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Abstract. Various industrial sectors require highly specialized and efficient materials for applications in fields such as the 
military, aeronautics, aerospace, and mechanical and civil engineering. Composite materials that meet the stringent 
requirements across these domains have become prominent, often serving as structural components and requiring precise 
mathematical modeling. Zigzag (ZZ) and Layerwise (LW) theories are commonly used for laminated-beam structural analysis. 
Although the LW theory provides superior accuracy, it suffers from an increase in unknowns as the number of layers grows. 
Conversely, the ZZ theory is less computationally intensive and less accurate. This study proposes an exponential high-order 
zigzag function with a unified kinematic formulation to enhance the accuracy of the ZZ theory. The results were compared with 
those of existing models and demonstrated excellent agreement with the reference solutions, irrespective of the layer count or 
slenderness index, making it a more efficient choice for laminated-beam analysis. 

Keywords Laminated Composite Beams, High Order Beam Theory, Zigzag Theory, High-Order Zigzag function, Layerwise Theory. 

1. Introduction 

Several formulations have been developed to describe the structural behavior of beams. The best-known and most 
straightforward theory is the classical Euler-Bernoulli (TEB) [1]. However, the TEB is suitable for modeling beams with a small 
height-to-length ratio because it does not consider shear strain. To overcome this limitation, a first-order theory for shear strain, 
also known as the Timoshenko beam theory (TBT), was developed [2]. Although the TBT incorporates the shear effect, it has 
some notable shortcomings. These include nonzero shear stresses at the upper and lower edges of the beam, the absence of the 
cross-sectional warping effect, inadequate representation of the shear stress field distribution in the cross-section, and the need 
to use correction factors [2]. 

Higher-order kinematics, also known as high-order theories for beams, have been developed to overcome the difficulties 
associated with Timoshenko's theory. Among the relevant proposals in this context, those by Krusweski [3], Reddy [4], Touratier 
[5], Soldatos [6], Karama [7], and Akavci [8] stand out. Such advanced approaches aim to improve the description of the structural 
behavior of beams, covering aspects that need to be duly considered by the TEB and TBT, such as a more accurate distribution of 
shear stresses and consideration of cross-section warping. Generally, high-order kinematics is used to analyze beams made of a 
single material. However, composite materials provide greater possibilities for the composition of materials and for obtaining the 
desired properties efficiently. These materials require more accurate mechanical analysis, which makes the application of 
higher-order kinematics attractive. 

To analyze laminated composite beams more accurately, new parameters must be incorporated into the kinematics to 
capture the interactions between laminations and their individual behaviors [9]. The equivalent single-layer (ESL), layerwise (LW), 
and zigzag (ZZ) theories are examples of the main formulations used in this analysis [10]. 

The LW and ZZ theories separately address the behavior of each lamina, providing superior accuracy over the ESL theory. 
However, the LW theory has a disadvantage in terms of computational cost because the number of unknowns increases 
proportionally with the number of layers. The ZZ approach was developed to make the number of unknowns independent of the 
number of layers without significantly compromising the accuracy of the results. This approach incorporates the zigzag effect 
into ESL theories [10]. This approach offers a viable solution that balances the computational efficiency and accuracy of 
laminated composite beam analyses. 

Owing to the independence between the number of layers and the unknown parameters of the problem, several studies 
related to the zigzag theory have been conducted. Murakami [11] developed a function called “zigzag,” which incorporates only 
geometric information, and applied it to TBT. Similarly, Di Sciuva [12] formulated a zigzag theory using the Heaviside function. In 
1987 [13], a cubic term was added to the kinematics to analyze plate problems. To overcome the challenges in determining the 
stress fields for the Timoshenko beam theory (TBT), Di Sciuva and Gherlone [14] developed a refined zigzag theory (RZT) that 
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circumvents the difficulties in determining these fields. Lurlaro [15] compared the RZT with other beam theories and evaluated 
their buckling and bending behaviors. In this study, the differences between the stress fields calculated using equilibrium 
equations and those computed using constitutive relations were observed. 

Vidal [16] combined Murakami's zigzag function with high-order kinematics in a sinusoidal format, resulting in greater 
precision in the displacement and stress fields. Similarly, Zhen [17] obtained better results by combining the sinusoidal 
kinematics proposed in [4] with a high-order zigzag function in a polynomial format. Leite and Rocha [18] proposed a new zigzag 
function combined with a unified formulation that incorporates several higher-order theories. Leite and Rocha [18] concluded 
that combining the ZZ and kinematic functions, both of high order, provides accurate results. However, in [18], the authors 
suggested that the combination of their proposed function and the high-order kinematics proposed by Soldatos [6] presented 
better results than the other kinematics studied in their work. 

Previous works [16-18] show that better results were obtained for mechanical response fields of interest when refined beam 
theories were combined with high-order zigzag functions. Therefore, the present work proposes a novel high-order zigzag 
function coupled with a unified formulation for high-order beam theory. The present proposal aims to increase the accuracy of 
the results compared to other zigzag functions already considered in the literature. Existing zigzag theories present difficulties in 
accurately obtaining the response fields, especially for shear stress. Therefore, the present proposal is an alternative for 
overcoming this deficiency without increasing the number of unknowns as the number of layers in the laminate increases. Based 
on this proposed model, a comparative analysis is carried out, aiming to evaluate the accuracy between different refined 
approaches to beams when associated with the exponential ZZ function, as well as other ZZ functions present in the literature 
and/or together with the LW theory, when there are results available in the literature for the latter. The structure of this work is 
as follows: In Section 2, the necessary domain and boundary restrictions are established to ensure that the first variation of the 
total energy functional is equal to zero. Section 3 presents the Navier procedure to determine a solution to the problem proposed 
in the previous section. Section 4 presents and discusses the results. Finally, the conclusions drawn from this study are 
presented in Section 5. 

2. Mathematical Development 

2.1 Definitions 

Consider a composite beam with a total thickness and length of 2h and ,abL x x= −  respectively, subjected to a distributed 
load ( ),q x  traction (external forces per unit area) ,xT α  and zT α  with ( , ),a bα =  as shown in Fig. 1. In the cross section, the 
thickness of each layer was identified by ( )2 ,kh  with 1,2 ,k N= …  representing the layer numbering. The ordinates of the 
interfaces between each layer are provided by ( )( 0,1,..., ),iz i N=  0 ,z h=−  ,Nz h=  and ( ) ( )

( )
1 2 ,k

k k
z z h−= +  as shown in Fig. 2. 

2.2 Kinematics 

The present formulation considers the linear elastic behavior of the material. The displacement fields of various beam 
theories considering shear strain were chosen and unified based on the following hypotheses: 

(1) There is no deformation in the transverse direction. 
(2) The bending component of the axial displacement is similar to that of the classical beam theory. 
(3) The shear component of the axial displacement provided high-order variations in the stress and strain such that these 

response fields were zero on the upper and lower surfaces. 
(4) Axial displacement in a zigzag form was achieved by inserting a new function into the laminated composite. 

 

 

Fig. 1. Laminated composite beam subjected to external loads. 

 

Fig. 2. Geometric information of the cross section in the laminated beam. 
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Table 1. Shear distribution function for higher order kinematics.  

Author f(z) 

Krusweszki (1949) [3] - KRU49 ( )5 4 ²
1

4 12 ²

z z

h
−  

Reddy (1990) [4] - RED90 ( )4 ²
1

12 ²

z
z

h
−  

Tourratier (1991) [5] - TOU91 ( )5
sin

2

h z

h

π

π
 

Soldatos (1992) [6] - SOL92 ( ) ( )1
cosh 2 sinh

2 2

z
z h

h
−  

Karama (2003) [7] - KAR03 ( )
2

2
exp 2

z

h
z −
 
 
 
 

 

Akavci (2007) [8] - AKA07 ( ) ( ) ( )3 1
2 tanh sec ² h

2 2 2

z
h z

h

π
−

 
   

 

 
Based on these assumptions, the displacement fields for various beam theories with high-order shear strain and zigzag 

functions are expressed by: 

( ) ( )
0 0

0

( , ) ( ) '( ) ( ) ( ) ( ) ( ),

( , ) ( ),

k k
zzu x z u x zw x f z x z x

w x z w x

ψ= − + Φ +Φ

=
 (1) 

where ( )w x  and ( )( , )ku x z  are the transverse (z-axis) and axial displacements (x-axis) of each layer, respectively; 0( )w x  and 

0( )u x  are the transverse and axial displacements in the middle plane of the beam, respectively; ( )f z  is a function that 
represents the distribution of high-order shear stress and strain along the depth of the beam (Table 1); ( )xΦ  is the angle due to 
shear; ( )( )k

zz zΦ  is a function that provides the “zigzag behavior”; and ( )xψ  is a zigzag amplitude function. The apostrophes above 
these functions represent the derivatives of the variable function. 

From Eq. (1), the linear elastic strain field can be expressed as follows: 

( )
( ) ( )

0 0

( )
( )

( , )
( , ) '( ) ''( ) ( ) '( ) ( ) '( ),

( ) ( , )
( , ) '( ) ( ) ( ) ( ),

k
k k

zz

k
k

u x z
x z u x z w x f z x z x

x

w x u x z
x z f z x z x

x z

ε ψ

γ β ψ

∂
= = − + Φ +Φ

∂
∂ ∂

= + = Φ +
∂ ∂

 (2) 

such that ( )zβ  is the first derivative of the “zigzag” function concerning z. The shear and normal stresses of fibrous orthotropic 
materials can also be expressed using the constitutive equation presented as follows: 

[ ]

( )

0 0

( ) ( ) ( ) ( )
11 11

( ) ( ) ( ) ( )
55 55

'( ) ''( ) ( ) '( ) ( ) '( ) ,

,

( , ) ( , )

( , ) ( , ) '( ) ( ) ( ) ( )

k

zz

k k k k

k k k k

u x z w x f z x z xx z Q x z Q

x z Q x z Q f z x z x

ψσ ε

τ γ β ψ

− + Φ +Φ = =   

= = Φ +
 (3) 

where ( )
11

kQ  and ( )
55

kQ  are the reduced elastic properties of fiber-reinforced orthotropic materials in the plane strain state [11]. 
A new format for the zigzag function, ( ),zz zΦ  with exponential behavior, called ZZ-EXP, as described in Eq. (4), is proposed in 

this study. This proposal incorporates Murakami's [11] zigzag linear function (see Eq. (5)) and satisfies the following conditions: 
(1) “zigzag” behavior to beam axial displacement fields. 
(2) Nullity of shear stresses on the upper and lower edges of the laminate, that is, (1)( , (0)) ( )( , ( )) 0.x z N x z Nτ τ= =  

(0) ( )

( ) 0 0

0

( ) ( ) ( )3( ) (2 ) (2 ) (2 )² 2 ³ 3 ² ( ) 2 ³ 3 ² ( )
[ ( )]

2 12 ² 12 ²
( )

N

k ZZ MUR ZZ MUR

ZZ MUR

N N

k k kk h h h
ZZ

z z z z d z z z z d z
z

z z dz z dz
z e e e− −

−

− Φ − Φ
Φ − + −

                            
Φ =  (4) 

( ) ( 1)
( ) ( )

( )

[ 2 ( )]
( ) ( 1 )

2

k k
k k

ZZ MUR k

z z z
z

h

−

−

− + +
Φ = −    

 

(5) 

In Fig. 3, the behaviors of the proposed and Murakami’s [11] functions are compared for a three-layer laminate. ZZ-EXP 
displays a curved distribution in the outer layers, which is notably different from the behavior proposed in [11]. 

2.3 Governing equations 

Virtual work principle (VWP) is used to develop the governing equations, and the following equation represents their general 
expression:  

int 0.extW Wδ δ− =  (6) 

where intWδ  is the internal work expressed in Eq. (7), and extWδ  is the external work expressed in Eq. (8) according to the 
loading shown in Fig. 1. 

( ) ( ) ( ) ( )( )int ( , ) ( , ) ( , ) ( , ) .k k k k

V
W x z x z x z x z dVδ σ δε τ δγ= +∫  (7) 

( ) ( )
0 0 0( ) ( ) ( , ) ( ) ( , ) ( ) .

b

a a b b
a

x
k k

Ext x a z a x zb b
x A A

W q x w x dx T u x z T w x dA T u x z T w x dAδ δ δ δ δ δ   = + + − +      ∫ ∫ ∫  (8) 
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Fig. 3. Zigzag functions are linear [11] and exponential (present) for a regular laminate with three layers. 

Such that ,( ),
x x

zT T x∆ ∆=  ,( )
z z

zT T x∆ ∆=  are tractions (with a∆=  or ),b∆=  and ( )q x  is the load on the structure. Eqs. (1)–
(3) are substituted in Eqs. (6)–(8), and Euler's Equation is obtained using the fundamental lemma of variational calculus. The 
restrictions imposed to obtain the Euler equation led to the differential equilibrium equations and their boundary conditions, 
respectively, in Eqs. (9) and (10). 

2

2

( , ) ( , )
0, ( ),

( , ) ( , )
( , ), ( , ).

x x

zz

N x z M x z
q x

x x
M x z M x z

V x z V x z
x x

β
Φ

Φ

∂ ∂
= =

∂ ∂
∂ ∂

= =
∂ ∂

 (9) 

0 0

( )

( , ) ( , ) ( ) ( ), ( , ) ( , ) '( ) '( ),

( , ) ( , ) ( ) ( ), ( , ) ( , ) ( ) ( ),

( , ) ( , ) ( ) , .

( , ) ( , ) ( , )

( )

x x x x

zz zz

x x

k
x x

A

N x z N x z or u x u x M x z M x z or w x w x

M x z M x z or x x M x z M x z or x x

V x z V x z or w x with a or b

N x z x z dA M x z

w x

ψ ψ

σ

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

Φ ∆ Φ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

= = = =

= Φ =Φ = =

= = ∆ =

= ∫ ( ) ( )

( ) ( ) ( ) ( ) ( )

( , ) ( , ) ( ) ( , )

( , ) ( ) ( , ) ( , ) '( ) ( , ) ( , ) ( ) ( , )

k k

A A

k k k k k
zz zz

A A A

z x z dA M x z f z x z dA

M x z z x z dA V x z f z x z dA V x z z x z dAβ

σ σ

σ τ β τ

Φ

Φ

= =

= Φ = =

∫ ∫

∫ ∫ ∫

 
(10) 

Rewriting Eq. (9) in terms of the displacements, rotations, and amplitudes of the ZZ function, the following equation was 
obtained:  

0

0

0

0

''( ) '''( ) ''( ) ''( ) 0,

'''( ) ''''( ) '''( ) '''( ) ( ),

''( ) '''( ) ''( ) ''( ) ( ) ( ),

''( ) '''( ) ''( ) ''( ) ( ) ( ).

z

z zz z z

z f f f

z f

Au x A w x B x D x

A u x A w x B x D x q x

Bu x B w x B x D x G x G x

Du x D w x D x D x G x G xβ

ψ

ψ

ψ ψ

ψ ψΦ

− + Φ + =

− + Φ + =

− + Φ + = Φ +

− + Φ + = Φ +

 (11) 

where,  

( ) ( )

( 1) ( 1 )

( ) ( )
11 11

( ) ( )
11 11

1 1
( ) ( )
11 11

( , )
( ) ( , )

, ( ) , ( , )

( , )² ( )²
(

k k

k k

x
k k

z z xN N
k k

z z
k kz zk k

zz f zz

x

N

M

M

M

x z
Q f z QA B x z

A b zQ dz B b zf z Q dz x z

A B x zz Q f z Q
V

− −

∆

∆

Φ ∆
= =

∆

                     = =                      

∑ ∑∫ ∫ ( )
( )

( )

( 1)
1 ( )

( ) ( )
11

( ) ( )
11

( ) ( )
11

( ) ( )
11

( ), )

( )

( )

( ) ( )

²( )

k

k

z
N

k z

x

x

x

k
zz x

z

k k
zz

k k
z zz

k kf
zz

k k
zz

dz

T

zT

f z Tb

z T

T zx z

z QD

D z z Q
b

D
f z z Q

D
z Q

∆

∆

∆

−

∆

∆

=

∆

Φ

  
  
  
  
   =   
   Φ  
  
     

 Φ      Φ  =     Φ     Φ

∑ ∫

( ) ( )

( 1) ( 1)

( ) ( )
55

( )
55

1 1
( ) ( )

55

'( ) ( )

, '( )²

( )²

k k

k k

k k
z z

N N
k

f
k kz z k k

f z z QG

dz G b f z Q dz

G z Qβ

β

β− −
= =


           =                


∑ ∑∫ ∫

 (12) 

2.4 Analytical solution 

The Navier procedure was used to solve the differential equations for equilibrium (Eq. (11)). In this procedure, response fields 
are approximated using periodic functions with separate variables. The boundary conditions for a simply supported beam are 
given by Eq. (13), and the solution is assumed to conform to Eq. (14):  

(0) (0, ) (0, ) (0, ) 0

( ) ( , ) ( , ) ( , ) 0
x zz

x zz

w M z M z M z

w L M L z M L z M L z

Φ

Φ

= = = =

= = = =
 (13) 

0 0
1 1

1 1

( ) , ( ) cos

( ) cos , ( ) cos

jj
j j

j j
j j

j x j x
w x w sin u x u

L L

j x j x
x x

L L

π π

π π
ψ ψ

∞ ∞

= =

∞ ∞

= =

     = =        

     Φ = Φ =        

∑ ∑

∑ ∑
 (14) 
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Table 2. Maximum values and relative errors considering the results of Pagano [19] as reference.  

( )f z  ( / 2)
a

w L  ( , )
a

u L h  ( / 2, )
a

L hσ  (0,0)
a
τ  

Pagano [19] (reference) 2.8949−  0.9391  18.6899  1.4306  

ZZ-EXP-RED90 (present) 
2.8970

0.07%rel

−

=ε
 

0.9416

0.27%rel =ε
 

18.4887

1.07%rel =ε
 

1.4132

1.22%rel =ε
 

ZZ-EXP-KRU49 (present) 
2.8970

0.07%rel

−

=ε
 

0.9416

0.27%rel =ε
 

18.4887

1.07%rel =ε
 

1.4132

1.22%rel =ε
 

ZZ-EXP-TOU91 (present) 
2.8844

0.36%rel

−

=ε
 

0.9571

1.92%rel =ε
 

18.7927

0.55%rel =ε
 

1.4022

1.99%rel =ε
 

ZZ-EXP-SOL92 (present) 
2.8978

0.10%rel

−

=ε
 

0.9402

0.12%rel =ε
 

18.4600

1.23%rel =ε
 

1.4142

1.15%rel =ε
 

ZZ-EXP-KAR02 (present) 
2.8659

1.00%rel

−

=ε
 

0.9709

3.39%rel =ε
 

19.0646

2.00%rel =ε
 

1.3921

2.69%rel =ε
 

ZZ-EXP-AKA07 (present) 
2.8889

0.21%rel

−

=ε
 

0.9525

1.43%rel =ε
 

18.7016

0.06%rel =ε
 

1.4055

1.75%rel =ε
 

ZZ-MUR [11] 
2.8033

3.16%rel

−

=ε
 

0.8248

12.17%rel =ε
 

16.1942

13.35%rel =ε
 

1.4359

0.37%rel =ε
 

VIDAL [16] 
2.8026

3.19%rel

−

=ε
 

0.9929

5.73%rel =ε
 

19.4954

4.31%rel =ε
 

1.4284

0.15%rel =ε
 

LW Lu e Liu [21] 
2.9112

0.56%rel

−

=ε
 

0.9396

0.05%rel =ε
 

18.4494

1.27%rel =ε
 

1.4256

0.35%rel =ε
 

The values of ,jw 0 ,ju jΦ  and jψ  are obtained by replacing Eq. (14) in Eq. (11) and solving the obtained algebraic system.  

3. Results and Discussion 

The results are dimensionless, according to Eq. (15) [19]. L, b, and 2h are the length, width and thickness of the cross section, 
respectively. Eα  and Gαβ  ( , { , , })x y zα β ∈  are the longitudinal and transverse moduli of elasticity, respectively. To obtain the 
shear stress field, this study uses the equilibrium equation, as presented in [20]: 

( ) ( )

4
0 0

( ) ( ) ( ) ( )

0 0

800 ³
( , ) ( , ) , ( ) ( ) , ,

2 2

( , ) ( , ) , ( , ) ( , ) , , ,
(2 )

y yk k
a a

k k k k
a a

bE bh E L
u x z u x z w x w x S

hq L q h

b b x z
x z x z x z x z x S z

q q L h
σ σ τ τ

= = =

= = = =
 (15) 

where [0, ]x S∈  and [ 1 2,1 2].z ∈ −  

For the fiber-reinforced laminated beams, the following elastic properties (graphite/epoxy composite [19]) were used in the 
examined instances: 

25 1 0.5 0.2 0.25x y xy yz xy yzE MPa E MPa G MPa G MPa v v= = = = = =   

The accuracy of high-order beam theories (RED90, KRU49, SOL92, KAR03, and AKA07) combined with the exponential zigzag 
function in obtaining the response fields proposed in this work was tested, and the nomenclature used to identify these 
combinations of theories was made by composing ZZ-EXP-(beam theory); for example, ZZ-EXP-RED90 indicates the Reddy 
function [4] (see Table 1), and the exponential ZZ function (Eq. (4)) is used in the proposed unified kinematics (Eq. (1)) as ( )f z  
and ( )( ),k

zz zΦ  respectively. Once this procedure is completed, the sequence of the other equations remains valid for any beam 
theory presented in Table 1. Additionally, the linear zigzag function of Murakami [11] and the zigzag function presented by VIDAL 
[16] were analyzed. For reference, the results obtained using the LW theory [21] and the theory of elasticity developed by Pagano 
[19] were adopted for cross-ply laminated beams.  

 

 

Fig. 4. Geometric, loading, and boundary conditions. 
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Table 3. W.A.P.E. metric calculated for Example 1.  

Model ( )
a

w x  ( , )
a

u L z   ( / 2, )
a

L zσ  (0, )
a

zτ  

ZZ-EXP-RED90 (present) 0.17% 6.20% 3.79% 1.28% 

ZZ-EXP-KRU49 (present) 0.17% 6.20% 3.79% 1.28% 

ZZ-EXP-TOU91 (present) 0.86% 7.95% 4.49% 1.73% 

ZZ-EXP-SOL92 (present) 0.24% 6.05% 3.79% 1.23% 

ZZ-EXP-KAR02 (present) 2.38% 9.75% 6.34% 2.17% 

ZZ-EXP-AKA07(present) 0.50% 7.36% 4.07% 1.60% 

LW [21] 1.34% 4.00% 2.72% 1.70% 

ZZ-MUR [11] 7.52% 15.51% 12.77% 1.91% 

VIDAL [16] 7.58% 11.96% 10.71% 1.33% 

3.1 Example 1 

As shown in Fig. 4, this example refers to a simply supported beam with a cross-section ( 2 )b h×  and length L  formed by 
three laminae with fibers oriented at [0º/90°/0°]T. The layers had equal thicknesses and 4S=  (moderately thick beams). The 
structure was subjected to sinusoidal distributed loading, represented by 

1
( ) sin( / )jj

q x q j x Lπ
∞

=
=∑  with 0 ( 1).jq q j= =   

The first analysis compared the maximum values of the axial and transverse displacements and normal and shear stresses. 
Table 2 presents the reference values of Pagano [19] and the LW theory proposed by Lu and Liu [21]. Table 2 lists the relative 
errors obtained using ZZ-EXP (combined with several beam theories), ZZ-MUR [11], and VIDAL [16] for several dimensionless 
response fields (Eq. (15)). 

Table 2 shows that minor relative errors in the maximum transverse displacement values were obtained for the ZZ-EXP-
RED90, ZZ-EXP-KRU49, and ZZ-EXP-SOL92 combinations. From the analysis of the axial displacement, the combination of ZZ-EXP-
SOL92 presented the best results. Regarding the study of the maximum normal stress, the highlight is the combination of the 
AKA07 function. Finally, for the shear stress, the best combination was observed for the SOL92 function. As shown in Table 2, ZZ-
EXP-RED90, ZZ-EXP-KRU49, ZZ-EXP-SOL92, and ZZ-EXP-AKA07 exhibited the lowest relative errors, highlighting ZZ-EXP-SOL92 for 
the regularity of their results among the ZZ-EXP functions. 

In the comparison between the ZZ-EXP functions and the proposals of [11], [16], and [21], Table 2 shows that the MUR-ZZ 
model [11] presents higher relative errors in almost all analyses compared to all combinations of the ZZ-EXP function, 
highlighting the importance of using higher-order functions. The ZZ-MUR model showed a minor relative error in the shear 
stress; however, this was because the response field was determined using equilibrium equations. If directly calculated using the 
Murakami function [11], the results would show very high values of relative error. By increasing the order of the zigzag function 
from the linear model by Murakami [11] to the high-order model by Vidal [16], it can be observed in Table 2 that ZZ-EXP-SOL92, 
ZZ-EXP-RED90, and ZZ-EXP-KRU49 continue to perform better. Finally, the ZZ-EXP-SOL92 function presented relative errors close 
to those obtained by the LW theory [21], with the model in [21] having the inconvenience of the number of unknowns being 
proportional to the number of layers. 

 

 

 

Fig. 5. Variations of the displacements and stress within a laminated beam dimensionless x z× for Example 1. 

Axial Displacement (ZZ-EXP-SOL92) Axial Displacement (Pagano [19]) 

Normal Stress (ZZ-EXP-SOL92) Normal Stress (Pagano [19]) 

Shear Stress (ZZ-EXP-SOL92) Shear Stress (Pagano [19]) 
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Table 4. Maximum values and errors relative to Example 2. 

( )f z  ( / 2)aw L  ( , )au L h  ( / 2, )a L hσ  (0,0)aτ  

Pagano [19] (reference) 3.8145−  1.1637  23.0636  1.7616  

ZZ-EXP-SOL92 (present) 
3.7935

0.55%rel

−

=ε
 

1.1673

0.30%rel =ε
 

22.9202

0.62%rel =ε
 

1.7962

1.96%rel =ε
 

ZZ-MUR [11] 
3.1172

18.28%rel

−

=ε
 

0.9711

16.55%rel =ε
 

32.2647

39.89%rel =ε
 

1.8251

3.60%rel =ε
 

VIDAL [16] 
3.4211

11.12%rel

−

=ε
 

1.3233

15.26%rel =ε
 

26.5724

13.43%rel =ε
 

1.5819

9.61%rel =ε
 

Table 5. W.A.P.E. metric Calculated for Example 2. 

( )f z  ( )aw x  ( , )au L z  ( / 2, )a L zσ  (0, )a zτ  

ZZ-EXP-SOL92 1.44% 10.06% 7.23% 2.54% 

ZZ-MUR [11] 19.01% 35.63% 68.15% 4.54% 

VIDAL [16] 11.12% 27.77% 23.68% 11.73% 

 
Next, the error analysis for a given section was no longer limited to the maximum values. As a parameter to quantify 

discrepancies between calculated and reference values in [19], the statistical metric "weighted absolute percentage error" 
(W.A.P.E.) presented in Eq. (16) is used, where 

j
x  are the calculated values and 

j
X  are the reference values. The values 

calculated for ( ),aw x ( , ),au L z ( )/ 2,a L zσ  and (0, )a zτ  using the W.A.P.E. metric are listed in Table 3. 

1

1

. . . .(%) 100

n

j j
j

n

j
j

x X

W A P E

X

=

=

−

=
∑

∑
 (16) 

Table 3 shows that all ZZ-EXP combinations present minor error values calculated using the W.A.P.E. metric compared to ZZ-
MUR [11] and Vidal [16]. However, the ZZ-EXP model exhibits a performance similar to that of the LW model [21]. In this 
comparison, the ZZ-EXP model showed better results for ( )aw x  and (0, ),a zτ  whereas the LW [21] performed better for ( , )au L z  
and ( )/ 2, .a L zσ  Notably, the ZZ-EXP model does not increase the number of unknowns as the number of layers increases, as 
shown by the LW model [21]. 

From 4,743 coordinates uniformly spread throughout the laminated composite beam, the response fields were calculated 
using the ZZ-EXP-SOL92 model and the reference in [19]. In Fig. 5, excellent agreement between the proposed and reference 
models is observed, qualitatively evidenced by the similarity in the color gradient distribution between the compared models. 

 

Fig. 6. Variation of response fields in Example 2 for (a) ( ),aw x (b) ( , ),
a

u L z (c) ( / 2, ),
a

L zσ and (d) (0, ),
a

zτ where [ / 2, / 2].z h h∈ −  
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3.2 Example 2 

In this example, a simply supported beam comprising six layers with fibers oriented at [0°/90°]3 (asymmetric stacking) was 
analyzed. The laminate was considered regular, adopting the parameter S = 4 for loading, similar to that in Example 1. 

In this analysis, the results of Pagano [19] were compared with those of the linear function ZZ-MUR [11], higher-order function 
VIDAL [16], and exponential function ZZ-EXP-SOL92 because the latter presented better results among the combinations of the 
ZZ-EXP function shown in Example 1. The maximum values (Table 4) and W.A.P.E. metric (Table 5) for transverse displacement 
along the longitudinal axis, axial displacement ( ),x L=  normal stress ( / 2),x L=  and shear stress ( 0)x =  were calculated for the 
cross-sections. The qualitative behaviors of ZZ-MUR [11], Vidal [16], ZZ-EXP-SOL92, and Pagano [19] for ( ),aw x ( , ),au L z ( )/ 2,a L zσ  
and (0, )a zτ  are shown in Fig. 6. 

Tables 4 and 5 show that the ZZ-EXP-SOL92 model has a minor relative error compared with the ZZ-MUR [11] and Vidal [16] 
models. This analysis considers the maximum or several values for a given cross-section or along its longitudinal axis (W.A.P.E. 
metric). Compared to the results of Example 1 with three layers, in this case with six layers, a loss of accuracy in the models 
proposed in [11] and [16] was observed when compared with the reference model in [19]. However, the model ZZ-EXP-SOL92, here 
presented, proved to be stable with respect to accuracy when the number of layers increased. Qualitatively, Fig. 6 shows the 
agreement between the proposed model ZZ-EXP-SOL92 (lines in pink lines) and the reference model proposed by Pagano [19] 
(black line). Simultaneously, the Vidal [16] and ZZ-MUR [11] models presented discrepancies in all the response fields analyzed, 
with more significant distortions for the transverse displacement and shear stress compared to the reference. 

From the 9,486 coordinates uniformly spread throughout the laminated composite beam, the response fields were calculated 
using the ZZ-EXP-SOL92 model and the reference in [19]. In Fig. 7, excellent agreement between the proposed and reference 
models is observed, which is qualitatively evidenced by the similarity in the color gradient distribution between the compared 
models. 

3.3 Example 3 

In this example, a beam is analyzed with the same geometric conditions, loading, and parameter S = 4 as in the previous 
analysis; however, it consists of 11 regular layers reinforced by fibers with the following stacking sequence: _____

[0 / 90 / 0 / 90 / 0 / 90 ] .o o o o o o
s Tables 6 and 7 list the maximum values and W.A.P.E. metrics, respectively. Based on the results 

reported by Pagano [11], the relative errors listed in Tables 6 and 7 were calculated for ZZ-EXP-SOL92 (proposed), ZZ-MUR [11], 
and Vidal [16]. In Fig. 8, the qualitative results are presented for the (a) transverse displacement along the longitudinal axis, (b) 
axial displacement for the cross-section at x = L, (c) normal stress for the cross-section at x = L/2, and (d) shear stress for the cross 
section x = 0. 

In Tables 6 and 7, a small distance between the values of the ZZ-EXP-SOL92 model and the reference values in [19] can be 
quantitatively observed, whereas Models [11] and [16] present values that differ significantly from the reference values. Fig. 8 
qualitatively shows the excellent fit of the proposed model (pink line) to the reference values (black line), which does not always 
occur when using Models [11] or [16]. According to the results presented in Examples 1, 2, and 3, it is possible to verify that the 
proposed ZZ-EXP-SOL92 model maintains low errors, regardless of the number of layers. In the ZZ-MUR [11] and Vidal [16] models, 
the errors increased with the number of layers. 

From the 17,391 coordinates uniformly spread throughout the laminated composite beam, the response fields were calculated 
using the ZZ-EXP-SOL92 model and the reference in [19]. In Fig. 9, excellent agreement between the proposed and reference 
models is observed, qualitatively evidenced by the similarity in the color gradient distribution between the compared models. 

 

 

 

 

Fig. 7. Variations of the displacement and stress within a laminated beam dimensionless x z× for Example 2.  

Axial Displacement (ZZ-EXP-SOL92) Axial Displacement (Pagano [19]) 

Normal Stress (ZZ-EXP-SOL92) Normal Stress (Pagano [19]) 

Shear Stress (ZZ-EXP-SOL92) Shear Stress (Pagano [19]) 
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Table 6. Maximum values and relative errors for Example 3. 

( )f z  ( / 2)aw L  ( , )au L h  ( / 2, )a L hσ  (0,0)aτ  

Pagano [19] (reference) 3.2184−  1.0209  20.4828  1.6248  

ZZ-EXP-SOL92 (present) 
3.2071

0.35%rel

−

=ε
 

1.0338

1.26%rel =ε
 

20.2980

0.90%rel =ε
 

1.6338

0.55%rel =ε
 

ZZ-MUR [11] 
3.0523

5.16%rel

−

=ε
 

0.8568

16.08%rel =ε
 

16.8233

17.87%rel =ε
 

1.77622

9.32%rel =ε
 

VIDAL [16] 
2.9855

7.24%rel

−

=ε
 

1.1601

13.63%rel =ε
 

22.7777

11.20%rel =ε
 

1.5030

7.49%rel =ε
 

 
Table 7. W.A.P.E metric for Example 3.  

( )f z  ( )aw x  ( , )au L z  ( / 2, )a L zσ  (0, )a zτ  

ZZ-EXP-SOL92  0.35% 3.11% 5.03% 0.65% 

ZZ-MUR [11] 5.16% 22.28% 25.14% 7.30% 

VIDAL [16] 7.24% 19.25% 18.04% 5.53% 

3.4 Slenderness analysis (S parameter) 

In this section, a study is carried out regarding the dependence of the response fields on the slenderness index of the beam, 
characterized by the parameter S. The analysis of the structure of both thick and thin beams is carried out by varying the 
parameter S from 4 to 40. In this analysis, the geometric and stacking characteristics of the layers were the same as those used in 
Example 1. Table 8 presents the maximum values for the transverse displacement fields at x = L/2 and axial displacement at (x = L, 
z = h). Additionally, Table 9 shows the maximum values for normal stress, at (x, z) = (L/2, h), and for shear stress, at (x, z) = (0, 0). 
Tables 8 and 9 present the results obtained for the different ZZ-EXP models used in this work and compares them with the 
reference results obtained by the elasticity theory in [19]. 

 

Fig. 8. Variation of response fields in Example 3 for (a) ( ),aw x (b) ( , ),
a

u L z (c) ( / 2, ),
a

L zσ and (d) (0, ),
a

zτ where [ / 2, / 2].z h h∈ −  

 

Fig. 9. Variations of the displacements and stress within a laminated beam dimensionless x z× for Example 3. 

  

(c) (d) 

Axial Displacement (ZZ-EXP-SOL92) Axial Displacement (Pagano [19]) 
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Fig. 9. Continued. 

Table 8. Maximum values of the transverse displacement, ( / 2)aw L and axial displacement ( , ).au L h  

S 
Transverse displacement  Axial displacement 

4 10 20 40 4 10 20 40 

PAGANO 

[19] 
−2.8949 −0.9307 −0.6172 −0.5367 0.9391 9.3487 66.7796 518.0090 

ZZ-EXP - 

RED90 

2.8970

0.07%rel

−

=ε
 

0.9323

0.17%rel

−

=ε
 

0

0.6181

.15%rel =

−

ε

 

0

0.5378

.20%rel =

−

ε

 

0.9416

0.27%rel =ε
 

%

9

.

.2 1

6

49

1 0rel =ε

 

%

6

0.11

6.7087

rel =ε

 

%

5

0.13

18.6815

rel =ε

 

ZZ-EXP - 

KRU49 

2.8970

0.07%rel

−

=ε
 

0.9323

0.17%rel

−

=ε
 

0

0.6181

.15%rel =

−

ε

 

0

0.5378

.20%rel =

−

ε

 

0.9416

0.27%rel =ε
 

%

9

.

.2 1

6

49

1 0rel =ε

 

%

6

0.11

6.7087

rel =ε

 

%

5

0.13

18.6815

rel =ε
 

ZZ- EXP 

- TOU91 

2.8844

0.36%rel

−

=ε
 

0

0.9332

.27%rel =

−

ε
 

0

0.6184

.19%rel =

−

ε

 

0

0.5379

.20%rel =

−

ε

 

0.9571

1.92%rel =ε
 

%

9

.

.3 5

2

00

0 5rel =ε

 

%

6

0.05

6.8164

rel =ε

 

%

5

0.17

18.8995

rel =ε

 

ZZ- EXP 

- SOL92 

2.8978

0.10%rel

−

=ε
 

0

0.9322

.16%rel =

−

ε
 

0

0.6180

.13%rel =

−

ε

 

0

0.5378

.20%rel =

−

ε

 

0.9402

0.12%rel =ε
 

%

9

.

.2 4

1

44

1 1rel =ε

 

%

6

0.12

6.6987

rel =ε

 

%

5

0.13

18.6613

rel =ε

 

ZZ- EXP 

- KAR03 

2.8659

1.00%rel

−

=ε
 

0

0.9330

.25%rel =

−

ε
 

0

0.6185

.21%rel =

−

ε

 

0

0.5379

.22%rel =

−

ε

 

0.9709

3.39%rel =ε
 

%

9

.

.3 1

6

48

0 0rel =ε

 

%

6

0.21

6.9166

rel =ε

 

%

5

0.21

19.1026

rel =ε

 

ZZ- EXP 

-AKA07 

2.8889

0.21%rel

−

=ε
 

0

0.9330

.25%rel =

−

ε
 

0

0.6184

.19%rel =

−

ε

 

0

0.5379

.22%rel =

−

ε

 

0.9525

1.43%rel =ε
 

%

9

.

.2 0

8

85

0 6rel =ε

 

%

6

0.06

6.7839

rel =ε

 

%

5

0.16

18.8336

rel =ε

 

Table 9. Maximum values for normal stress ( / 2, )a L hσ and shear stress (0,0).aτ  

S 
Normal stress Shear stress 

4 10 20 40 4 10 20 40 

PAGANO 

[19] 
18.6899 73.6088 263.1913 1019.6630 1.4306 4.2381 8.7493 17.6447 

ZZ-EXP - 

RED90 

18.4887

1.07%rel =ε
 

%

7

1.31

2.6425

rel =ε
 

%

2

0.47

61.9645

rel =ε
 

%

1

0

018.4287

.12rel =ε
 

1.4132

1.22%rel =ε
 

%

4

.

.2 6

0

46

0 2rel =ε
 

%

8

.

.7 1

5

54

0 0rel =ε
 

%

1

0.02

7.6444

rel =ε
 

ZZ-EXP - 

KRU49 

18.4887

1.07%rel =ε
 

%

7

1.31

2.6425

rel =ε
 

%

2

0.47

61.9645

rel =ε
 

%

1

0

018.4287

.12rel =ε
 

1.4132

1.22%rel =ε
 

%

4

.

.2 6

0

46

0 2rel =ε
 

%

8

.

.7 1

5

54

0 0rel =ε
 

%

1

0.02

7.6444

rel =ε
 

ZZ- EXP - 

TOU91 

18.7927

0.55%rel =ε
 

%

7

0.77

3.0461

rel =ε
 

%

2

0.31

62.3875

rel =ε
 

%

1

0

018.8568

.08rel =ε
 

1.4022

1.99%rel =ε
 

%

4

.

.2 3

5

40

0 0rel =ε
 

%

8

.

.7 7

2

50

0 0rel =ε
 

%

1

0.01

7.6427

rel =ε
 

ZZ- EXP - 

SOL92 

18.4600

1.23%rel =ε
 

%

7

1.36

2.6049

rel =ε
 

%

2

0.48

61.9254

rel =ε
 

%

1

0

018.3891

.12rel =ε
 

1.4142

1.15%rel =ε
 

%

4

.

.2 1

1

47

0 2rel =ε
 

%

8

.

.7 4

6

54

0 0rel =ε
 

%

1

0.01

7.6446

rel =ε
 

ZZ- EXP - 

KAR03 

19.0646

2.00%rel =ε
 

%

7

0.26

3.4197

rel =ε
 

%

2

0.16

62.7811

rel =ε
 

%

1

0

019.2557

.04rel =ε
 

1.3921

2.69%rel =ε
 

%

4

.

.2 2

9

34

0 0rel =ε
 

%

8

.

.7 5

2

47

0 0rel =ε
 

%

1

0.02

7.6411

rel =ε
 

ZZ- EXP -

AKA07 

18.7016

0.06%rel =ε
 

%

7

0.93

2.9242

rel =ε
 

%

2

0.35

62.2596

rel =ε
 

%

1

0

018.7274

.09rel =ε
 

1.4055

1.75%rel =ε
 

4.2421

0.09%rel =ε
 

%

8

.

.7 7

3

51

0 0rel =ε
 

%

1

0.02

7.6433

rel =ε
 

Normal Stress (ZZ-EXP-SOL92) Normal Stress (Pagano [19]) 

Shear Stress (ZZ-EXP-SOL92) Shear Stress (Pagano [19]) 
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From Tables 8 and 9, it can be observed that the relative errors remain stable regardless of the variation of the parameter S. 
For slender beams (S = 40), the relative errors obtained by each ZZ-EXP model are identical, with only slight differences when the 
beam thickens (S = 4). Additionally, the models ZZ-EXP-SOL92, ZZ-EXP-RED90, and ZZ-EXP-KRU49 present similar accuracy with a 
slight improvement compared to the other models. 

4. Conclusion 

This study proposed a new zigzag function, referred to as ZZ-EXP, and its accuracy was compared with other existing 
functions in the literature, such as Murakami's zigzag function (ZZ-MUR) [11] and the function presented by Vidal [16]. In addition, 
this study compared the zigzag theory by incorporating the proposed model with the LW theory [21] and, as a reference, the 
results of the elasticity theory developed by Pagano [19]. The analysis was conducted for three examples of stacks of a simply 
supported laminated beam. In Examples 1, 2 and 3, the fiber orientations were adopted as [0 / 90 / 0 ] ,o o o T

3[0 / 90 ]o o
 and _____

[0 / 90 / 0 / 90 / 0 / 90 ] ,o o o o o o
s  respectively. The final analysis evaluated the dependence of the maximum values of the response 

fields on the S-parameter. From the results presented, the combination of kinematics with zigzag functions, which are both of 
high order, provided significant improvements in accuracy, which was confirmed by the comparison between the ZZ-EXP models 
(high order) and the ZZ-MUR function [11] (low order). The proposed model (ZZ-EXP) was compared with Vidal’s improved model 
[16], and the ZZ-EXP results showed lower relative errors, as listed in Tables 2–7. The proposed model was also stable in 
controlling the relative error, with minor values, as the number of laminate layers increased, which was not observed for Models 
[11, 16], making the proposed model (ZZ-EXP) attractive for many other applications. As established in the literature, the LW 
approach usually presents greater accuracy than ZZ theories. However, the present proposal proved to be compatible with the 
LW theory in terms of precision and convenience of not increasing the number of unknowns as the number of layers increases, 
which is absent in LW. Subsequently, the ZZ-EXP function, in combination with other higher-order kinematics of the beams, was 
not influenced by variations in the S parameter. Given the combination of the ZZ-EXP function with high-order kinematics, ZZ-
EXP-RED90, ZZ-EXP-KRU49, and ZZ-EXP-SOL92 generally exhibit lower relative errors when referenced in [19]. 
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Nomenclature 

L 
q(x) 

b 
2h 

u(x,z) 
w(x) 
f(z) 
Φ(x) 
Φzz(z) 

Beam length  
Load function on x axis  
Beam width 
Beam height 
Axial displacement 
Deflection function 
High order shear function 
Shear angle 
Zigzag function 

Ψ(x) 
RED90 
KRU49 
TOU91 
SOL92 
KAR03 
AKA07 

ZZ-MUR 
ZZ-EXP 
LW-LL 

Amplitude zig-zag function  
Reddy (1990) beam theory  
Krusweszki (1949) beam theory  
Tourratier (1991) beam theory 
Soldatos (1992) beam theory 
Karama (2003) beam theory 
Akavci (2007) beam theory 
Murakami (1981) zig-zag function 
Exponential zig-zag function 
Layerwise (Liu e Lee, 1990) theory 
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