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Abstract. The purpose of this study is to look at how gold nanoparticles affect the circulation near wavy biological cell walls. Non-
linear thermal radiation was found to enhance the heat transfer rates of nanofluid flow by numerical calculations. The 
mathematical model was a temporally magnetized non-Newtonian Casson micropolar nanofluid flow through a heated vertical 
wavy surface. The importance of predicting heat and mass transfer for irregular surfaces cannot be overstated, as irregular surfaces 
are common in many applications, including refrigerator condensers and flat-plate solar collectors. For this reason, it is imperative 
to study heat and mass transfer in complex geometries. Furthermore, the fluid temperature factors like nanofluid viscosity and 
microrotation viscosity were taken into account. A graph comparing the published data and the present numerical computation 
revealed an exact match. A physical interpretation of images was provided to describe the phenomenon of blood flow by heat 
transfer according to various circumstances. In medical treatment, especially cancer therapy, these results are crucial. Gold 
nanoparticles are among the best particles because they are stable metallic nanoparticles with excellent catalytic, magnetic, and 
optical properties. The investigation's findings showed that as time-steps grow, each profile's effectiveness tends to decrease, 
moving the unstable condition closer to the steady state. Whereas, the sphere-shaped nanoparticles have a significant effect on 
temperature profile change, column-shaped nanoparticles have less effect. Local skin friction rises and the local Nusselt number 
falls when the values of the two surface amplitude parameters rise. 

Keywords: Non-linear thermal radiation; blood-intervened gold nanoparticles; heated wavy surface; variable nanofluid and micro
rotation viscosities; Implicit Chebyshev pseudo spectral (ICPS) method. 

1. Introduction 

The creation of a model of non-Newtonian fluids that can be used to study the behavior of different fluids, particularly blood, 
is most suitable for the research of thermo-micropolar and micropolar fluids [1-3]. According to Elgazery [4], the permeability of 
porous membranes increases the spreading of fluids.  

Many studies have been conducted with blood, described as a non-Newtonian micropolar fluid. Chaturani and Upadhya [5] 
used the micropolar fluid model to conduct a theoretical study of blood flow inside a very narrow tube. Mekheimer and El Kot [6], 
Abdullah and Amin [7], and Ellahi et al. [8] used micropolar fluid in the presence of stenosis to investigate blood flow in a tapered 
artery. Ellahi et al. [9] investigated the effect of mass and heat transfer on blood flow via micropolar fluid in the presence of 
permeable walls and a tapered stenosed artery. Blood flow was investigated by Mekheimer et al. [10] for the simultaneous effects 
of metallic nanoparticles and the magnetic field in a stenotic artery using the micropolar fluid model as blood flow. Muthu et al. 
[11] also investigated the oscillatory blood flow through an annular tube using a micropolar fluid model. Misra et al. [12] examined 
an oscillatory electro-osmotic for blood flow through a microchannel using the micropolar fluid model. Asha and Deepa [13] studied 
how thermal radiation and entropy generation affect the peristaltic motion of blood flow in a tapered channel as a micropolar fluid. 
The majority of physiological fluids in the human body exhibit non-Newtonian behavior. Blood is a complex mixture (plasma) of 
gases, salts, proteins, carbohydrates, and lipids that contains suspended red blood cells (erythrocytes), white blood cells 
(leukocytes), and platelets. Ninety percent of plasma is water, making it a Newtonian fluid. However, blood is widely believed to be 
a non-Newtonian fluid made up of blood plasma and blood cells. Many mathematical models have been established in numerous 
investigations to describe the rheological behavior of blood. Karvelas et al. [14] explored the effect of micropolar fluid properties on 
blood flow in a human carotid model. However, numerous other studies rely on describing blood as a non-Newtonian Casson fluid, 
such as [15-21].     

Many recent studies have combined the micropolar fluid and Casson models to produce more accurate and realistic results. 
Using the Keller box numerical approach, Iqbal et al. [22] examined blood flow (micropolar Casson fluid model) along a stretching 
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plate in response to the action of a magnetic field with a slope. In the presence of internal heating, Mehmood et al. [23] used the 
Runge Kutta Fehlberg numerical technique with a shooting algorithm to study blood flow as a micropolar Casson model near a 
stretching sheet. Ali et al. [24] conducted a numerical study of magneto-pulsating blood flow (micropolar Casson fluid) in a 
constricted channel through a Darcian porous medium. Blood flow was also described by Elelamy et al. [25] using the Casson-
micropolar nanofluid model. Moreover, Amjad et al. [26] studied blood flow as a Casson-micropolar nanofluid close to a curved 
permeable stretching sheet under an induced magnetic field and Lorentz force. One of the most severe and deadly illnesses that 
can affect a person is cancer. Over the past few decades, there have been many attempts to combat cancer, and our understanding 
of the disease has gradually increased. The only available cancer treatments at the moment are radiation, chemotherapy, and 
surgery, despite our best efforts. Using nanotechnology to administer a variety of pharmaceuticals is one possible answer within 
the context of these major efforts in this field. The goal of these initiatives is to use gold nanoparticles for cancer treatments and 
as diagnostic instruments [27].  

    In recent times, gold nanoparticles have been extensively employed across multiple domains, especially in the highest degree 
of illness therapy [28]. The study conducted by Mekheimer et al. [29] examined the effects of gold nanoparticles on peristaltic blood 
flow via a catheter. Gold nanoparticles injected into blood flow inside a porous medium were studied by Eldabe et al. [30]. 
Additionally, blood flow with gold nanoparticles inside a stenosed vessel under a variable nanofluid viscosity effect was covered 
by Elnaqeeb et al. [31]. Using blood-intervened gold nanoparticles, Mekheimer et al. [32] clarified the antibacterial effects of 
electrothermal transport in an osmosis-electro artery with overlapping stenosis. Recent research has examined the impact of wall 
characteristics on the results of magneto-blood-intervened gold nanoparticles passing through a wavy tube [33]. 

According to He and Abd Elazem's findings [34], for the stretched sheet, the thickness of the thermal barrier layer grows as the 
radiation parameter increases, which lowers the heat transfer rate. The results have applications in many domains, such as 
biomedical, thermo-mechanical processes, and the best heat transfer structure for a renewable energy collecting system. The 
results in Ref. [35] show that only when the slender needle moves against the direction of the free stream are the dual similarity 
solutions produced. Furthermore, the range of the velocity ratio parameter for which the solution exists is decreased by the mass 
of the second nanoparticle as well as the magnetic parameter. The findings in Ref. [36] show that while the temperature increases 
when the Joule heating increases with constant values of the electro-osmotic parameter and Helmholtz Smoluchowski velocity, 
the velocity increases as these parameters increase. Additionally, as the magnetic field is strengthened and the altitude of stenosis 
takes on bigger values, there is a difference in the profile of velocity to the blood flow. The findings in Ref. [37] demonstrate that 
the hyperbolicity of the model produces temperatures greater than those attained with a parabolic model because of laser-induced 
heat.  

Furthermore, the significance of non-linear thermal radiation is beneficial for blood flow control during thermal surgery or 
therapy. As a result, taking into account blood flow containing gold nanoparticles with heat transfer in the presence of a magnetic 
field and non-linear thermal radiation becomes critical in biological and industrial processes, such as biomedical fluids, cancer 
therapy, cancer tumor treatment, biofluids in biological tissue, drug transportation, emulsions, lubricants, and nuclear fuel slurries 
[28].  

One of the most significant non-Newtonian models that explains this behavior and exhibits the shear thinning property is the 
Casson fluid. The Casson fluid exhibits Newtonian behavior when the shear stress rises to a level significantly higher than the yield 
stress. Therefore, it is calculated that the Casson fluid fits the rheological data better than conventional models for viscoelastic 
fluids. On the other hand, ferrofluids, blood flows, bubbly liquids, liquid crystals, and so forth are examples of physical micropolar 
fluids. In recent times, numerous studies have integrated multiple models to depict non-Newtonian fluids, such as the Casson-
Carreau, micropolar-Carreau, and micropolar-Maxwell models [25, 38–40]. Therefore, the purpose of this article study is to examine 
how the morphology of gold nanoparticles influences blood flow (blood with suspended gold (Au) nanoparticles) near a vertically 
heated wavy wall in the presence of non-linear thermal radiation and variable microrotation viscosity in the vicinity of a wavy 
biological tissue wall in the context of cancer therapy (esophageal cancer).  

The majority of mathematical research on biological systems made the assumption that the wall was wavy, flat, cylinder-
shaped, curved, or peristaltic [25, 41–48]. Consequently, we used the same methodology and took the wavy wall's shape into 
account in this investigation. The study's findings showed that as time steps increase, the efficacy of each profile tends to decrease, 
and the unstable state approaches the steady state.  Furthermore, compared to earlier research, the steady state can be reached 
faster with the current numerical approach. The rate of heat transfer is controlled by columnar-shaped nanoparticles, while 
spherically-shaped nanoparticles have a lesser function. 

2. Mathematical Formulations 

This study attempts to investigate how gold nanoparticles’ morphology affects blood flow near a wavy biological tissue wall, 
taking into account the following hypotheses:  

 A temporal 2D magneto-non-Newtonian Casson-micropolar nanofluid (blood with suspended gold nanoparticles) flow close 
to a vertically heated wavy wall is assumed. 

 In the present physical model, it is given that the wavy wall ˆ( )ˆ xσ  is kept at a uniform temperature wT  greater than its 
corresponding values of ambient temperature .T∞  

 It is also assumed that the viscosity and rotational viscosity of blood should be taken as functions of temperature, as shown 
in equations (12) and (13). 

 It is also assumed that a uniform vertical magnetic field 2
0B   is utilized for the flow. 

 It is also assumed that the term ˆ/rq y∂ ∂  represents the nonlinear thermal radiation that can be formed as equation (8). 
As shown in Fig. 1, the heated wavy surface with a sinusoidal deviation is taken as [51, 52]: 

1 2
ˆ ˆˆ ˆ ˆ ˆ( ) sin(2 / ) sin(4 / )ˆy x a x l a x lσ π π= = +  (1) 

where l  denotes the characteristic length. The distinct amplitudes of the wavy wall are 1â and  2ˆ .a  The governing equations are 
listed below [53–56]: 

ˆ ˆ
0,

ˆ ˆ

u v

x y

∂ ∂
+ =
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 (2) 
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(6) 

The boundary conditions are given by: 
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 (7) 

Here, P̂  and t̂  are the pressure and time. ˆ ˆ( , ), ,u v T and N̂  are ˆ ˆ( , )x y -component velocities, temperature, and microrotation 
velocities, respectively. g  and Tβ  are the acceleration due to gravity vector and thermal expansion coefficient. , , ,Pnf nf Cρ σ  and nfk  
are the density, electrical conductivity, specific heat at constant pressure, and thermal conductivity of the nanofluid. cπ  is the 
critical value of the product ij ije e and ˆ ˆ ˆ ˆ[ / / ] / 2ij i j j ie v x v x= ∂ ∂ + ∂ ∂  is the deformation rate. yp  is the yield stress of the nanofluid. T∞

and wT  are also the blood temperatures far away from and near the wavy wall, respectively. ( )Tκ  and ( )TΩ are the variable 
microrotation and spin gradient viscosities, respectively. j

 
is the constant microinertia density (the microinertia, or unit mass). In 

equation (6), the term ˆ/rq y∂ ∂  represents the nonlinear thermal radiation that can be formed as [50, 56, 57]: 

2
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where δ  and ∆  are the Stefan-Boltzmann constant and mean absorption coefficient. Furthermore, the thermophysical properties 
of the nanofluid can be expressed as [28, 54, 58, 59]: 
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(a) (b) 

Fig. 1. (a) Geometry of flow along a wavy biological tissue wall; (b) Esophageal cancer [55]. 
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Table 1. The shape-related parameter values of gold nanoparticles [28]. 

Shapes Sphere Tetrahedron Hexahedron Lamina Column 

ϕ  1 0.7387 0.8060 0.1857 0.4710 

m  3 4.0613 3.7221 16.1576 6.3698 

Table 2. The thermophysical properties of the blood and gold nanoparticles (Au) [27, 56]. 

 ( / )s mσ  ( /  )P J kg KC   3( )/kg mρ  ( )/  k W m K   

Gold (Au)   4.1× 106 129 19300 318 

Blood 1090 3617 1050 0.52 

Here, ϕ  and m  are the volume fraction and shape factor of the gold nanoparticle as presented in Table 1. The two indices f  and 
s  also refer to blood as a base fluid and gold nanoparticles (Au) (see Table 2 for the thermophysical properties of the blood and gold 
nanoparticles [27, 56]). 

Utilizing the dimensionless variables [50, 52]: 
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Furthermore, for more accuracy, the viscosity and rotational viscosity of blood should be taken as functions of temperature in 
the following forms: [27, 54]: 

1

5 0( ) ,nf T D e β θµ µ −=   (12) 
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Here, 0µ  and 0κ  are the constant viscosity and constant microrotation viscosity. 1β  and 2β  also the variable blood viscosity 
and variable microrotation viscosity parameters. Consequently, the variable spin gradient viscosity will be rewritten as: 

( ) ( ( ) ( ) / 2) .nfT T T jµ κΩ = +  The undulating surface can be made flat by using the straightforward coordinate transformation 
mentioned above. After that, the dimensionless governing system can be produced as follows by taking, / 0,P x∂ ∂ =  eliminating, 

/ ,P y∂ ∂  and disregarding the small-order terms in the Grashof number Gr (see [51, 60]). 
Subsequently, the governing system (2)-(7) with the help of Eqs. (12)-(14), can be written in the following dimensionless system: 
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As well as in Eqs. (16) and (17), ignore the small-order terms in, ,Gr  eliminate 1/ 4
1( / )( / ),xGr D P yσ ∂ ∂  and take / 0P x∂ ∂ =  [52, 

61], then the momentum equation can be rewritten in the following dimensionless form: 
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where 0 2 /c ypβ µ π=  and 0 0/R κ µ=  are the upper limit apparent nanofluid viscosity coefficient and dimensionless microrotation 
parameters, respectively. It is noticeable that, for 0R →  and ,β→ ∞  the blood model tends to a Newtonian one. 

2 2 1/2
0 0( / )fM B l Grσ µ −=  is the dimensionless magnetic field parameter,  and 3 2

0
ˆ ˆ[ ( )] /TGr l g P Pβ ν∞= −  is the Grashof number. 

2 1/2( / )B l j Gr−=  is a dimensionless parameter, and 0 0 / fν µ ρ=  is the blood kinematic viscosity. 3(4 ) / (3 )fRa T kδ ∞= ∆  and 
[ / ] 1wr T T∞= −  are the non-linear thermal radiation and relative temperature difference within blood flow parameters, 

respectively. Here, when the blood temperature take 310 Kelvin, 3
0 2.2 1 /0 J msk = ×  Kelvin, /14.65P J kgC =  Kelvin, and

3
0 ,3.2 10 /kg msµ = ×  then the blood Prandtl number 0 0Pr [ ( ) ] /P fC kµ=  can equal approximately 21 [25].  

 The following transformation should be used to convert the current complex wavy wall to another flat plate and remove the 
singularity at the leading edge [49, 51, 53, 62, 63]: 

1 /2 1 / 4 1/2 1 /4 1 /4(4 ) , , (4 ) , (4 ) , (4 ) , (4 ) .t x X x Y y x U u x V v x N N xτ − − − −= = = = = =   (22) 

Therefore, in view of transformation (22), Eqs. (15), (18), (19), and (21) will reduce to the following convenient form: 
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Related to the corresponding boundary and initial conditions are 
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Refer to Appendix A for an explanation of how to get on the final governing system of the physical model, Eqs. (23)-(26), for 
instance. 

The dimensionless local skin friction coefficient, ,Cf  Nusselt number, ,xNu  and wall couple stress coefficient wM  that are of 
major importance in materials treatment systems can be expressed as follows:  
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where, 
1/2

0 / :fU Gr lµ ρ=  is the characteristic velocity, 

2 2
ˆ ˆ ˆ( / 1 ,1 / 1 ) :ˆ ˆ ˆx x xn σ σ σ= − + +  is the unit vector perpendicular to the wavy wall, 

( ) 2 2
ˆ ˆ( )ˆˆ ˆ( )ˆ

ˆ ˆ( / ) ( / ) ( / ) :w nf nf nfy xy x
q k n T k T n k T x T y

σσ ==
= − ⋅ ∇ = − ∂ ∂ = − ∂ ∂ + ∂ ∂  is the wavy wall heat flux, 

ˆ ˆ( )ˆ

ˆ ˆˆ ˆ( )( / / ) :w
y x

m T N x N y
σ=

 = Ω ∂ ∂ + ∂ ∂  
 is the coupled stress, 

21 0
5 0

0

0 0

[ ] 2
,Y

D e e

j

ββ κ
µ

λ
µ µ

−−

=

  +  Ω  
= =  

ˆ ˆ( )ˆ

ˆ ˆ ˆ1 ˆ( ) ( ) ( ) :
ˆ ˆ ˆw nf

y x

u v u
T T T N

y x y
σ

τ µ κ κ
β

=

      ∂ ∂ ∂    = + + + + +         ∂ ∂ ∂      
 is the shear stress at the wavy wall. 

3. Numerical Approach   

PDEs (23)-(26) have been used to solve the problem of temporal magnetized non-Newtonian Casson-micropolar nanofluid flow 
along a vertically heated wavy wall. The implicit Chebyshev pseudo-spectral (ICPS) procedure is an excellent choice for the current 
study because it provides a highly novel, fast convergence, and optimized procedure (for more details, see Appendix B). This 
numerical technique is divided into two branches: the first in the spatial domain using the Chebyshev pseudo-spectral method, 
and the second for the time derivatives using the Crank-Nicolson finite-difference method [63]. Some of the current proposal's 
results have been compared to publicly available numerical data [65], and good agreement is found, as shown in Fig. 2 at β → ∞  
and 1 2 0.1.R Raβ β= = = =  The exciting fit between the current numerical study and previous outcomes allows it to expand the 
calculated results.  

4. Results and Discussion   

This numerical study investigated the impact of gold nanoparticles on blood flow near a wavy biological tissue wall using the 
ICPS technique [66]. The temporal magnetized non-Newtonian Casson-micropolar nanofluid flow over a vertically heated wavy 
wall was selected as the mathematical model in order to examine certain important properties, such as the fact that the nanofluid 
flow concerns non-linear thermal radiation, which functions as a heat transfer rate catalyst. Consequently, the following are the 
numerical results: Table 3 makes clear that the local skin friction for various nanoparticle forms onto the wavy plate reduces with 
an increase in the variable microrotation viscosity parameter 2.β  Values of the local couple stress and the local Nusselt number 
for various nanoparticle forms are displayed in Tables 4 and 5 when the variable microrotation viscosity parameter 2β  is present. 
It has been noted that rising values of drive rising numbers for Nu  and wM  results. 

Figure 3 depicts the distributions of transient dimensionless axial velocities, , ,U V−  temperature, ,θ  and microrotation 
velocity, .N  Figure 3 depicts how the axial velocities, temperature, and microrotation velocity profiles have changed after 
nominating times. The velocity curves move away from the wall as time passes until they reach a steady state. Furthermore, the 
axial velocities increase until the crest and then gradually decrease as the distance from the origin point to the edge increases. 
Figure 4 also illustrates the impacts of various time step values on couple stress distributions, skin friction, and Nusselt number 
for nanoparticle column shape at 1 2 1 2Pr 21, 0.01, 0.01, 0.05, 0.05, 0.5,M B rβ τ α α β β= = = = = = = = = = and 0.1.R Ra= =  It is 
evident that the value of local skin friction increases as the τ  parameter increases. Over time, local skin friction likewise attains a 
steady state at 0.03.τ =  While parameter τ  increases, the Nusselt number and couple stress distributions for nanoparticle 
column shape decrease. Furthermore, the thermal boundary layer improves over time for all profiles in Figs. 3 and 4. However, it 
is clear that as time passes, the efficacy of all profiles decreases, and the unstable situation approaches a steady state. Based on 
[67], the current numerical approach achieves steady-state in less time than previous studies, such as [52, 65]. 

Table 3. The variable microrotation viscosity parameter
2
β influences local skin friction for different nanoparticle shapes at 

1 2 1
Pr 21, 0.01, 0.05, 0.01, 0.5,M B rτ α α β β= = = = = = = = = and 0.1.R Ra= =  

(a) Column 

X  2
0.5β =  

2
1β =  

2
5β =  

0.051111261 0.306514749 0.306661558 0.306733549 
0.439339828 0.379143938 0.379337701 0.379437691 

0.75 0.155488082 0.155594965 0.155655603 
1.5 0.745670523 0.746024014 0.746195711 

2.560660172 0.588209786 0.588510765 0.588666172 
3 0.885622179 0.886042462 0.886246631 

(b) Tetrahedron 

0.051111261 0.2011585 0.201273214 0.20132365 
0.439339828 0.253464335 0.253594862 0.253652556 

0.75 0.105442346 0.105469062 0.105476492 
1.5 0.486948211 0.487229862 0.487353171 

2.560660172 0.393464743 0.393667543 0.393757238 
3 0.578481126 0.578816024 0.57896266 

(c) Sphere 

0.051111261 1.912425128 1.912425127 1.912425126 
0.439339828 1.921700375 1.921700378 1.921700378 

0.75 1.928780593 1.92878059 1.928780587 
1.5 1.909611797 1.909611797 1.909611796 

2.560660172 1.921788198 1.921788187 1.921788178 
3 1.910146165 1.910146084 1.910146032 
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Fig. 2. Transient velocity profile comparison with Jang and Yan [65]. 

Table 4. The variable microrotation viscosity parameter
2
β influences the local Nusselt number for different nanoparticle shapes at

1 2 1
Pr 21, 0.01, 0.05, 0.01, 0.5,M B rτ α α β β= = = = = = = = = and 0.1.R Ra= =  

(a) Column 

X  2
0.5β =  

2
1β =  

2
5β =  

0.051111261 1.912425126 1.912425127 1.912425128 
0.439339828 1.921700378 1.921700378 1.921700375 

0.75 1.928780587 1.92878059 1.928780593 
1.5 1.909611796 1.909611797 1.909611797 

1.888228568 1.921221117 1.921221127 1.921221141 
2.560660172 1.921788178 1.921788187 1.921788198 

3 1.910146032 1.910146084 1.910146165 

(b) Tetrahedron 

0.051111261 1.857190713 1.857190714 1.857190715 
0.439339828 1.876334269 1.876334269 1.876334268 

0.75 1.891014417 1.891014419 1.891014422 
1.5 1.851432979 1.85143298 1.851432979 

2.560660172 1.876429046 1.876429053 1.876429062 
3 1.85200701 1.85200705 1.852007115 

(c) Sphere 

0.051111261 0.618770892 0.618770892 0.618770892 
0.439339828 0.690263531 0.690263531 0.690263531 

0.75 0.764831382 0.764831383 0.764831384 
1.5 0.601080349 0.601080349 0.601080349 

2.560660172 0.69026458 0.69026458 0.69026458 
3 0.601107528 0.601107529 0.601107529 

Table 5. The variable microrotation viscosity parameter
2
β influences the local couple stress for different nanoparticle shapes at 

1 2 1
Pr 21, 0.01, 0.05, 0.01, 0.5,M B rτ α α β β= = = = = = = = = and 0.1.R Ra= =  

(a) Column 

X  2
0.5β =  

2
1β =  

2
5β =  

0.051111261 0.000191442 0.000191492 0.000191565 
0.439339828 0.000253269 0.000253331 0.000253422 

0.75 0.000329229 0.000329306 0.000329428 
1.5 0.000177793 0.000177838 0.0001779 

2.560660172 0.000253147 0.000253209 0.0002533 
3 0.000177759 0.000177804 0.000177864 

(b) Tetrahedron 

0.051111261 0.000196096 0.00019613 0.000196182 
0.439339828 0.000261395 0.000261438 0.000261504 

0.75 0.000342561 0.000342616 0.000342705 
1.5 0.000181735 0.000181766 0.00018181 

2.560660172 0.000261167 0.00026121 0.000261275 
3 0.000181681 0.000181711 0.000181754 

(c) Sphere 

0.051111261 0.000269971 0.000269998 0.000270037 
0.439339828 0.000281414 0.000281439 0.000281475 

0.75 0.0002988 0.000298825 0.000298863 
1.5 0.00020452 0.000204538 0.000204564 

2.560660172 0.000219559 0.000219576 0.000219603 
3 0.000185481 0.000185494 0.000185509 

Figures 5 and 6 show the consequences of several different nanoparticle shapes -sphere, tetrahedron, and column- on the 
spreads of Nusselt numbers, heat, microrotation, skin the friction, and motion at 1 1 2Pr 21, 0.01, 0.01, 0.05,β τ α α= = = = =  

2 0.01, 0.5,M B rβ β= = = = = and 0.1.R Ra= = As seen in Figs. 5(a), 5(b), and 5(c), the microrotation changes decrease as the velocity 
and temperature distributions increase. The spheres have a substantial effect on the temperature and velocity ranges, as Figs. 5(a) 
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and 5(b) demonstrate. Radiation causes conduction to become more dominant over radiation, which lowers the buoyancy force 
and thickness of the thermal boundary layer. Further, because of their low viscosity, sphere-shaped nanoparticles have the highest 
temperature and velocity. Nonetheless, the microrotation velocity distributions for the column's nanoparticle shape are the best 
when compared to other shapes [28]. Similarly, as Fig. 6(a) shows, column-shaped nanoparticles have the most influence on skin 
friction distributions of all other nanoparticle shapes, while column-shaped nanoparticles have the greatest influence on skin 
friction distributions (see Fig. 6(b)). Figure 7 depicts the effects of 1β  on velocity, skin friction, and Nusselt number distributions for 
various nanoparticle shapes at 1 2 2Pr 21, 0.01, 0.05, 0.01, 0.5,M B rτ α α β β= = = = = = = = = and 0.1.R Ra= =  It should be noted that 
the current study is primarily concerned with the role of viscosity as a variable property. 

  

  

Fig. 3. The effects of parameter τ on nanoparticle column shape velocities, temperature, and microrotation velocity distributions. 

 

  

 

Fig. 4. The effects of parameter τ on nanoparticle column shape skin friction, Nusselt number, and couple stress distributions. 
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Fig. 5. The effects of different nanoparticle shapes on velocities, temperature, and microrotation velocity distributions. 

  
 

Fig. 6. The effects of different nanoparticle shapes on skin friction and Nusselt number distributions. 

 

  

 

Fig. 7. The effects of
1
β  for different nanoparticle shapes on velocity, skin friction and Nusselt number distributions. 
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Examining the numerical results in Fig. 7 reveals this function's characteristics. The velocity curves have two stages, as seen in 
Fig. 7(a): initially, they achieve the boundary condition; subsequently, they progressively increase the thermal boundary layer. 
Moreover, the velocity curves rise to the crest and then progressively decrease as the value of Y  increases. Additionally, sphere-
shaped nanoparticles have the highest velocity due to their low viscosity. In contrast, as the number of nanoparticles grows in 1,β  
the skin friction and Nusselt number distributions in Figs. 7(b) and 7(c) decrease. As shown in Fig. 7(b), the highest value of the local 
skin friction coefficients is at 1.5,X ≃  while the lowest value is at 0.25.X ≃  Additionally, the nanoparticles with a column shape 
have the highest Nusselt number. The flow can go comparatively deeper at low 1β  values. After that, the depth of the Nusselt 
number profiles increases with an increase in 1.β  Figure 8 depicts the effects of 1α  and 2α  on skin friction and Nusselt number 
distributions for various nanoparticle shapes at 1 2Pr 21, 0.01, 1, 0.01, 0.5,M B rτ β β β= = = = = = = = and 0.1.R Ra= = Figures 8(a) 
and (b) show the implications of both of the surface amplitude parameters 1α  and 2α  with the local skin friction and Nusselt 
number at constant state distributions. Figures 8(a) through 8(b) demonstrate how local skin friction is increased when 1α  and 2α  
values are increased while Nusselt number distributions are decreased. Unless stated otherwise, the local Nusselt number can be 
decreased owing to the amplitude wavy wall parameter. The causes of declines in heat transfer rate are buoyancy and centrifugal 
forces. Moreover, column-shaped nanoparticles exhibit the largest Nusselt number distributions as the 1α  and 2α  values increase. 
It is physically seen that the local Nusselt number gradually drops with time. The early phases of the step increase in wall 
temperature and concentration are characterized by incredibly thin thermal and concentration boundary layers. There are 
noticeable temperature differences on the surface as a result. Because of this, there is rapid heat transfer, as indicated by the high 
Nusselt number. With time, the temperature and concentration boundary layer thicknesses, along with the free convection effect, 
become more noticeable. Consequently, a decrease in the local Nusselt number results in a decrease in the rate of heat 
transmission.  

Figures 9 and 10 represent the effects of M  on temperature, skin friction, Nusselt number, and couple stress distributions at 

1 2 1 2Pr 21, 0.01, 0.05, 1, 0.01, 0.5,M B rτ α α β β β= = = = = = = = = = and 0.1.R Ra= = Moreover, a resistive Lorentz force is created 
when a magnetic field is applied to the nanofluid, slowing the flow of the fluid. As seen in Figs. 9 and 10, a transverse magnetic 
field applied to an electrically conducting fluid increases the resistive force, causing the fluid to flow more slowly. Consequently, 
the change in axial velocity at different time steps is inversely proportional to the magnetic field parameter. Increasing the 
magnetic parameter, as Fig. 9(a) illustrates, raises the temperature function, and the nanoparticles with a sphere shape have the 
highest temperature. On the other side, Figs. 9(b), 9(c), 10(a), and 10(b) illustrate decreased skin friction, Nusselt number, and couple 
stress distributions. 

  
 

Fig. 8. The effects of
1
α and

2
α for different nanoparticle shapes on skin friction and Nusselt number distributions. 

 

  

 

Fig. 9. The effects of M for different nanoparticle shapes on temperature, skin friction and Nusselt number distributions. 
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Fig. 10. The effects of M for different nanoparticle shapes on couple stress distributions. 

 

5. Conclusion 

In the current study, the effect of introducing gold nanoparticles on blood flow near a wavy biological tissue wall that forms 
during cancer treatment was examined. It was also assessed what impact the additional gold nanoparticle shapes would have. 
This objective was investigated using a mathematical model of an unstable magneto-non-Newtonian Casson-micropolar flow of 
nanofluid across a vertically heated wavy surface. Two variables associated with blood temperature that have been identified are 
microrotation and nanofluid viscosity. When some of the outcomes of the proposed approach are compared with numerical data 
that is readily available to the public [65], good agreement is discovered, as Fig. 2 illustrates. Applications of interest include the 
design of heat exchangers and chemical processing equipment, the formation and dispersal of fog, temperature and moisture 
distributions over agricultural fields, environmental pollution, and thermoprotection systems. These applications involve the 
combined transfer of mass and heat through natural convection. Plotting blood flow as a function of several physical characteristics 
has produced the following results, which are highlighted: 

 As the unstable state gives way to the steady state, the efficiency of all distributions steadily vanishes. 
  As the values of the viscosity-temperature variation parameter grow, the transient local skin friction coefficient and 

transient local Nusselt number fall. 
 While sphere-shaped nanoparticles have a significant effect on temperature profile change, column-shaped nanoparticles 

have little effect. 
 Columnar-shaped nanoparticles govern the rate of heat transfer, whereas spherically-shaped nanoparticles serve a lesser 

purpose. 
 The effects of temperature, velocity, and local skin friction profiles against angular velocity and heat transmission are 

antagonistic for column and sphere-shaped nanoparticles. 
 The thickness of the resultant thermal boundary layer was decreased by raising the variable viscosity parameter. 
 Skin friction, Nusselt number, and couple stress distributions decreased as magnetic field values increased, but temperature 

fields strengthened. 
 The local skin friction rises and the local Nusselt number falls as the values of the two surface amplitude parameters, 1α

and 2 ,α  grow. 

APPENDIX A 

To show the details of obtaining equation (26), we start from equation (6): 
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And using equations (7)-(11) as follows: 
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After that, we divide the above equation (*) on the coefficient 1 /2 2
0( / )( )wfGr l T Tµ ρ ∞−  of / ,tθ∂ ∂  and then we get equation (19) as 

follows: 
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(19) 

By using the transformation (22) to convert the current complex wavy wall to another flat plate, as follows: 
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Therefore, using equations (**), equation (19) converts to the following equation (26): 
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(26) 

APPENDIX B 

We express the assumptions and limitations of our methods as follows [67]: 

 
 
 

 
 
 

 
 

 

Fig. 11. The flowchart for highlighted numerical approach. 
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The physical domain [0, Xmax] × [0, Ymax] is transformed to a computational one [ -1, 1] × [ -1, 1] via suitable 
transformations X∗ = (2X / Xmax) - 1 and Y∗ = (2Y / Ymax) - 1, where Xmax and Ymax are the length of wavy surface 
and boundary layer thickness. 

Each time as well as space is divided into sufficient numbers of grid points (Xk, Yk*, τr) where    Xk = cos(k/L1) 

and Yk* = cos(k*/L2)are Gauss–Lobatto nodes (for k = 0(1)L1 and k* = 0(1)L2) as well as τr = r Δτ . (L1, L2) are the 
number of the grid points in the (X, Y)- coordinates and Δτ is the size in time grids. 

The spatial mth-order partial derivative value of the velocity function U(X, Y, τ) at the end of a time-step might 
be formulated as: ∂mU(X,Y)/∂Xm = AmU and ∂mU(X,Y)/∂Ym = BmU, where Am and Bm are the pseudo-spectral 
differentiation matrices of mth-order partial derivative with respect to X, Y [67]). 

The iteration process through the time-direction is improved until reaching the steady-state when the 

condition 1 10
, * , * 10r r

k k k kU U+ −− ≤  is satisfied. 
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Nomenclature 

Appellations Roman Symbols 

1 2
ˆ ˆ,a a  The characteristic amplitude value of wavy wall 

B  Dimensionless parameter  
2
0B  The magnetic field  

Cf  The local skin friction coefficient  

PC  The specific heat at constant pressure 

g  The acceleration due to gravity vector 

Gr  The Grashof number  

j  The constant microinertia density 

nfk  The thermal conductivity 

l  Characteristic length 

M  Magnetic field parameter 

wM  Wall couple stress coefficient  

n  The unit vector perpendicular to the wavy wall 

xNu  Nusselt number coefficient  

N̂  The microrotation velocity   

P̂  The pressure 

Pr  The Prandtl number 

rq  The non-linear thermal radiative heat flux 

R  Dimensionless microrotation parameter 

r  Relative temperature difference within blood flow 

Ra  Non-linear thermal radiation parameter 

t̂  The time   

T  The nanofluid temperature 

ˆ ˆ,u v  Nanofluid velocities in the directions ˆ ˆ( , )x y  along and perpendicular to the tangent of the wavy wall 

Greek Symbols 

β  Upper limit apparent nanofluid viscosity coefficient parameter 

Tβ  The thermal expansion coefficient 

δ  Stefan-Boltzman constant 

θ  Dimensionless temperature 

κ  The variable microrotation  

0µ  Constant viscosity 

nfµ  The nanofluid viscosity 

0 0 / fν µ ρ=  The blood kinematic viscosity 

nfρ  The density of the nanofluid  

ˆ( )ˆ xσ  The wavy wall    

nfσ  The electrical conductivity of the nanofluid 

Ω  Spin gradient viscosities 

∆  Mean absorption coefficient 

Subscripts 
 

f  Base fluid (blood) 

nf  Nanofluid 

s  Nano-solid-particles (gold) 
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