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Abstract. DNA, or deoxyribonucleic acid, is found in every single cell and is the cell's primary information storage medium. DNA 
stores all an organism's genetic information, including the instructions it needs to grow, divide, and live. DNA is made up of four 
different building blocks called nucleotide bases: adenine (A), thymine (T), cytosine (C), and guanine (G). The genome is sequenced 
in vitro utilizing encoding strategies such as labelling one bond pair as 0 and the other as 1 to store digital information. In this study, 
the fractional differential order of double-chain DNA dynamical system was investigated, considering Atangana’s conformable 
fractional derivative. The conformable sub-equation method was applied to the system.  The analysis resulted in some interesting 
new exact solutions of the model. One-soliton kink solution, multiple-soliton solutions, and periodic-wave solutions are the three 
broad categories that may be used to describe the results. In order to better understanding the solutions found, we have visually 
investigated a few of them. Both solitary and anti-solitary waves of the DNA strands are seen, attesting to the nonlinear dynamics 
of the system. The gathered data might be used to conduct application evaluations and draw further scientific findings. 

Keywords: Fractional Calculus, Deoxyribonucleic acid system, Conformable sub-equation method, Atangana’s conformable 
derivative. 

1. Introduction 

Gene mapping is an effective method for locating disease-causing mutations, localizing favorable features, and refining 
reference genomes across species. From the early discovery of co-inheritance of characteristics and linkage analysis to the rapid 
advancement of the field brought on by the Human Genome Project and the advent of next-generation sequencing, this area of 
study has stood the test of time. Gene mapping has been shown to be a high-yield approach with applications in medicine and 
agriculture [1]. DNA methylation plays a crucial role in maintaining proper gene expression. However, changes in the methylation 
state of the genome have been seen across a number of organs as a result of the ageing process [2]. The building blocks of all living 
things are found in the deoxyribonucleic acid (DNA), which is composed of four nucleotides and twenty amino acids (combinations 
of nucleotides). DNA may be seen as a digital component by considering it with its features and functions, all of which are captured 
by these distinct elements. When DNA is seen as an organic digital memory, it becomes an attractive data storage medium due to 
its many advantages over traditional electronic media, such as its greater density, stability, energy efficiency, durability, and lack of 
predictable technological obsolescence [3]. Since various scientific fields, including Engineering and Biology, have recently made 
technological strides, scientists from these fields have been able to collaborate on creating effective models that imitate the right 
nature and its qualities. Industry, medical, engineering, biochemistry, biotechnology, computer science, and other fields may all 
benefit from these models [4, 5]. Through careful research of DNA's behavior, we can see that its nonlinearity structures are what 
generate the localized waves that are responsible for the efficient transfer of energy without any of it being lost as heat. DNA 
replication relies heavily on a series of molecular events known as origins of replication, which initiate the copying of genetic 
information from one DNA molecule to two [6]. One of the most recent application of DNA is to be used as storage medium. DNA is 
analogous to a digital media because of the way it is portrayed digitally, with the nucleotide bases functioning as digital symbols. 
As this area of study develops, it may be possible to store all the world's digital information for a year in a space no larger than four 
grams. A single gram of DNA has the potential to encode 215 million gigabits of data [7]. DNA is made up of four different building 
blocks called nucleotide bases: adenine (A), thymine (T), cytosine (C), and guanine (G). The genome is sequenced in vitro utilizing 
encoding strategies such labelling one bond pair as 0 and the other as 1 to store digital information. Typically, the Shannon 
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information is used to evaluate the capacity of a medium to store data. DNA is a heterogeneous polymer made up of a long chain 
of individual deoxyribonucleotide monomers, each of which may be any one of the four bases (A, T, C, or G) [8]. Moreover, 
environmental DNA sequencing has given scientists fresh insight into the strategies used by marine bacteria to flourish at varying 
depths in the ocean. Ancestral environmental data are useful in ocean engineering for gauging the seas' ability to buffer the world 
from climate change [9]. The dynamical mathematical system describing DNA is considered as an evolution partial differential 
equation. The evolution equations in one, two and three dimensions have been comprehensively analyzed via numerous techniques 
including Lie infinitesimals [10-15, 9], Group theoretical method with Lax pair investigation for nonlinear evolution equations and 
other applications. Moreover, different techniques were employed like the exponential function method [16, 17], Painlevé property 
analysis [18], singular manifolds method [19-21], the method of sub ODE [22], Hirota Bilinear method [23-25], Elliptic method [26, 
27], sin-cos and tan-cot methods, [28-37] and some other numerical techniques [38-42]. Researchers have looked at several 
promising approaches for dealing with the nonlinear DNA system including solitons, kink and periodic solutions [43-45]. Riccati 
parameterized factorization techniques were used to a model of DNA created by Peyrard and Bishop in order to find solitary wave 
solutions for longitudinal and transverse motions [44-46]. The expansion method was used to investigate solutions including 
solitons, kinks, periodic waves, and multi-soliton waves. Bell-shaped and periodic solitary wave solutions to the coupled DNA 
nonlinear dynamical equation were characterized numerically [47, 48]. 

The motivation of the current research is to investigate the fractional order of DNA dynamical system instead of integer version 
which depends on both of current and historical states to fully describe the behavior of the double-chain Deoxyribonucleic acid. 
Aiming to benefit of the historical state to help in solving some biological problems especially in developing countries as homeless 
children and spinal cord donators. The paper is planned as follows. In section 2, the basic properties, and definitions of the 
Atangana’s conformable derivative are offered, beside a general description of the conformable sub-equation method. In section 3, 
the fractional order of double chain DNA model is introduced and is analytically solved. In section 4, the results are discussed. The 
paper is terminated by conclusions remarks in section 5. The schematic configuration of the considered system is illustrated in Fig. 
1. 

2. Preliminaries and Method of Solution 

2.1. Definitions and some properties of fractional-order derivatives 

In this section, some basic properties, and definitions of the Atangana’s conformable fractional order derivatives are provided. 
Thus, the fractional derivatives of order α  is defined as: 

Definition 1: Let [ ): 0,f ∞ → R  and t > 0, then the thα order conformable derivative of f(t) is defined by [49, 50]: 
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Definition 2: The Atangana’s conformable or β− conformable derivative is defined as [50]: 
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Some properties of the Atangana’s conformable derivative [51, 50] are as follows: 

0 0 0( ( ) ( )) ( ) ( ),A A A
x x xD af x bg x a D f x b D g xα α α+ = + for all a, b ,∈ ℝ  (3) 

 

Fig. 1. Schematic configuration of the considered system. 
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0 0,A
xD cα =  c is constant, (4) 
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where ,ζ  is a constant, then we have: 
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2.2. Conformable sub-equation method 

Consider any conformable fractional order differential equation (CFDE):  

( )0 0 0 0 0 0 0, , , , , ,... 0, 0 1.A A A A A A A
t x y t x t yp u D u D u D u D D u D D uα α α α α α α α= < <  (10) 

where u is an unknown function and p is a polynomial of u and its Atangana’s conformable derivatives. To find the exact solutions 
of Eq. (10) the fractional sub equation method [50], can be performed as in the following steps: 

Step 1: 
Utilizing the travelling wave transformation for Eq. (10), by considering: 

( ) ( )
1 1 1
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k l c
u x y t u x y t

α α α

η η
α α α α α α

           = = + + + + +          Γ Γ Γ     
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where k, l and c are constants to be determined later, the FDE (10) is reduced to a conformable ordinary differential equation in the 
form: 

( )( ), ( ), ( ), ( ),... 0.q u ku lu uη η η η′ ′ ′′ =  (12) 

Suppose that the solution of Eq. (12) is in the following series form: 

0
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where ai, (i =1, 2, …, n) are constants, the positive integer n is calculated through balancing the highest order derivatives with the 
order of the highly nonlinear terms appear in (12), in the following manner: 

Let the order of /p pd u dη  to be in the form: 
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  = +   
 (14) 

Let the order of ( / )q p p su d u dη  to be in the form: 
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O u nq s p n

dη
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Balancing Eqs. (14) and (15) results in obtaining the proper value of n. Assume that ϕ  satisfies the following Riccati equation: 

2.
d

d

ϕ
θ ϕ

η
= +  (16) 

Step 4: 
Substituting (13) along with (16) into (12), leads to an algebraic equation, collect the coefficients of the similar orders of that 

equation then equating these coefficients by zero, get a system of algebraic equations which can be solved using any mathematical 
tool. According to the previous results, different forms of analytic solutions can be obtained through the obtained constants values 
and the back substitution. 
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3. Atangana’s Conformable Fractional Order Double Chain DNA Model 

3.1. Mathematical formulation of the problem 

The Atangana’s conformable fractional order double-chain DNA model in (2+1)-dimensions is: 

2 2 2 2 2 3 2 
0 1 0 1 0 1 1 1 1      ,A A A

t x yD u c D u c D u u uv u uvα α α λ γ µ β− − = + + +  (17) 

2 2 2 2 2 2 2 3
0 2 0 2 0 2 2 2 2 0      .A A A

t x yD v c D v c D v v u u v v cα α α λ γ µ β− − = + + + +  (18) 

where u(x, y, t) and v(x, y, t) refer to the difference of the longitudinal and the transverse displacements between the bottom and 
top strands, respectively. The constants 1 2 1 2 1 2 1 2 1 2, , , , , , , , ,c c λ λ γ γ µ µ β β  and 0c  are defined as: 
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,ρ  is the mass density, ,σ  is the area of the transverse cross-section, ,ε  is the Young’s modulus, F, is the tension density of the 
strand, ,µ  is the rigidity of the elastic membrane, h, is the distance between the two strands and 0 ,l  is the height of the membrane 
in the equilibrium position. Now, the following transformation is used: 

  b.v au= +  (20) 

Equation (20) reduces Eq. (17) to: 

( ) ( ) ( )2 2 2 2 2 3 2 2 2
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and Eq. (18) is reduced to: 
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Equations (21) and (22) are similar for: 

   ,    .
2

h
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Finally, the system of equations (17) and (18) is reduced to a single fractional order equation: 
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3.2. Analytical solution of the problem 

The conformable sub-equation method will be applied to find analytic solutions of equation (24). Inserting equation (11) into 
equation (24), considering the fractional derivatives’ properties (3)-(9), obtaining a conformable order ordinary differential equation: 

2 2 2 2 2 3 2
1 1'' '' ''   0c u C k u C l u Au Bu Du− − − − − =  (26) 

balancing the highest order derivatives with the order of the highly nonlinear terms in (26), according to (14) and (15): 

n + 2 = 3n    n = 1 (27) 

Setting n = 1 in Eq. (13) yields:  

0 1 .u a a ϕ= +  (28) 

Inserting Eqs. (28) and (16) into Eq. (26), considering Eq. (11) and the properties of Atangana’s conformable fractional derivatives 
(3)-(9), getting the algebraic equation: 

( ) ( ) ( ) ( ) ( )2 3 2 2 3 2 2 3 3 2 2 2 3 3 2 2 2
1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 12 2 2 2 2 2   3 3 2 0.c a a C k a a C l a a A a a a a a a B a a a a Da Daα α αθϕ ϕ θϕ ϕ θϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ − + − + − + + + − + + − − =  (29) 

Collect the coefficients of the similar orders in Eq. (29), reveals that: 

Coefficient of 0 3 2
0 0 0 0,Aa Ba Daϕ =− − − =  (30) 

Coefficient of 2 2 2 2 2 2
1 1 1 1 1 0 1 0 1 12 2 2 3 2 0,a c a C k a C l a a A a a B Daα α αϕ θ θ θ= − − − − − =  (31) 
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Coefficient of 2 2 2
0 1 13 0,a a A a Bϕ =− − =  (32) 

Coefficient of 3 2 2 2 2 2 3
1 1 1 1 1 12 2 2 0.a c a C k a C l a Aα α αϕ = − − − =  (33) 

By solving the system of equations (30)-(33), the values of the constants are as follows: 
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4. Results and Discussions 

Referring to the solutions of fractional Riccati equation (16), by Zhang et al. [52], the function ( )ϕ η  is expressed in the form: 
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 (35) 

Then the solutions of the DNA system of Eqs. (17) and (18), considering Eqs. (20), (28) and (35) are as follows: 
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 (37) 

Equations (36) and (37) reveal the kink solitary waves for the longitudinal and the transversal motions as shown in Fig. 2, for    
α = 0.2, B = 15, A = 2, D = 10, k = 0.5, l = 0.2, c = 1, C1 = 0.1, t = 0.5, a = 1 and b = 5.  
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 (39) 

The solitary wave for the longitudinal motion and the transversal motions u2 and v2 are plotted as Fig. 3, for the following 
arbitrary constants α = 0.5, B = 15, A = 2, D = 10, k = 0.5, l = 0.2, c = 1, t = 0.5, a = 0.2 and b = 5. 

  
(a) (b) 

Fig. 2. (a) The kink solitary wave for the longitudinal motion, (b) the anti-kink solitary wave for the transversal motion at 

α = 0.2, B = 15, A = 2, D = 10, k = 0.5, l = 0.2, c = 1, C1 = 0.1, t = 0.5, a = 1 and b = 5. 
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(a) (b) 

Fig. 3. (a) The solitary wave for the longitudinal motion, (b) the anti-wave for the transversal motion at 

α = 0.5, B = 15, A = 2, D = 10, k = 0.5, l = 0.2, c = 1, t = 0.5, a = 0.2 and b = 5. 

  
(a) (b) 

Fig. 4. (a) The periodic wave for the longitudinal motion, (b) the transversal motion at 
α = 0.4, B = 5, A = 10, D = 10, k = 0.5, l = 0.2, c = 1, C1 = 0.1, t = 0.5, a = 1 and b = -3. 

  
(a) (b) 

Fig. 5. (a) The multi-soliton wave for the longitudinal motion, (b) the transversal motion at 
α = 0.4, B = 5, A = 10, D = 10, k = 0.5, l = 0.2, c = 1, C1 = 0.1, t = 0.5, a = 1 and b = 5. 



Monitoring Dynamical Behavior and Optical Solutions of Space-Time Fractional Order Double-Chain Deoxyribonucleic Acid Model … 7 
 

Journal of Applied and Computational Mechanics, Vol. xx, No. x, (2024), 1-9 

( )
( )

2 2
2

3 2 2 2 2 2 2
1 1

3 3
 tan         ,3 0, 0.

3 3 6

B AD B AD B
u kx ly ct AD B A

A A A c C k C l
α α α α

 − − −  = + + + − > ≠  − −  
 (40) 

( )
( )

2 2
2

3 2 2 2 2 2 2
1 1

3 3
   tan         ,  3 0, 0.
3 3 6

B AD B AD B
v a kx ly ct b AD B A

A A A c C k C l
α α α α

   − − −   = + + + + − > ≠     − −     

 (41) 

These waves are presented in Fig. 4, showing the periodic wave for the longitudinal and transversal motions at the following 
arbitrary constants α = 0.4, B = 5, A = 10, D = 10, k = 0.5, l = 0.2, c = 1, C1 = 0.1, t = 0.5, a = 1 and b = -3. 

( )
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 (43) 

The multi-soliton waves u4 and v4 for the longitudinal and transversal motions are presented in Fig. 5, for the following arbitrary 
constants α = 0.4, B = 5, A = 10, D = 10, k = 0.5, l = 0.2, c = 1, C1 = 0.1, t = 0.5, a = 1 and b = 5. 

Finally, we have: 
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Γ2 2 2 2 2
5 1 1

12
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 Γ + − = − − − + = = ≠   + + + 
 (45) 

On the other hand, when we think about Eq. (24), we found that it is similar to the space time fractional generalized reaction 
duffing equation [53], with some constants renamed: 

2 2 2 3 2
0 0 0          0.A A A

t x yD u E D u F D u qu ru suα α α+ + + + + =  (46) 

The importance of the space time fractional generalized reaction duffing equation (46) is that it can be reduced to many well-
known nonlinear fractional wave equations such as the following: 

 Fractional Klein-Gordon equation: 

2 2 3
0 0 1 2        0,   0 ,0 1.A A

t xD u D u d u d u tα α α− − − = > < <  (47) 

 Fractional Landau-Ginzburg-Higgs equation: 

2 2 2 2 3
0 0        0,   0 ,0 1.A A

t xD u D u m u g u tα α α− − + = > < <  (48) 

 Fractional 4ϕ  equation: 

2 2 3
0 0        0,   0 ,0 1.A A

t xD u D u u u tα α α− + − = > < <  (49) 

 Fractional duffing equation: 

2 3
0 1 2      0,   0 ,0 1.A

tD u d u d u tα α+ + = > < <  (50) 

 Fractional Sine-Gordon equation: 

2 2 3
0 0

1
        0,   0 ,0 1.

6
A A

t xD u D u u u tα α α− + − = > < <  (51) 

The importance of the space time fractional generalized reaction duffing equation enables us to spread the solution of the DNA 
system. 

5. Conclusions 

The genetic instructions for every living thing on Earth are stored in a molecule of nucleic acid called deoxyribonucleic acid 
(DNA). The DNA double-chain fractional-order dynamical system was solved analytically in two dimensions. The major 
contribution of this study was the investigation of the fractional differential order of double-chain DNA dynamical system, 
considering Atangana’s conformable fractional derivative. The developed novel solutions also provided a visual simulation of the 
DNA's behavior. Both longitudinal and transverse solitary wave solutions were discussed, and their visualizations were shown. The 
applied method has the potential to uncover a wealth of fascinating wave solutions for the double-chain DNA dynamical system. 
The information obtained is vital for genetic studies of the Coronavirus and the development of vaccines. 
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