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Abstract. The paper deals with the combined effect of non-Newtonian saturating fluid and horizontal flow rate on the thermal 
convection in a highly permeable, porous plane layer saturated with a power-law model. Asymmetric boundary conditions are 
assumed, with a cooled free surface at the top and a heated, impermeable, rigid wall at the bottom. The generalised Forchheimer 
equation is employed to model the power-law fluid movement. Convection cells emerge in the power-law fluid because of vertical 
temperature gradient imposed by the thermal boundaries. The onset of this scenario can be studied using linear stability theory, 
which leads to an eigenvalue problem. The latter is solved either numerically, employing shooting schemes, or analytically, using 
one-order Galerkin approach. The present study is considered an extension of the classical Prats problem. When the Peclet number, 
which defines the flow rate, is negligible, the configuration switches to the special case of Darcy-Rayielgh instability. The results 
show that the form drag exhibits a stronger stabilizing influence in shear-thinning fluids compared to shear-thickening and 
Newtonian ones since the saturating fluid is described by the power-law model. This scenario appears in the specific range of the 
Peclet number. In general, this investigation can be used to understand the heat transfer process in subsurface hydrocarbon 
reservoirs where the fluid may exhibit non-Newtonian behaviour. 

Keywords: Non-Newtonian fluids, porous media, Darcy–Forchheimer flow, Thermal instability, Horizontal throughflow. 

1. Introduction 

From the standpoint of numerous authors, Darcy's law is one of the simplest basic models used to define fluid motion 
(Newtonian or non-Newtonian) in weakly permeable porous-Bénard problems [1-4]. The Darcy equation is valid as long as the 
upper limit of the Reynolds number is similar to Stokes flow. This limitation does not emphasise the departure of the flow from a 
laminar to a transition or turbulence regime but rather the increasing effect of inertia on the microscopic level. In other words, 
despite having a wide range of applicability, Darcy's model fails to account for the quadratic term of velocity that expresses the 
nonlinear laminar regime. The deviation from the Darcy model becomes even more prominent in situations like multi-permeability 
and fractured systems in oil reservoirs, or for highly porous media and compressible fluids [5, 6]. To address this deviation, a 
parameter called the Forchheimer coefficient or form drag number has been considered to indicate the presence of nonlinearity 
created by fluid inertia [7]. The application of the Forchheimer model as a momentum equation in the modelling of fluid flow in 
highly permeable porous systems is still not widely used in the investigation of convective instability, as there is a scarcity of 
papers on this topic. The first study carried out in this context was by He and Georgiadis [8], who assumed the pure Horton-Rogers-
Lapwood configuration (HRL) under conditions of high permeability (form drag), internal heating, and thermal dispersion. Their 
findings revealed that the combined effects of these three mechanisms can trigger and influence the early development of 
convection, where a pair of sharp-nosed bifurcations can arise instead of the customary pitchfork bifurcation. Shivakumara et al. 
[9] analysed the unstable nature of buoyant flow in a highly permeable Prats configuration saturated with Oldroyd-B fluid using 
combined boundary conditions between an isothermal rigid wall and an adiabatic porous layer. It is shown that the increase in the 
form drag number and the retardation time of the viscoelastic fluid can, on one hand, slow the onset of instability, and on the other 
hand, decrease the critical wave number in both cases of the boundary conditions. The onset of buoyancy-driven instability in a 
vertical highly permeable porous slab sandwiched between two permeable and isothermal boundaries was investigated by Barletta 
et al. [10]. The results found by these researchers indicate that the form drag number has a drastic effect on the emergence of 
transverse rolls, as well as on the threshold values of the wave number. In addition to this work, Barletta et al. [11] have studied 
the impact of the form drag number on the Prats configuration, taking into consideration the viscous dissipation of the saturating 
Newtonian fluid. They observed that the form drag number affects the appearance of transverse or oblique rolls more than 
longitudinal ones. The working fluid mentioned in these papers belongs to either Newtonian or non-Newtonian behavior, viz., the 
viscoelastic model. Thermal convection or convective instability in non-Newtonian fluid-saturated porous media has proven to 
have broad applications across various fields such as oil extraction, bioengineering, geophysics, and more [12]. For instance, 
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underground fluid reservoirs, especially those containing heavy oil and bitumen, can exhibit behavior identical to the power-law 
model. 

 The power-law model, in general, can transition from shear-thinning to Newtonian and then to shear-thickening fluid based 
on the strength of the applied shear stress. This characteristic makes it particularly appealing in research areas, especially in the 
context of convective instability in a porous structure. For more in-depth insights, Shenoy's book [13] offers a comprehensive review 
of the literature related to the modelling of power-law fluids saturating a porous matrix. The analysis of free and forced convection 
for power-law fluids in Shenoy's book was based on the generalised Darcy’s equation developed by Christopher and Middleman 
[14]. 

Years later, Nield [15] demonstrated that applying linear stability theory to the power-law fluid saturating the classical problem 
of Horton-Rogers-Lapwood (HRL) can give rise to a singular mathematical problem when the rheological behavior of the fluid differs 
from the Newtonian one. According to Nield [15], this singularity can be avoided by assuming proportionality between the drag 
term highlighted in Darcy's equation for non-Newtonian fluids and the term |u|(n-1) |u|, which is constituted by the power-law 
index n and the seepage velocity |u|. The buoyant flow of the power-law fluid under the effect of a vertical pressure gradient in the 
pure setup of HRL was considered by Barletta et al. [16]. Their outcomes display that the behavior of non-Newtonian fluid can 
accelerate the instability effects. This scenario occurs due to the growing dependence of the onset condition on the impact of the 
flow rate. The convective instability stemmed from the viscous dissipation of the power-law fluid in the Prats configuration with 
an insulating rigid lower boundary was investigated by Celli et al. [17]. They showed that the transverse rolls are the most unstable 
mode in shear-thinning fluid, while the longitudinal rolls are the most unstable mode for the shear-thickening one. Brandao et al. 
[18] have tackled the contribution of the permeable boundary conditions to the onset of instability of the power-law fluid saturating 
a porous layer that undergoes the effect of the vertical throughflow. The interesting point in this work was the transformation of 
the wave number from zero to non-zero values when the flow rate suppresses certain threshold values. This feature emerges in 
the three types of the fluid, namely shear thinning, Newtonian, and shear thickening cases. The most common point among these 
papers is that the convective instability of the power-law fluid is only studied in a weakly permeable porous layer where the effect 
of fluid inertia is negligible. 

The aim of the current work is to fill this gap by dealing with the effect of the form drag number, which mentions the fluid 
inertia on the onset of convection of the power-law fluid saturating a highly permeable porous layer and undergoing horizontal 
throughflow. According to the author's knowledge, the contribution of the form drag number (the Forchheimer number) to the 
emergence of thermal instability of the power-law fluid has not been investigated yet. A linear stability theory that encompasses 
a linearization process and a normal modes method is performed together with dimensionless analysis. Controlling the 
dimensionless numbers such as the form drag number and Peclet number can manipulate the onset condition of thermal 
instability. Numerical and analytical techniques are both invoked here to define the critical values and validate the correctness of 
the solution. 

2. Mathematical Formulation  

Let us deal with the convective instability in a highly permeable porous layer where the saturating fluid behaves as a power law 
model (PL).  The horizontal porous plane is situated in between two different horizontal surfaces: an isothermal impermeable wall 
at the bottom layer and an isoflux open surface at the top one (see Fig. 1).  Uniform heat flux is assumed to cool the system by 
removing the heat and causing the vertical temperature gradient. The gravity force g is supposed to be perpendicular to the velocity 
of the flow and contrasted with the z direction.  The momentum equation of the PL fluid is defined following a Forchheimer model 
proposed by Shenoy [13]. The Oberbeck–Boussinesq theory that manages the change of the density at the buoyancy forces is 
introduced beside the one energy equation Model. The set of equations written for this configuration is: 
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where u*
 is the velocity components, (x*, y*, z*) are the  Cartesian coordinates, t*

 is the time, T*
 is the temperature, P*

 is the pressure,  
g is the gravitational acceleration, ρ  is the density of the power law fluid, K is the permeability of the porous structure, β  is the 
thermal volumetric expansion coefficient, η  is consistency index, n is the rheological behavior of the fluid, α  is thermal diffusivity, 

eλ  is the thermal conductivity, q is the uniform heat flux, and CF is the dimensional Forchheimer coefficient.  
Otherwise, for power-law fluids, for non-Newtonian power-law fluids, the modified permeability Kɺɺɺ  can be formulated using 

the following equation [14, 19]: 
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Christopher and Middleman [14] considered the tortuosity factor Ct as a parameter independent of the power law index and 
equal to 25/12. Besides letting n = 1 in Eq. (2) renders Kɺɺɺ  tends to K and η 	to	 µ  which leads Eq. (1b) to coincide with the standard 
form of the Forchheimer equation. 
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Fig. 1. Configuration of the system. 
 

2.1. Non–dimensional analysis 

One may highlight the dimensional variables rescaled by quantities symbolized without asterisks in the following manner: 
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The curl operator and the dimensionless process are both applied in Eqs. (1) which provides the given form: 

. 0,∇ =u  (4a) 

1
( ) – ,

n

zG R Te
−∇× + = ∇×u u u u  (4b) 

2. .
T

T T
t

∂
+ ∇ = ∇

∂
u  (4c) 

,0,0 0: wz T== =  (4d) 

0, 1.1 :
w

zz

T
z

∂∂
∂∂

= =−=  (4e) 

 The form-drag number G, and the Darcy–Rayleigh number R are the resulting non-dimensionless parameters obtained through 
the last procedure in addition to other physical numbers whose expressions noted by: 
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According to the Reynolds number defined in the literature [14], the deviation from the Darcy to the non-Darcy flow (form drag 
effect) for Newtonian fluid is not just based on permeability but is also related to other physical quantities such as viscosity and 
velocity.  For the power law model, one may adopt the same scenario by using η  instead of µ  and Kɺɺɺ  rather than K which can yield: 
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Following Eq. (6), the form drag effect can take place only if the permeability is sufficiently high. In order to attain this value, 
several parameters should be fixed such as the consistency index ,η  the power law index n, and the maximum velocity present in 

the flow area.  

2.2. Steady state  

We assume a steady, parallel, and uniform flow with dimensional velocity U0 at the direction of the x-axis noted as: 

( ),0,0 ,B Q=u  (7a) 

where Q is the classical Péclet number and is defined in Eqs. (5). Moreover, the temperature profile corresponds to the solution of 
the dimensionless Eqs. (4) is written as: 

( ) 1 .BT z z= −  (7b) 

Here the index B signifies the basic solution. 
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3. Linear Stability Analysis 

Linear Stability theory allows for decomposing the solution into two different parts: The first part is for the base flow (conductive 
solution), and the second one is for the disturbance whose amplitude ε  is assumed to be infinitesimally small. Therefore, we can 
write that: 

,Bu u Uε= + ɶ  ,Bv v Vε= + ɶ  ,Bw w Wε= + ɶ  .BT T εθ= + ɶ  (8) 

Substituting Eqs. (8) into the system of Eqs. (4), neglecting all the nonlinear terms and taking into account Eqs. (7) brings about 
linearized perturbation equations: 
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 The transformation of the velocity components into two-dimensional flow required the stream function ψ  given by: 
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By employing Eqs. (10) into Eqs. (9) the system becomes in the form of stream function-temperature, namely: 

2 2
2 2

2 2
( ) (1 ) ,

n n
n G Q G Q R

z x x

ψ ψ θ− −∂ ∂ ∂
+ + + = −

∂ ∂ ∂

ɶ

 (11a) 

2
1 2

2
,

n
Q Q

t x x

θ θ ψ
θ

−∂ ∂ ∂
+ − = ∇

∂ ∂ ∂

ɶ ɶ
ɶ  (11b) 

,00 : 0,
x

z
ψ

θ
∂
∂

= == ɶ  (11c) 

2

0, 0.1 :
zy x

z
θψ∂

∂ ∂
∂
∂

= ==
ɶ

 (11d) 

Since the system is considered to be infinite, homogeneous, and isotropic in the x  direction, with boundary conditions that are 
independent of x, y and t we can seek the solutions for ψ  and θɶ  in the form of Fourier modes, known as normal modes and defined 
as: 

( )( ,z, ) (z) ,i ax tx t if e ωψ −=  (12a) 

( )( ,z, ) (z) .i ax tx t h e ωθ −=ɶ  (12b) 

The amplitudes of the stream function and the temperature are symbolized by f(z), and h(z), respectively. The introduction of 
the modal form Eqs. (12) into the perturbed governing Eqs. (11) leads to: 
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The rescaled expression of ω̂  can be summed up as: 

ˆ aQω ω= −  (14) 

The complex angular frequency and the wave number are mentioned by the notation of ω  and a. 
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3.1. The principle of exchange of stabilities (PES) 

Stationary convection can be demonstrated by going through the analytical calculation which consists in multiplying Eqs. (13a-

13b) with the complex conjugate of f  and h  then integrating them by parts in the interval [0, 1] in the following manner: 
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 The satisfaction of Eq. (17) can occur under two scenarios: either 0h =  or 0.ω̂ =  We can exclude the first possibility since it 
leads to no perturbation solution 0f h= =  and can keep the second one 0ω̂=  whose negligible behavior seems more realistic. By 
combining this finding with Eq. (14), we obtain ˆ aQω =  which gives rise to a similar result of Celli et al. [20]. This outcome confirms 
that the disturbance pattern travels at the same velocity as the basic state. 

4. Analytical and Numerical Analysis 

After the fulfillment of the PES two distinct approaches are proposed to solve the eigenvalue problem outlined in Eq. (13): the 
numerical solver FindRoot (shooting scheme) from Mathematica software and the analytical one-term Galerkin method. A concise 
description of each approach is provided below with a detailed explanation. 

4.1. Analytical approach    

The one term Galerkin method (N = 1) is sufficient for achieving accurate results according to Tables 1 and 2. Therefore, the 
perturbed functions can be developed in the following trigonometric form (see for instance Finalyson [21]): 

(z) sin( z),
2

f A
π

=  (z) sin( z).
2

h B
π

=  (18) 

where the coefficients A and B are mentioned as non-complex constants. The trial functions defined in Eq. (18) satisfy the boundary 
conditions noted in the two last lines of Eq. (13). One may substitute Eqs. (18) into Eqs. (13) then multiply the resulting equations by 
sin( z/ 2)π  and integrate them in the interval [0,1] which results in a set of equation that possesses trivial solutions if: 
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The null determinant of the system provides a clear formula for the Darcy-Rayleigh number R defined as: 
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Equation. (20) permits us to draw the neutral curves by varying values of n, G, and Q. Moreover, one may also directly deduce Rc 
and ac by deriving Eq. (20) with respect to a which yield: 
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The expression of Rc and ac reported in Eq. (21) serve to determine directly at which buoyancy driven instability onset in the 
medium. A straightforward expression of Rc and ac can be concluded for some special cases such as Darcy-Rayleigh convection [22, 
23], Prats flow [24] and absolute pseudoplastic case. These scenarios can occur only if certain conditions are imposed as we will see 
in the forthcoming sections. 

4.1.1. The Darcy-Rayleigh problem (DR) 

The nonexistence of the horizontal flow rate (Q → 0) leads the fluid to have a motionless basic state. This limiting case becomes 
akin to the DR problem which can be called also by Horton-Rogers-Lapwood instability [22, 23]. The boundary conditions assumed 
for this special case differ from the customary configuration since the open surface is considered. Under this circumstance, one 
may get from Eq. (20) the following critical values: 
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Table 1. Values of Rc and ac for n = 1 and G = Q = 0. 

Methods Rc  ac 

Nield [25]  9.86960 1.57080 

Wilkes [26] 9.86960 1.57081 

First order Galerkin  9.86960 1.57079 

Shooting scheme 9.86960 1.57079 

Table 2. Values of Rc and ac for G = 0 and G = 0.05 are calculated by two different methods:  

shooting scheme (SS) and First order Galerkin method (FGM). 

G = 0 

n ac (FGM) Rc (FGM) ac (SS) Rc (SS) 

0.1 0.883323689 2.290735017 0.883323689 2.290735016 

0.5 1.320877 5.084475177 1.320877 5.084475175 

1 1.570796327 9.869604403 1.570796326 9.869604398 

1.5 1.738371894 17.27090839 1.738371894 17.27090838 

2 1.868002168 28.762135 1.868002168 28.76213499 

G = 0.05 

n ac (FGM)  Rc (FGM)  ac (SS) Rc (SS) 

0.1 1.101196274 3.490147249 1.101196274 3.490147248 

0.5 1.360016673 6.096276904 1.360016672 6.096276901 

1 1.570796327 10.85656484 1.570796326 10.85656484 

1.5 1.72872492 18.26748419 1.72872492 18.26748419 

2 1.856782428 29.77797896 1.856782428 29.77797895 

Equation (22) results from evaluating the value of Rc, defined in Eq. (21), when Q approaches zero. This yields the following 
conclusions: For shear-thinning fluids (n < 1), the system remains linearly stable in the Darcy-Rayleigh problem as the apparent 
viscosity approaches infinity at vanishing Q. This signifies the system shows a strong resistance to perturbations. In contrast, a 
linear instability arises in shear-thickening fluids (n > 1), meaning a small influence of buoyancy forces can trigger convection due 
to the weakness of the apparent viscosity. Finally, the well-known values at which instability commences in the Darcy-Rayleigh 
problem R = 2π is obtained for Newtonian case, see Table 1.  

4.1.2. Limiting case of absolute pseudoplasticity  

When a fluid has an extremely small power law index (n → 0), the expression of Rc as well as ac can be evaluated analytically 
through Eqs. (21) in the follow form: 
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The assessment of Rc and ac reported in Eq. (23) under different limits of G reveals that for a weakly permeable porous layer (as 
G approaches 0) and a highly permeable porous layer (as G approaches ),∞  one may encounter Rc = 2 / 4Qπ  with ac = 0 for the former 
limit, and Rc → ∞  with ac = / 2π  for the latter. In other words, in the Darcian regime (G = 0), the behavior of the flow rate determines 
the increase or decrease in instability, whereas in the non-Darcian regime, linear stability occurs due to the dominance of drag 
forces. This aligns well with the findings presented in Fig. 9. The noteworthy point here is the emergence of the vanishing wave 
number case at G→ 0, implying that only unicellular flow patterns can exist in the perturbation fluid. 

4.1.3. Prats flow 

If we would like to recover the Prats flow [24] by neglecting the form drag (G→ 0), in Eq. (21), the critical values for the onset 
condition can be redefined as: 
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In the Darcian regime (G = 0), the flow rate (Q) becomes the key factor in controlling the variation of Rc in Eq. (24) for all three 
types of fluids. Comparatively, the wavenumber (ac) remains unaffected by Q in Eq. (24), which validates the results displayed in 
Figs. 6 to 8. 

4.2. Numerical solution  

       The conjunction between the shooting scheme and the Runge-Kutta solver is one of the more popular numerical tools used for 
finding out the critical values as well as the marginal stability curves. In fact, the Runge-Kutta method can be applied only if we 
transform the differential equations into an initial value problem. To realize this operation, four conditions at z = 0 must be 
completed in the corresponding manner: 

1
0, , 0, ' 1.0 : ' Sz h hf f= = == =  (25) 

Since the eigenvalue problem is considered homogeneous, the normalization condition h'(0) = 1 has to be included. On the other 
hand, the introduction of the unknown constants S1, in the initial condition is required in order to accomplish the needed number. 
This unknown is developed together with R from the shooting method and with the help of the boundary conditions expressed at 
z = 1. The numerical procedure of these two methods is performed by using Mathematica 10 Wolfram, Inc. Each of these techniques 
has its own function which is available in the software. The shooting method can be involved by the function of Find Root while 
the Runge-Kutta solver can be employed through the NDSolve function. The marginal stability curves R(a) can be obtained here only 
by giving certain values to the parameters Q, n, G, and a. 
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Fig. 2. Neutral plots R(a) for n = 0.1. 

 

Fig. 3. Neutral plots R(a) for n = 0.5. 

 
Fig. 4. Neutral plots of R(a) for n = 1.5. 

4.2.1. Methods validation  

The results of Rc and ac generated by the techniques detailed in sections 4 and 5 are compared with those acquired by Nield [25] 
and Wilkes [26] under conditions of Newtonian fluid (n = 1) with no flow rate and weakly permeable porous layer (Q = G = 0). This 
study is carried out to validate the accuracy and the correctness of both methods against the literature. According to Table 1, an 
excellent agreement of 98.42% is demonstrated between the critical values developed by Nield [25] and Wilkes [26] and those 
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calculated by the first-order Galerkin method (FGM) and shooting scheme (SS). On the other hand, these two methods have also 
shown a good congruence between each other with no less than eight significant figures as provided in Table 2. 

5. Outcomes and Discussions 

This study investigates the dual contributions of the horizontal flow rate Q and the form drag G the emergence of thermal 
convection of the power-law fluid (whose viscosity changes with flow speed) in an isotropic homogeneous porous layer with 
asymmetric boundary conditions. The numerical and analytical results depicted in Figs. 2-9 enable us to understand how the 
parameters Q and G can control the thermal instability of underground fluid reservoirs containing power-law fluids like heavy oil 
and bitumen. These fluids exhibit a shear thickening and shear thinning behaviour against the applied shear stress. The flow rate 
Q which can be known as a Peclet number characterizes the effects of the applied shear stress at pore scales on a fluid, while the 
form drag G arises from the boundary layer detachment and its resulting wake. The onset of the thermal instability can be 
acknowledged through the determination of the minimum of the neutral curves drawn in Figs. 2-5 for different Q in the cases of 
Darcian regime (G = 0) and non-Darcian regime (G = 1). The area below the solid curves plotted in the parameter space (R, a) 
represents stability, whereas the area above represents instability. The neutral curves display two uneven scenarios for a shear 
thinning fluid (n = 0.1, n = 0.5): The first case shows a non-monotonic behaviour of R with respect to Q for the Darcy regime (G = 0), 
while the second one exhibits a monotonic increase of R with Q for the non-Darcy regime (G = 1). In other words, at negligible form 
drag (G = 0), the apparent viscosity of the shear-thinning fluid becomes extremely strong at small Peclet number (Q) and extremely 
weak at high Peclet number (Q). This feature retards the trigger of thermal instability in the former case and accelerates it in the 
latter one, since the viscous forces have the lower hand at Q < 1 and the upper hand at Q > 1. Conversely, the presence of form drag 
(G =1) prevents thermal instability from onsetting very easily at Q > 1 which leads the system to reach a higher level of stability 
than the case of Q < 1. Physically speaking, it is well known that the drag forces slow the fluid movement because of the separation 
region created at the boundary layer caused by pressure differences. The appearance of this scenario hinders the dominance of 
buoyant forces during the fluid flow, which justifies the increase of the stability at Q > 1. Moreover, the impact of the form drag 
becomes increasingly apparent as the Peclet number strengthens. This elucidates why at Q < 1 the instability behaviour quietly 
resembles that of G = 0. On the other hand, if we look at the shear thickening fluid (n = 1.5, n = 2) one may notice a monotonic 
increase of R with respect to both Q and G. This corresponds to the parallel decrease in the apparent viscosity with the flow rate Q 
which gives rise to the opposite case of the previous one. In this context the thermal instability can quickly manifest when Q < 1 
at G = 0 and G = 1 as the fluid has a slow speed and less dominant viscous forces. 

 

Fig. 5. Neutral plots of R(a) for n = 2. 

 

Fig. 6. Critical curves of Rc and ac for fixed Q = 0.1, 1. 
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Fig. 6. Continued. 

 

Fig. 7. Critical curves Rc and ac for fixed Q = 5. 

 

Fig. 8. Critical curves Rc and ac for fixed G = 0, 0.1. 

Figures 6 ,7 and 8 present plots of the critical values of R and a against the power-law index n and Q. The dotted lines in Figs. 6 
and 7 indicate the standard critical values determined as Rc = 2π  and ac = 2 / 2π  by Nield [25] and Wilkes [26]. Both figures 
demonstrate that, at high Peclet numbers (Q), thermal instability is difficult to induce in shear-thickening (n > 1) and shear-thinning 
(n < 1) fluids G > 0. For example, at Q = 5 with G = 0.5, stability increases by 96.15% in shear-thinning fluid (n = 0.1) and by 25.97% in 
shear-thickening fluid (n = 2) when compared to Darcian flow. However, a rapid onset of thermal instability is observed at low 
Peclet numbers since the critical Darcy-Rayleigh number Rc grows by 2% for n = 0.1 and 26.29% for n = 2 at Q = 0.1 and G = 0.5. This 
behavior aligns with the results discussed in the neutral curves as well as the one displayed in the Table 2. For a Newtonian fluid 
(n = 1), the curve of Rc remains constant and linear with respect to the Peclet number (Q) at G = 0, whereas it begins to diverge to 
infinity after Q = 1 is surpassed at G = 0.1. This indicates that Newtonian fluids are more stable under conditions of G > 0, particularly 
in the case of Q > 1. Otherwise, if we look at the variation of ac in both graphs (Fig. 2 and Fig. 8) one may conclude that the curves 
of the critical wave number remain constant with respect to the Peclet number Q in both fluids of shear-thinning and shear-
thickening at Darcian regime G = 0.  
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Fig. 8. Continued. 

 

Fig. 9. Critical curves Rc and ac for the limiting condition of (n→ 0) 

The deviation from this latter (G > 0) drives the critical wavenumber to display a monotonic increase with the Péclet number 
until it reaches the standard value ac = 2 / 2π  for the Newtonian fluid. Thus, the growing of the Peclet number in this scenario rapid 
the arrival of the convective waves. Furthermore, it can be observed that the critical wave numbers slightly decrease as the form 
drag increases in a shear-thickening behavior. The understanding of the critical wave number can allow us to have a big picture of 
the cellular flow patterns of the perturbed fluid. According to the analysis above, the convective cells in the shear thickening case 
are more concentrated and smaller in size than the shear thinning one during the existence of the form drag. This in turn means 
a strong heat transfer process will be carried out in the porous layer. The special case of the absolute pseudoplastic model (n → 0) 
is mentioned in Fig. 9. Both plots of Rc and ac with respect to Q and various values of G assure again the behavior displayed in Figs. 
2 to 8. A special case of vanishing wave number appears for G = 0, implying the existence of a unicellular flow pattern. At G = 1 and 
Q = 1, one may notice a 97.7% increase in the critical wave number ac which drives the system to display more cells in the flow 
pattern. Broadly speaking, the occurrence of the form drag can enhance the stability of the shear thinning fluids which can facilitate 
many industrial operations such as the extraction of heavy oil or bitumen. 

6. Conclusion 

The contribution of form drag, horizontal flow rate, and fluid rheological behavior (Power-law model) to the initiation of thermal 
instability in a homogeneous isotropic porous layer was analyzed analytically by employing the first-order Galerkin method and 
numerically by adopting shooting schemes. The study encompasses the start of instability in three types of fluids: shear-thickening, 
Newtonian, and shear-thinning. Analytical and numerical outcomes were obtained for G = 0 (Darcian regime) and G > 0 (non-Darcian 
regime or Forchheimer regime), showing that the combined presence of form drag G and strong flow rate Q acts to suppress the 
early development of convective patterns for shear-thinning fluid more than its counterparts (Newtonian and shear-thickening). 
For instance, increasing the form drag G from 0.05 to 1 in the case of shear-thinning behavior (n = 0.5) can yield an increase in Rc at 
flow rates Q = 5 by 89.13%. Conversely, the value of Rc can be increased for shear-thickening fluid (n = 1.5) by 61.23%, and for 
Newtonian one (n = 1) by 79.18%. The variation of ac also exhibits an increase in the presence of form drag for shear-thinning fluids, 
but a decrease for shear-thickening fluids. The special case of a vanishing wavenumber appeared at the special case of absolute 
pseudoplastic (n → 0), where it displays one convective cell pattern in Darcian regime and a multicellular flow pattern in non-
Darcian one. Thus, controlling the form drag G affords us the capability to either delay or accelerate the buoyancy effect within the 
power law model. These findings can greatly aid in the formulation of extraction strategies targeting heavy oil and bitumen 
reservoirs, particularly in regions marked by the presence of high-permeability channels or fractures.  
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Nomenclature  
 

Latin symbols 

a 

A 

B 

c 

ct 

CF 

ez 

f(z), h(z) 

g 

G 

i 

K 

Kɺɺɺ  

L 

P 

n 

q 

Q 

R  

Re Lρ  

t 

T 

T0 

u 

Uɶ  

U0 

( ), ,x y z  

 

Wavenumber of disturbances, 

Constant coefficient,  

Constant coefficient,  

Specific heat capacity [J/(kg K)], 

Tortuosity factor, 

Forchheimer coefficient, 

Unit vector in the z-direction, 

Eigenfunctions,   

Gravitational acceleration [m/s2], 

The form-drag number, 

Complex number (i2 = -1), 

Permeability [m2], 

Modified permeability, 

Layer thickness [m], 

Pressure, [Pa], 

Power law index, 

Uniform heat flux, [W/m2], 

Péclet number, 

Darcy–Rayleigh number, 

Reynolds number, 

Time [s], 

Temperature[K], 

Reference temperature [K], 

Dimensionless (u, v, w), 

Velocity disturbance vector ( , , )U V Wɶ ɶ ɶ  

Dimensional velocity flow, 

Cartesian coordinates. 

Greek letters  

α 

β 

θɶ  

ρ 

λ 

μ 

η 

σ 

Ψ 

ω 

ω̂  

ϕ 

∆T 

ε 

ϵ 

Subscripts 

B 

c 

e 

f 

s 

Superscript 

∗ 

' 
_ 

 

 

Thermal diffusivity [m2/s], 

Thermal expansion coefficient [K-1], 

Temperature disturbance, 

Density [kg/m3], 

Thermal conductivity ratio [W/(m·K)], 

Dynamic viscosity [Pa.s] 

Consistency index, 

Heat capacity ratio 

Dimensionless stream-function, 

Rescaled angular frequency, 

Shifted angular frequency, 

Porosity,  

Reference temperature difference [K], 

Small parameter, 

Dimensionless perturbation parameter. 

 

Basic state, 

Critical value, 

Effective value, 

Fluid phase, 

Solid phase. 

  

Dimensional quantity, 

Derivative with respect to z, 

Complex conjugate. 
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