkel-Manna-Merle (KMM) model is actually associated more with physics and materials science rather than being specifically 
confined to mechanical engineering. It is a mathematical framework used to describe the dynamics of physical systems, particularly 
those exhibiting anomalous diffusion or fractional behavior, such as certain types of materials showing non-integer order dynamics. 
However, its application can extend to mechanical engineering, especially when dealing with materials exhibiting complex 
behaviors like ferromagnetic materials. Understanding the fractional KMM system in these materials can aid in designing 
mechanical components or systems where magnetic properties and material behavior play crucial roles. Therefore, while the KMM 
model itself might be more rooted in physics, its implications can definitely cross over into mechanical engineering practices. 

Nguepjouo et al. [24] studied Eq. (1) and modified the following structure as: 
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which illuminates nonlinear tiny wave dissemination with F-M-Z-C in an external field. When 0k=  into Eq. (2), then Eq. (2) is 
integrable and lax pairings. Abundant experts have established countless schemes for getting the SSs to the K-M-M-S-M-T-D with

0,k=  for example, the F-expansion technique [25], the simplified (G’/G)-development scheme [26], the truncated Painlevé scheme 
[27], the new sub-equation (NSE) method [28], the semi-inverse technique [29], Lie symmetry analysis method [30], Hirota’s bilinear 
method [31], Darboux transformation [32], scattering inversion scheme [33], the multi-scale development scheme [34], the 
consistent tanh expansion scheme [35], Riccati model scheme [36], the mapping scheme [37], the auxiliary equation method [38], 
and so many. Still, the FD of the K-M-M-S-M-T-D via the SSEM has not been handled up until the present time.  

The manuscript aims to employ the SSEM [9, 10] on the K-M-M-S-M-T-D system, exploring various soliton solutions such as the 
M-shape, dark soliton, periodic wave, double periodic shape, W-shape, kink, anti-parabolic, singular kink solitons, w-shape, and 
rogue wave profiles. By delving into previous literature discussions, it becomes apparent that certain wave profiles within the K-M-
M-S-M-T-D system represent new findings. This research holds the potential to simulate extended wavelength water rollers through 
the incorporation of gently nonlinear restorative forces and regularity distribution. Furthermore, it presents applicability in 
modeling waves across diverse fields such as optical fiber communication, signal transmission, porous mediums, magneto-acoustic 
waves in plasma, electromagnetism, fluid dynamics, chaotic systems, and coastal engineering. 

The novelty of the manuscript is to attain the SSs to the K-M-M-S-M-T-D in the with/without of a DE via the SSEM. We expand 
a few previous outcomes including the outcomes described in [25, 29]. The SSs obtainable at this time could be extremely 
cooperative to scientists in sympathetic significant nonlinear occurrences, since the KMMS-MTD demonstrates how nonlinear tiny 
wave dissemination with F-M-Z-C in an external field. Furthermore, we provide some graphical pictures produced via Maple 
software to examine the outcome of the FO on the got SSs to the K-M-M-S-M-T-D.  The SSs are achieved as the M-shape, periodic 
wave shape, W-shape, kink, anti-parabolic, and singular kink solitons in terms of free parameters. All wave phenomena are applied 
to optical fiber communication, signal transmission, porous mediums, magneto-acoustic waves in plasma, electromagnetism, fluid 
dynamics, chaotic systems, coastal engineering, and so on. The acquired outcomes are helpful for the ultrashort light heartbeats in 
optical filaments. Our review model has much significance in quantum optics and liquid mechanics for making sense of the optical 
qualities of the femtosecond lasers and femtochemistry objects. Optical soliton annoyance is the foundation of the broadcast 
communications industry. This industry stays in business due to the wonder of soliton transmission innovation. 

The manuscript's innovation lies in obtaining SSs for the K-M-M-S-M-T-D system, both with and without a differential equation, 
using the SSEM. We build upon prior findings, including those detailed in [25, 29]. The derived SSs offer valuable insights for 
scientists seeking a deeper understanding of significant nonlinear phenomena. The K-M-M-S-M-T-D model serves as a 
comprehensive framework illustrating nonlinear wave propagation, encompassing F-M-Z-C interactions within an external field. 
Additionally, we present graphical representations generated through Maple software, examining how changes in the FO impact 
the obtained SSs in the K-M-M-S-M-T-D system. These steady states manifest as various wave profiles, such as the M-shape, periodic 
wave shape, W-shape, kink, anti-parabolic, and singular kink solitons, characterized by their dependence on free parameters. 
Moreover, these wave phenomena find applications across diverse fields, including optical fiber communication, signal 
transmission, porous mediums, magneto-acoustic waves in plasma, electromagnetism, fluid dynamics, chaotic systems, coastal 
engineering, among others. The acquired outcomes hold particular significance in the realm of ultrashort light pulses within optical 
fibers. Our model contributes significantly to quantum optics and fluid mechanics, providing insights into the optical properties of 
femtosecond lasers and femtochemistry phenomena. The study of optical soliton propagation is fundamental to the 
telecommunications industry, as soliton transmission technology remains crucial for its operations and advancements. This 
technology forms the backbone of modern telecommunications, relying on the principles of optical soliton propagation for efficient 
data transmission and communication. 

This article is structured into several sections for clarity and coherence. The initial section (Section 1) provides a comprehensive 
review of the literature, outlines the objectives, and offers background information. Section 2 elaborates on the M-Truncated 
derivative and introduces the traveling wave hypothesis. The subsequent section, Section 3, applies the proposed methodology to 
the K-M-M-S-M-T-D system. Moving forward, Section 4 delves into the presentation and discussion of the obtained results. Finally, 
Section 5 encapsulates the conclusions drawn from the study's findings and discussions. 

2. M-T-D and Traveling Wave Hypothesis  
2.1. M-T-D 

Consider the function : [0, ) ,f ∝ → ℜ  0,t>  0 1,α< ≤  then definition of the local M-T-D of order ;
,[ ]i tDα βα  as follows: 
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2.2. Traveling wave hypothesis  

Consider the complex transformation: 
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where ( )U η  and ( )V η  are the real functions, 1η  and 2η  are constants. Inserting Eq. (4) into Eq. (1), we obtain: 
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Therefore, Eq. (5) becomes: 
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Integrating the second equation in Eq. (6) once, we have: 
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Substituting Eq. (7) into first equation in Eq. (6), we obtain: 
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3. Analysis of Soliton Solutions 

According to the SSEM, we have: 

1
0 1 .U F F= + Φ  (9) 

From Eqs. (9) and (8), then we find:  
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Cluster-02: 

   0,k=  2
0 2 ,r βη=  0 0,F =  1 22 .F η= ±  (11) 

3.1. The K-M-M-S-M-T-D with the damping term 

Substituting the above values in Cluster-01 into Eq. (9), then we achieve: 

Group-01: If  0a=  and 0,b>  then: 
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Group-02: If  0a=  and 0,b<  then: 
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3.2. The K-M-M-S-M-T-D without the damping term 

Substituting the values in Cluster-02 into Eq. (9), then we achieve: 

Group-01: If  0a=  and 0,b>  then: 
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4. Results and Discussion 

In comparison to the research outlined in [25], our study represents a significant advancement in the exploration of the K-M-
M-S-M-T-D. Alshammari et al. [25] dedicated their efforts to comprehensively investigating the K-M-M-S-M-T-D, meticulously 
deriving twenty-eight solutions primarily centered around trigonometric and hyperbolic functions. Similarly, our research mirrors 
their findings by also yielding a count of twenty-eight solutions. This outcome marks a pivotal achievement, as it signifies a 
substantial expansion in the range and diversity of solutions, encompassing not only trigonometric and hyperbolic functions but 
also extending to encompass rational, periodic, and hyperbolic forms. Moreover, our study delves deeper into the nuances of the K-
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M-M-S-M-T-D by meticulously examining the influence of individual parameters, fractional elements, and nonlinearities 
characterized by general parametric powers on the obtained results. Our investigation also ventures into the effects arising from 
variations in the order of derivatives on the resultant wave profile. By delving into these intricacies, we sought a more profound 
comprehension of the nature and behavior exhibited by these solutions. Recognizing the complexity inherent in these findings, we 
acknowledge the importance of visual aids in elucidating the essence and dynamics of these solutions. Hence, graphical 
illustrations have been employed to offer a more intuitive and accessible understanding of the intricate relationships and patterns 
observed within the scope of our research. These visual representations serve as indispensable tools in comprehending the 
multifaceted nature of the solutions derived from the K-M-M-S-M-T-D, facilitating a more comprehensive grasp of their behavior 
and characteristics. In this domain, we have successfully derived twenty-eight SSs 1 ( ) (1 28)U i±

≤ ≤ℓ  for the K-M-M-S-M-T-D, both 
with and without the presence of a differential equation (DE). These SSs encompass a diverse range of wave solutions, including V-
shaped periodic waves, solitary solitons, M-shaped periodic wave solutions, various forms of periodic waves, singular kink-type 
shapes, kink shapes, and numerous other types of steady states achieved through the use of the SSEM. Our investigation specifically 
focused on observing how the wave shapes of these steady states transformed under varying values of the FO. To gain a 
comprehensive understanding of the nature and behavior exhibited by these solutions, graphical representations play a pivotal 
role. Consequently, we have utilized a variety of graphical depictions, such as 3-D plots, contour plots, and 2D representations, to 
illustrate the waveforms corresponding to different values of the FO for the obtained SSs 1 ( )U ±

ℓ , 3 ( )U ±
ℓ , 5 ( )U ±

ℓ , 10 ( )U η± , 14 ( )U η± , 

15 ( )U η± , 17 ( )U η± , 19 ( )U η± , 23 ( )U η±  and 26 ( ).U η±  Figures 1 through 10 showcases these graphical depictions, offering a visual insight 
into the diverse range of SSs derived in our study. These visual representations serve as indispensable tools in comprehending the 
complex dynamics and characteristics inherent in the solutions of the K-M-M-S-M-T-D, facilitating a more intuitive understanding 
of their behavior and variations. 

Different behaviors associated with specific values of independent parameters are visually depicted through 3-D, 2-D, and 
contour plots. In Fig. 1, a variety of wave behaviors are showcased, exhibiting distinct characteristics. The portrayal includes bright-
dark wave phenomena of 1 ( )U ±

ℓ  for 0.20,α =  0.10,β =  0.50,µ =  0.20,λ =  0.20,α =  1 2 1.η η= =  The figures consist of 3-D 
representations (both real and complex) denoted as (a) and (b), respectively, along with corresponding contour plots represented as 
(c) and (d). Within Fig. 1(a), 1(b), 1(c), and 1(d), the alterations in ,α  demonstrating the effects of spatial fractionation, are presented. 
Specifically, the influence of α  variations on the wave behaviors is depicted in Fig. 1(e) and 1(f), providing a nuanced understanding 
of how changes in this parameter affect the observed wave patterns. Figure 2 showcases periodic wave patterns of 3 ( )U ±

ℓ  
corresponding to 0.10,α =  0.10,β =  10,µ =  20,λ =  1 0.10,η =  2 0.20.η =  This figure includes 3-D representations denoted as (a) 
and (b) for real and complex domains, respectively, alongside contour plots represented as (c) and (d). These graphical depictions 
within Fig. 2(a), 2(b), 2(c), and 2(d) illustrate the distinct characteristics of periodic wave behavior. Additionally, the impact of spatial 
fractionation, resulting from alterations in the α  parameter, is highlighted in Fig. 2(e) and 2(f). These illustrations serve to 
demonstrate how changes in α  affect the spatial properties and features of the observed periodic wave patterns. 

Figure 3 portrays singular periodic wave patterns of 5 ( )U ±
ℓ  corresponding to 0.30,α =  0.25,β =  10,µ =  20,λ =  1 0.30,η =  

2 0.40.η =  This illustration encompasses 3-D representations denoted as (a) and (b) for the real and complex domains, respectively. 
Additionally, contour plots represented as (c) and (d) are featured within Fig. 3(a), 3(b), 3(c), and 3(d), offering insights into the distinct 
characteristics of singular periodic wave behavior. Furthermore, the impact of spatial fractionation resulting from variations in the 
α  parameter is elucidated in Fig. 3(e) and 3(f). These depictions serve to highlight how changes in α influence the spatial properties 
and features exhibited by the singular periodic wave patterns. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 1. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
1

( )U η
± for 0.20,α =  

0.10,β = 0.50,µ = 0.20,λ = 0.20,α = 1 2 1.η η= =  
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(a) 

 

(b) 

 

(c) 

(d) 

 

(e) 

 

(f) 

Fig. 2. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
3

( )U η
± for 0.10,α =  

0.10,β = 10,µ = 20,λ = 1 0.10,η = 2 0.20.η =  

(a) 

 

(b) 

 

(c) 

(d) 

 

(e) 

 

(f) 

 
Fig. 3. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of

5
( )U η
± for 0.30,α =  

0.25,β = 10,µ = 20,λ = 1 0.30,η = 2 0.40.η =  
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(a) 

 

(b) (c) 

(d) 

 

(e) 

 

(f) 

Fig. 4. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
10

( )U η
± for 0.10,α =  

0.01,β = 1,µ = 2,λ = 1 1,η = 2 1.η =−  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 5. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
14

( )U η
± for 0.10,α = 1,β =

1,µ = 2,λ = 1 1,η = 2 1.η =  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 6. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
15

( )U η
± for 0.99,α =  

0.30,β = 1,µ = 2,λ = 1 0.10,η = 2 0.50.η =  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 7. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
17

( )U η
± for 0.10,α =  

0.25,β =− 1,µ = 2,λ = 1 1,η =− 2 1.η =  
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Figure 4 exhibits multiple periodic wave patterns of 10 ( )U η±  corresponding to 0.10,α =  0.01,β =  1,µ=  2,λ =  1 1,η =  2 1.η =−  
This presentation encompasses 3-D representations denoted as (a) and (b) for the real and complex domains, respectively. 
Additionally, contour plots represented as (c) and (d) are depicted within Fig. 4(a), 4(b), 4(c), and 4(d), offering insights into the diverse 
characteristics of multiple periodic wave behavior. Moreover, Fig. 4(e) and 4(f) illustrate the influence of spatial fractionation 
resulting from variations in the α  parameter. These representations elucidate how changes in α  impact the spatial attributes and 
features exhibited by the multiple periodic wave patterns. 

Figure 5 displays multiple bright-dark periodic wave patterns of 14 ( )U η±  corresponding to 0.10,α =  1,β =  1,µ=  2,λ =  1 1,η =  

2 1.η =  This graphical representation comprises 3-D depictions denoted as (a) and (b) for the real and complex domains, respectively. 
Additionally, contour plots represented as (c) and (d) are presented within Fig. 5(a), 5(b), 5(c), and 5(d), elucidating the distinctive 
characteristics of multiple bright-dark periodic wave behavior. Furthermore, Fig. 5(e) and 5(f) delineate the impact of spatial 
fractionation resulting from variations in the α  parameter. These illustrations provide insights into how alterations in α  influence 
the spatial properties and features exhibited by the multiple bright-dark periodic wave patterns. 

Figure 6 exhibits multiple bright-dark periodic wave patterns of 15 ( )U η±  corresponding to 0.99,α =  0.30,β =  1,µ=  2,λ =  

1 0.10,η =  2 0.50.η =  This visual representation comprises 3-D depictions labeled as (a) and (b) for the real and complex domains, 
respectively. Additionally, contour plots represented as (c) and (d) are presented within Fig. 6(a), 6(b), 6(c), and 6(d), delineating the 
unique characteristics of multiple bright-dark periodic wave behavior. Moreover, Fig. 6(e) and 6(f) illustrate the repercussions of 
spatial fractionation resulting from variations in the α  parameter. These visual depictions elucidate how changes in α  influence 
the spatial attributes and features manifested by the multiple bright-dark periodic wave patterns. 

In Fig. 7: M-shape periodic wave 17 ( )U η±  for 0.10,α =  0.25,β =−  1,µ=  2,λ =  1 1,η =−  2 1,η =  3-D [(a) real and (b) complex], 
Contour [(c) real and (d) complex], in Fig. 7(a), 7(b), 7(c) and 7(d); effects of space fractionally due to changes of α are presented in 
Fig. 7(e) and 7(f). In Fig. 8: rogue wave 19 ( )U η±  for 0.50,α =  0.25,β =  1,µ=  2,λ =  1 1,η =  2 1,η =  3-D [(a) real and (b) complex], 
Contour [(c) real and (d) complex], in Fig. 8(a), 8(b), 8(c) and 8(d); effects of space fractionally due to changes of α  are presented in 
Fig. 8(e) and 8(f). In Fig. 9: singular periodic wave 23 ( )U η±  for 0.50,α =  0.25,β =  1,µ=  2,λ =  1 1,η =  2 1,η =  3-D [(a) real and (b) 
complex], Contour [(c) real and (d) complex], in Fig. 9(a), 9(b), 9(c) and 9(d); effects of space fractionally due to changes of α  are 
presented in Fig. 9(e) and 9(f). In Fig. 10: M-shape wave 26 ( )U η±  for 0.25,α =  0.10,β =  1,µ=  2,λ =  1 1,η =  2 1,η =  3-D [(a) real and 
(b) complex], Contour [(c) real and (d) complex], in Fig. 10(a), 10(b), 10(c) and 10(d); effects of space fractionally due to changes of α  
are presented in Fig. 10(e) and 10(f). 

It appears that you're engaged in a study or investigation focused on exploring diverse solution types (SSs) within a particular 
system or model, likely associated with wave behavior. Employing a method named SSEM (potentially representing Symbolic 
Simulation of Exact Models), your research aims to scrutinize the behavior of these solutions and their alterations contingent upon 
distinct values of a parameter denoted as FO, potentially indicating "Fractional Order" or a system-specific parameter. The graphical 
representations referenced in your explanation—such as 3-D plots, contour plots, and 2D graphs—essentially depict the obtained 
solutions for various FO values. These figures, labeled as Figs. 1 through 10, likely portray the visual manifestation of these SSs and 
their dynamic transformations, providing insights into their evolution in relation to fluctuations in the FO parameter. Utilizing 
visual representations, like graphs and plots, proves to be an effective method for visually articulating the behavior, characteristics, 
and alterations of solutions or patterns within the studied system. These graphical depictions serve to elucidate how these solutions 
change concerning shifts in the FO parameter, aiding both researchers and readers in comprehending the intricacies of the 
solutions' nature and their responses to parameter modifications. These visual aids act as essential tools, simplifying complex 
information and trends, thereby facilitating the interpretation and analysis of the acquired solutions within the framework of your 
research. They play a pivotal role in elucidating the interconnections, configurations, and transitions among various solution types 
under diverse conditions, thereby contributing significantly to a more profound comprehension of the system under scrutiny. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 8. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
19

( )U η
± for 0.50,α =  

0.25,β = 1,µ = 2,λ = 1 1,η = 2 1.η =  
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(a) 

 

(b) 

 

(c) 

(d) 

 

(e) 

 

(f) 

Fig. 9. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
23

( )U η
± for 0.50,α =  

0.25,β = 1,µ = 2,λ = 1 1,η = 2 1.η =  

(a) 
 

(b) 

 

(c) 

(d) 

 

(e) 

 

(f) 

Fig. 10. 3-D [(a) real and (b) complex], Contour [(c) real and (d) complex], and 2-D graph [(e) real and (f) complex] picture of
26

( )U η
± for 0.25,α =  

0.10,β = 1,µ = 2,λ = 1 1,η = 2 1.η =  
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5. Conclusion 

FMs, for example, the ferrites have been utilized in the energy and electronic industries. Overall, this paper contributed to our 
sympathetic of the K-M-M-S-MTD in the with/without of a DE which is employed in FMs and provides a valuable scheme for 
supervising NLFDEs. This paper designated the fruitful application of the SSEM to get new SSs for the K-M-M-S-M-T-D in the 
with/without of a DE. The obtained SSs were valuable for future experiments of the K-M-M-S-M-T-D and delivered insights into the 
performance of optical fiber communication, signal transmission, porous medium, magneto-acoustic waves in plasma, 
electromagnetism, fluid dynamics, chaotic systems, coastal engineering and so on. Since the K-M-M-S-M-T-D is so essential for 
expressing MFP in a FM-ZC, the got SSs are vital in realizing a wide-ranging diversity of charming and problematic nonlinear 
phenomena. The SSEM was shown to be a fruitful scheme for supervising NLFDEs. The SSs were designated graphically via 3D, 
contour and 2D for different values of FO through Maple software. We can study the K-M-M-S-M-T-D with a stochastic term in 
future work. 
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Nomenclature 

K-M-M-S-M-T-D Kraenkel-Manna-Merle system with an M-truncated derivative 
M-F-P Magnetic field propagation 
F-M-Z-C Ferromagnetic materials with zero conductivity  
S-S-E-M Sardar sub-equation method  
SSs Soliton solutions  
DE Damping effect  
3-D Three-dimensional  
2-D Two-dimensional  
FO Fractional order  
N-L-F-D-Es Nonlinear fractional differential equations  
FM Ferromagnetic material 
NLSE Nonlinear science and engineering  
FPs Ferromagnetic particles  
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